Anti Lie-Trotter formula

Fumio Hiai

Tohoku University

2015, March (at Greifswald)

(Joint work¹ with K.M.R. Audenaert)

¹K.M.R. Audenaert and F. Hiai, Anti Lie-Trotter formula, arXiv:1412.7905.

Plan

- Lie-Trotter-Kato formula: survey
- Anti Lie-Trotter formula: $\lim_{r\to\infty} (A^{r/2}B^rA^{r/2})^{1/r}$
- The maximal case
- $\bullet \lim_{r\to\infty} (A^r \# B^r)^{2/r} ?$

Lie-Trotter-Kato formula: survey

- H is a Hilbert space,
- H, K are lower bounded self-adjoint operators on H (not necessarily densely-defined),
- e^{-tH} , e^{-tK} ($t \ge 0$) are C_0 -semigroups on \mathcal{H} (under the convention $e^{-tH} = 0$ on $(\operatorname{dom} H)^{\perp}$),
- $\mathcal{D}_0 := \operatorname{dom} H_+^{1/2} \cap \operatorname{dom} K_+^{1/2}, \mathcal{H}_0 := \overline{\mathcal{D}_0},$ P_0 is the projection onto \mathcal{H}_0 ,
- $H_+ \dotplus K_+$ is the form sum, i.e.,

$$||(H_+ \dotplus K_+)^{1/2} \xi||^2 = ||H_+^{1/2} \xi||^2 + ||K_+^{1/2} \xi||^2, \qquad \xi \in \mathcal{D}_0.$$

• $H \dotplus K := (H_+ \dotplus K_+) - P_0(H_- + K_-)P_0$.

Trotter-Kato formula (Kato, 1978)

$$\lim_{n\to\infty} (e^{-tH/n}e^{-tK/n})^n = \lim_{r\searrow 0} (e^{-rtH/2}e^{-rtK}e^{-rtH/2})^{1/r} = e^{-t(H\dotplus K)}P_0$$

in the strong operator topology, uniformly in $t \in [T_0, T]$, $0 < T_0 < T$.

Refinements of Trotter-Kato formula

(1) Trace norm convergence: Neidhardt-Zagrebnov (1990, 1999), H.² (1995)

If H+K is essentially self-adjoint and $e^{-K}\in C_p(\mathcal{H})$ where $0< p<\infty$, then

$$\lim_{r \searrow 0} \left\| \left(e^{-rH/2} e^{-rK} e^{-rH/2} \right)^{1/r} - e^{-(H+K)} \right\|_p = 0,$$

$$\lim_{n\to\infty} \left\| \left(e^{-H/n} e^{-K/n} \right)^{n+1} - e^{-(H+K)} \right\|_p = 0.$$

²F. Hiai, Trace norm convergence of exponential product formula, *Lett. Math.*

(2) Operator norm convergence: Rogava (1993), Neidhardt-Zagrebnov (1998, 1999), Ichinose-Tamura (1997, 2001), Ichinose-Neidhardt-Zagrebnov³ (2004)

Assume that $H, K \geq 0$ and $\operatorname{dom} H^{1/2} \cap \operatorname{dom} K^{1/2}$ is dense in \mathcal{H} . If $\operatorname{dom} ((H \dotplus K)^{\alpha}) \subset \operatorname{dom} H^{\alpha} \cap \operatorname{dom} K^{\alpha}$ for some $\alpha \in (1/2, 1)$ and $\operatorname{dom} H^{1/2} \subset \operatorname{dom} K^{1/2}$, then

$$\left\| \left(e^{-tH/2n} e^{-tK/n} e^{-tH/2n} \right)^n - e^{-t(H + K)} \right\|_{\infty} = O(n^{-(2\alpha - 1)}),$$

$$\left\| \left(e^{-tH/n} e^{-tK/n} \right)^n - e^{-t(H + K)} \right\|_{\infty} = O(n^{-(2\alpha - 1)}),$$

uniformly in $t \in [0, T]$, $0 < T < \infty$, as $n \to \infty$.

Note Trotter-Kato formula ←→ Feynman-Kac formula

³T. Ichinose, H. Neidhardt and V.A. Zagrebnov, Trotter-Kato product formula and fractional powers of self-adjoint generators, *J. Funct. Anal.* **207** (2004), 33–57.

