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@ Positive Lévy processes,

@ A failure of “functoriality” (= analogy, transfer principle)
between classical and free

@ What is a free gamma distribution?

My colleague Hayato Saigo says “mathematical definition of
‘analogy’ is a functor”.



Lévy processes

L(X) denotes the law of a random variable X.
R-valued (X¢)t>0 is called a Lévy process iff
e Xp =0,
@ Forall 0=ty < t1 <--- < tp,
Xt, — Xty 1, Xty 1 — Xty oy Xey — Xy, are indep.,
@ Forall0 <s<t, L(X:— Xs) = L(Xi—s)-

e t— X; is right continuous with left limit,

@ The map t — L(X¢) is weakly continuous.




Free Lévy processes

(A, 7): II; factor, 7: normal faithful finite trace.

Let a map t — X; take values in selfadjoint operators affiliated to
A. (X¢)e>0 is called a free Lévy process iff

e Xp =0,

@ Forall0=ty<t1 <--- < tp,
Xty — Xty 1, Xty 1 — Xty oy, Xyy — Xy, are free indep.,

@ Forall0<s<t, L(X:— Xs) = L(X¢—s).
@ The map t — L(X:) is weakly continuous.




Infinitely divisible distribution

A probability measure 1 on R is said to be infinitely divisible iff for
all n € N there exists p, such that y = pp * - - - * .
N—

n fold

Proposition
A probability measure y is ID iff there exists a Lévy process (X¢)
such that L(X1) = p.

(<) Given a Lévy process (X;), let u*t := L(X;). Then

M*t % M*S _ N*(H_S)' So let L = M*l/n_

(=) Define p*1/" := p,,, and define p*™/'" := (1,)*™. Then extend
the parameter m/n to real numbers by continuity = convolution
semigroup (1**)¢>0. Then construct a Lévy process. O




Freely infinitely divisible distribution

If X, Y are free indep. selfadjoint operators affiliated to (A, 7),
then £(X 4 Y) is denoted as L£(X) B L(Y)

Definition

A probability measure 1 on R is said to be freely infinitely divisible
iff for all n € N there exists p, such that p = p, H---H pu,.
—_——

n fold

Proposition (Biane '98, Barndorff-Nielsen & Thorbjgrnsen

'02)
A probability measure p is FID iff there exists a free Lévy process
(Xt) such that L(X1) = p.




Definition

A Lévy process (X¢)t>o is called a subordinator iff t — X; is
non-decreasing

< Xe>0forallt >0

< L(X¢) is supported on [0,00) for all t > 0

Definition (Arizmendi-Sakuma-T.H. '13)

A Lévy process (X:)r>0 is called a free subordinator iff t — X; is
non-decreasing for all t > 0

< Xe>0forallt >0

& L(Xt) is supported on [0,00) for all t > 0




Why “subordinator” ?

@ In complex analysis: a (analytic) function f is subordinated to
gifdhst. f=goh

e In free probability: for X, Y: free, a subordination function (=
subordinator) for free convolution is a function F such that

Gx+v(z) = Gx(F(2)).

@ In classical probability, subordination is a random time
change: If (Xt)e>0, (Y)t>0 are Lévy processes, Y; > 0, then
Z: := Xy, is again a Lévy process.

Note: Cz (u) = Cy, o Cx,(u), where C(u) is cumulant
generating function.



Time evolution

Theorem (See Sato’s book)
Let (Xt)e>0 be a Lévy process. TFAE:

@ (X:) is a subordinator, i.e. L(X;) is supported on [0, 00) for all
t > 0.

@ L(X:) is supported on [0, 00) for some t > 0.
@ L(X1) is supported on [0, 0).

Therefore,

{the laws of subordinators} = {u € ID | supp(p**) C [0, 0), V't > 0}
= {p € 1D | supp(p) C [0,00)}



Failure of the free analogue

The free analogue fails to hold.