Lie-Trotter-Kato formula for operator means

Kubo-Ando (1980) For each operator monotone function $f \ge 0$ on $[0, \infty)$ with f(1) = 1 the associated operator mean is

$$A \sigma B := A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2}$$

for invertible $A,B\in \mathcal{B}(\mathcal{H})^+$, extended to general $A,B\in \mathcal{B}(\mathcal{H})^+$ as

$$A \sigma B := \lim_{\varepsilon \searrow 0} (A + \varepsilon I) \sigma (B + \varepsilon I).$$

For example,

 $\frac{A+B}{2}$ arithmetic mean,

A # B geometric mean, first introduced by Pusz-Woronowicz,

$$\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}$$
 harmonic mean.

H.4 (1997)

Let σ be an operator mean for the corresponding operator monotone function f with $\alpha = f'(1)$. If $H \in \mathcal{B}(\mathcal{H})$ is self-adjoint and K is a lower bounded self-adjoint operator on \mathcal{H} , then

$$\lim_{r \searrow 0} (e^{-rtH} \, \sigma \, e^{-rtK})^{1/r} = e^{-t((1-\alpha)H + \alpha K)}$$

in the strong operator topology, uniformly in $t \in [0, T]$, T > 0.

Matrix case: Audenaert-H. (2014)

For positive semi-definite matrices A, B,

$$\lim_{r \searrow 0} (A^r \sigma B^r)^{1/r} = P_0 \exp((1 - \alpha) \log A + \alpha \log B),$$

where $P_0 := A^0 \wedge B^0$.

⁴F. Hiai, Log-majorizations and norm inequalities for exponential operators, in *Linear Operators*, Banach Center Publications, Vol. 38, 1997, pp. 119–181.

Anti Lie-Trotter formula

What happens about

$$\lim_{r\to\infty} (e^{-rH/2}e^{-rK}e^{-rH/2})^{1/r} ?$$

Letting $A = e^{-H}$ and $B = e^{-K}$ we may consider

$$\lim_{r\to\infty} (A^{r/2}B^rA^{r/2})^{1/r}$$

for $A, B \in \mathcal{B}(\mathcal{H})^+$.

Motivation from quantum information

For density matrices ρ, σ ,

Rényi relative entropy

$$D_{\alpha}(\rho||\sigma) := \frac{1}{\alpha - 1} \log \operatorname{Tr} \rho^{\alpha} \sigma^{1 - \alpha}$$

 Sandwiched Rényi relative entropy (Müller-Lennert et al., Wilde-Winter-Yang, Frank-Lieb, Beigi, ...)

$$\widetilde{D}_{\alpha}(\rho||\sigma) := \frac{1}{\alpha - 1} \log \operatorname{Tr} \left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}}\right)^{\alpha} = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left(\rho^{\frac{1}{2}} \sigma^{\frac{1 - \alpha}{\alpha}} \rho^{\frac{1}{2}}\right)^{\alpha}$$

• α -z-relative entropy (Audenaert-Datta)

$$D_{\alpha,z}(\rho||\sigma) := \frac{1}{\alpha - 1} \log \operatorname{Tr} \left(\rho^{\frac{\alpha}{2z}} \sigma^{\frac{1-\alpha}{z}} \rho^{\frac{\alpha}{2z}} \right)^{z}$$

What are limiting cases for $\alpha \to 0, 1, \infty$ and $z \to 0, \infty$? Anti Lie-Trotter appears for fixed $\alpha \neq 1$ and $z \to 0$. Below we assume that $A, B \in B(\mathcal{H})^+$ are compact operators.

Write

$$A = \sum_{i=1}^{\infty} a_i |v_i\rangle\langle v_i|, \qquad B = \sum_{i=1}^{\infty} b_i |w_i\rangle\langle w_i|$$

where $a_1 \ge a_2 \ge ...$ are the eigenvalues of A and $\{v_i\}_{i=1}^{\infty}$ is an orthonormal basis of \mathcal{H} with $Av_i = a_iv_i$.

- $Z_r := (A^{r/2}B^rA^{r/2})^{1/r}$ for r > 0.
- $\lambda_1(r) \ge \lambda_2(r) \ge \cdots$ are the eigenvalues of Z_r .

Commuting case If AB = BA, then $Z_r = AB$ and $\{w_i\}$ can be a permutation of $\{v_i\}$, so

$$Z_r = \sum_{i=1}^{\infty} a_i b_{j_i} |v_i\rangle\langle v_i|$$

and $(\lambda_i(r))$ is the decreasing rearrangement of $(a_ib_{j_i})$ independently of r>0.

Bourin⁵ (2004): Case when *A* is a projection

Assume that A = E is the projection onto a subspace \mathcal{E} with $\dim \mathcal{E} = k$ and $B = \sum_{i=1}^d b_i |w_i\rangle \langle w_i|$ is a positive semi-definite matrix. Then $(EB^rE)^{1/r}$ converges as $r \to \infty$, and if Ew_1, \ldots, Ew_k are linearly independent, then

$$\lim_{r\to\infty}\lambda_i((EB^rE)^{1/r})=b_i\quad\text{for}\quad i=1,\ldots,k.$$

⁵J.-C. Bourin, Convexity or concavity inequalities for Hermitian operators, *Math. Ineq. Appl.* **7** (2004), 607–620.

Fact (Araki⁶-Lieb-Thirring, 1990)

$$(\lambda_{i}(r))_{i=1}^{\infty} \prec_{w(\log)} (\lambda_{i}(r'))_{i=1}^{\infty} \text{ if } 0 < r < r',$$

$$\prod_{i=1}^{k} \lambda_{i}(r) \leq \prod_{i=1}^{k} \lambda_{i}(r')$$

for every $k = 1, 2 \dots$

Proposition

i.e.,

For every i = 1, 2, ... the limit

$$\lambda_i := \lim_{r \to \infty} \lambda_i(r)$$

exists, and

$$(\lambda_i(r)) \prec_{w(\log)} (\lambda_i) \prec_{w(\log)} (a_i b_i).$$

⁶H. Araki, On an inequality of Lieb and Thirring, *Lett. Math. Phys.* **19** (1990), 167–170.

Theorem

$$Z_r = (A^{r/2}B^rA^{r/2})^{1/r}$$
 converges in the operator norm as $r \to \infty$.

Lemma 1

$$\lambda_1 = \max\{a_i b_j : \langle v_i, w_j \rangle \neq 0\}$$

- For $k \in \mathbb{N}$, $\mathcal{H}^{\wedge k}$ is the k-fold antisymmetric tensor of \mathcal{H} .
- I(k) is the set of k-tuples $I = (i_1, \ldots, i_k)$ in \mathbb{N} with $1 \le i_1 < \cdots < i_k$.
- For $I \in I(k)$, $a_I := a_{i_1} \cdots a_{i_k}$, $v_I^{\wedge} := v_{i_1} \wedge \cdots \wedge v_{i_k} \in \mathcal{H}^{\wedge k}$.
- Note: $\langle v_I^{\wedge}, w_J^{\wedge} \rangle = \det[\langle v_i, w_j \rangle].$

Lemma 2

For every $k \in \mathbb{N}$,

$$\lambda_1 \lambda_2 \cdots \lambda_k = \max\{a_I b_J : I, J \in I_d(k), \langle v_I^{\wedge}, w_I^{\wedge} \rangle \neq 0\},$$

Lemma 3

For any $k \in \mathbb{N}$ there are constants $\alpha, \beta > 0$ (depending on only k) such that

$$\alpha ||P - Q||_{\infty} \leq \inf_{\theta \in \mathbb{R}} \left\| \phi_1 \wedge \cdots \wedge \phi_k - e^{\sqrt{-1}\theta} \psi_1 \wedge \cdots \wedge \psi_k \right\| \leq \beta ||P - Q||_{\infty}$$

for every orthonormal $\{\phi_1, \ldots, \phi_k\}$, $\{\psi_1, \ldots, \psi_k\} \subset \mathcal{H}$, the projections P onto $\operatorname{span}\{\phi_1, \ldots, \phi_k\}$ and Q onto $\operatorname{span}\{\psi_1, \ldots, \psi_k\}$.

- Φ is a symmetric gauge function.
- $||X||_{\Phi} := \Phi(\mu_1(X), \mu_2(X), \dots)$ for $X \in B(\mathcal{H})$, where $\mu_1(X) \ge \mu_2(X) \ge \dots$ are the singular values of X.
- $C_{\Phi}(\mathcal{H})$ is the corresponding symmetrically normed ideal, i.e.,

$$C_{\Phi}(\mathcal{H}) := \{X \in B(\mathcal{H}) : ||X||_{\Phi} < +\infty\}.$$

• Assume that Φ is regular: $C_{\Phi}(\mathcal{H}) = C_{\Phi}^{(0)}(\mathcal{H})$.

Theorem

Assume $\Phi(a_1b_1,a_2b_2,\dots)<+\infty$. Then $Z_{\infty}=\lim_{r\to\infty}Z_r$ is in $\mathcal{C}_{\Phi}(\mathcal{H})$ and

$$||Z_r - Z_{\infty}||_{\Phi} \to 0$$
 as $r \to \infty$.

Corollaries

(1) If either A or B is in $C_{\Phi}(\mathcal{H})$, then $Z_{\infty} \in C_{\Phi}(\mathcal{H})$ and

$$||Z_r - Z_{\infty}||_{\Phi} \to 0$$
 as $r \to \infty$.

(2) Let $1 \le p, p_1, p_2 \le \infty$ and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$. If $A \in C_{p_1}(\mathcal{H})$ and $B \in C_{p_2}(\mathcal{H})$, then $Z_{\infty} \in C_p(\mathcal{H})$ and

$$||Z_r - Z_{\infty}||_p \to 0$$
 as $r \to \infty$.

The maximal case

Below assume that A, B are positive semi-definite $d \times d$ matrices (though the compact operator case is also valid).

• Choose $0 = i_0 < i_1 < \dots < i_{m-1} < i_m = d$ and $0 = j_0 < j_1 < \dots < j_{l-1} < j_l = d$ so that

$$a_1 = \cdots = a_{i_1} > a_{i_1+1} = \cdots = a_{i_2} > \cdots > a_{i_{m-1}+1} = \cdots = a_{i_m},$$

 $b_1 = \cdots = b_{j_1} > b_{j_1+1} = \cdots = b_{j_2} > \cdots > b_{j_{l-1}+1} = \cdots = b_{j_l}.$

- $I_d(k) := \{(i_1, \dots, i_k) : 1 \le i_1 < \dots < i_k \le d\}$ for $k = 1, \dots, d$.
- Write

$$A = \sum_{i=1}^{u} a_i |v_i\rangle\langle v_i| = V \operatorname{diag}(a_1, \ldots, a_d) V^* \quad (a_1 \ge \cdots \ge a_d),$$

$$B = \sum_{i=1}^{d} b_i |w_i\rangle\langle w_i| = W \operatorname{diag}(b_1, \dots, b_d) W^* \quad (b_1 \ge \dots \ge b_d),$$

Theorem

The following are equivalent:

- (i) $(\lambda_i)_{i=1}^d = (a_i b_i)_{i=1}^d$;
- (ii) for every $k=1,\ldots,d$ with $i_{r-1}< k\leq i_r$ and $j_{s-1}< k\leq j_s$, there are $I_k,J_k\in I_d(k)$ such that $\{1,\ldots,i_{r-1}\}\subset I_k\subset \{1,\ldots,i_r\},\,\{1,\ldots,j_{s-1}\}\subset J_k\subset \{1,\ldots,j_s\}$ and $\det[\langle v_i,w_j\rangle]_{i\in I_k,i\in I_k}\neq 0$;
- (iii) the property in (ii) holds for every $k = i_r$ or j_s up to $\min\{i_{m-1}, j_{l-1}\}$.

Corollaries

(1) If $\det[\langle v_i, w_j \rangle]_{i \in I, j \in J} \neq 0$ for all $I, J \subset \{1, \dots, d\}$ with |I| = |J| (i.e., all minors of V^*W are non-zero), then $(\lambda_i)_{i=1}^d = (a_ib_i)_{i=1}^d$.

Corollaries (cont.)

- (2) Assume $a_1 > \cdots > a_d$ and $b_1 > \cdots > b_d$. Then $(\lambda_i)_{i=1}^d = (a_ib_i)_{i=1}^d$ if and only if $\det[\langle v_i, w_j \rangle]_{1 \le i, j \le k} \neq 0$ for all $k = 1, \ldots, d$.
- (3) Assume $a_1 > \cdots > a_d$ and the conditions of the theorem hold. Then

$$\lim_{r\to\infty} Z_r = V \operatorname{diag}(a_1b_1,\ldots,a_db_d)V^*.$$

(4) (Bourin's case) When A = E is the orthogonal projection onto a subspace \mathcal{E} with $\dim \mathcal{E} = k$, $\lim_{r \to \infty} \lambda_i((EB^rE)^{1/r}) = b_i$ for $i = 1, \ldots, k$ if and only if Ew_1, \ldots, Ew_k are linearly independent.

Question

$$(\lambda_i)_{i=1}^d = (a_1b_{j_1}, \ldots, a_db_{j_d})^{\downarrow}$$

for some permutation (j_1, \ldots, j_d) ? Confirmed to be true for $d \leq 5$.

Extension to more than two matrices

Theorem

For every $d \times d$ positive semi-definite matrices A_1, \ldots, A_m ,

$$(A_1^{r/2}A_2^{r/2}\cdots A_{m-1}^{r/2}A_m^rA_{m-1}^{r/2}\cdots A_2^{r/2}A_1^{r/2})^{1/r}$$

converges as $r \to \infty$.

In typical situation, the limit eigenvalue vector is

$$(a_1^{(1)}a_1^{(2)}\cdots a_1^{(m)}, a_2^{(1)}a_2^{(2)}\cdots a_2^{(m)}, \ldots, a_d^{(1)}a_d^{(2)}\cdots a_d^{(m)}),$$

where $a_1^{(k)} \ge \cdots \ge a_d^{(k)}$ are the eigenvalues of A_k .

$\lim_{r\to\infty} (A^r \# B^r)^{2/r}$?

Fact (Kato, 7 1979)

For arithmetic mean,

$$A \vee B := \lim_{r \to \infty} \left(\frac{A^r + B^r}{2} \right)^{1/r} = \lim_{r \to \infty} (A^r + B^r)^{1/r}.$$

Also, for harmonic mean,

$$A \wedge B := \lim_{r \to \infty} (A^r ! B^r)^{1/r}.$$

What about $\lim_{r\to\infty} (A^r \# B^r)^{2/r}$ for geometric mean #?

⁷T. Kato, Spectral order and a matrix limit theorem, *Linear and Multilinear Algebra* **8** (1979), 15–19.

For
$$G_r := (A^r \# B^r)^{2/r}$$
,
$$(\lambda_i(G_r))_{i=1}^d \succ_{(\log)} (\lambda_i(G_{r'}))_{i=1}^d \ \text{if} \ 0 < r < r'.$$

Proposition

For every i = 1, ..., d the limit

$$\hat{\lambda}_i := \lim_{r \to \infty} \lambda_i(G_r)$$

exists, and

$$(a_i b_{d+1-i})_{i=1}^d \prec_{(\log)} (\hat{\lambda}_i)_{i=1}^d \prec_{(\log)} (\lambda_i(G_r))_{i=1}^d$$
.

⁸T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, *Linear Algebra Appl.* **197/198** (1994), 113–131.

Proposition: 2×2 case

•

$$\lim_{r\to\infty}G_r=(\alpha\beta)^{1/2}\frac{\left((\alpha^{-1/2}A)\vee(\beta^{-1/2}B)\right)^2}{\det((\alpha^{-1/2}A)\vee(\beta^{-1/2}B))},$$

where $\alpha := \det A$ and $\beta := \det B$.

• If $\langle v_1, w_2 \rangle = (V^*W)_{12} = 0$ (i.e., V^*W is diagonal), then

$$(\lambda_1(G_r),\lambda_2(G_r))=(a_1b_1,a_2b_2).$$

• If $(V^*W)_{12} \neq 0$, then

$$\lim_{r\to\infty}(\lambda_1(G_r),\lambda_2(G_r))=(a_1b_2,a_2b_1)^{\downarrow}.$$

Question

- Does $G_r = (A^r \# B^r)^{2/r}$ converge as $r \to \infty$?
- In the typical situation

$$\lim_{r\to\infty}(\lambda_i(G_r))_{i=1}^d=(a_1b_d,a_2b_{d-1},\ldots,a_db_1)^{\downarrow}?$$

In place of summary

$$A^{\downarrow}B^{\downarrow}$$

$$\succ_{(\log)} Z_r = (A^{r/2}B^rA^{r/2})^{1/r} \quad \uparrow \quad (r \to \infty) \quad \text{typically}$$

$$\downarrow \quad (r \to 0)$$

$$\succ_{(\log)} P_0 \exp(\log A \dotplus \log B)$$

$$\succ_{(\log)} G_r = (A^r \# B^r)^{2/r} \quad \uparrow \quad (r \to 0)$$

$$\downarrow \quad (r \to \infty) \quad \text{typically ?}$$

$$\succ_{(\log)} A^{\downarrow}B^{\uparrow}$$

Thank you for your attention.