Let (X¢) be a free Lévy process such that £(X;) is the shifted

semicircle law Y4~ =2" Ljo,41(x) dx. Then suppL(X;) ¢ [0, 00) for
€ (0,1).

Hence

{the laws of free subordinators}
= {n € FID | supp(1™*) C [0, 00), V't > 0}
# {1 € FID | supp(u) C [0, 00)}



Monotone, Boolean time evolution

Theorem (T.H. ’'10)
Let (X¢)t>0 be a monotone/Boolean Lévy process. TFAE:

@ (X:) is a monotone/Boolean subordinator, i.e. L(X:) is
supported on [0, 00) for all t > 0.

@ L(Xt) is supported on [0, 00) for some t > 0.
@ L(X1) is supported on [0, o).

Therefore,
{the laws of Boolean/monotone subordinators}
= {u € all probability measures/MID | supp(n) C [0,00)}



Lévy-Khintchine representation

w is ID iff

/R ity (dt)

— o ||t — Sen? +/ (€ — 1~ iut 1y (8)) (dt)
2 R\{0}

for some n € R, a > 0 and v such that [ min(1, t2)v(dt) < oo.

v




Lévy-Khintchine representation on [0, o)

w is ID and supported on [0, co) iff

/ el 4 (dlt) = exp (in’u+ / (ei“t—l)u(dt)>
R (0,00)

for some ' > 0 and v such that f(o ooy Min(1, t)r(dt) < oo.




Free Lévy-Khintchine representation

Let Gx(z) = 7((z — X)) and Rx(2) = zGx'(z) — 1. If X, Y are
free indep. then

Rx+y(2) = Rx(z) + Ry(z).

Rem: Rx(z) = >.021 Ra(X)z".

Proposition
w is FID iff

< L _ 1—zt 1[1,1](1“)) v(dt)

Ru(z):nz+azz+/ -

R\{0}

for some n € R, a > 0 and v such that [ min(1, t?)v(dt) < oo.

v




Free Lévy-Khintchine representation for free
subordinators

Proposition

Suppose . is FID. Then p is the law of a free subordinator (i.e.
uEt is supported on [0, 00) for all t > 0) iff

Ru(z) =1z + / - 1) v(dt)

(0,00) (1 — tz

for some 1" > 0 and v such that [, .y min(1, t)v(dt) < occ.

Rem: In terms of Bercovici-Pata bijection, the laws of classical
subordinators are in one-to-one correspondence with the laws of
free subordinators.



Examples of laws of subordinators

@ Poisson distributions

e Gamma distributions:
v(p,0)(dx) = C - Xp_le_x/el(oyoo)(x) dx

e Positive stable distributions: f(O,oo) e ny(dx) = exp(—u®)
(o € (0,1)).

o Free Poisson distributions Rr,(z) = -%5:
me(dx) = max{1 — t,0}Jp

V(@ + VB2 = x)(x— (1 - VE)?)

+ T L(a-var aevap) (X) dx.
@ Boolean stable law: .
ba(dX) = sm(;r)m) ’ x2a+2c)(()s(a7r)xo‘+1 1(0700)()() dX' Q€ (0’ %]

e Positive free stable distributions f,: R¢, (z) = —(—2z)“
(o € (0,1)).



Generalized gamma convolutions

GGC is the weak closure of
{62 % v(p1,61) * -~ *xv(pn,0n) | 3,pi,0; >0,n e N} C ID(Ry)

GGC was introduced by Thorin '77, who is famous for interpolation
theory. The motivation for introducing GGC was to prove the
infinite divisibility of the log normal distribution

\/%e_(logX_m)2/2021(0,oo)(X) dx (the law of eX when

X ~ N(m,c?)).

@ Positive stable laws,

@ beta distributions of 2nd kind (p ) ﬁ 1(0,00)(x) dx,

o measures of the form C - x#~1T]"_; W 1(0,00)(x) dx.

An application of GGC method: If X ~ N(0,1) then X" € ID for
neN.



Properties of GGC

Theorem (Bondesson "13)
If X, Y € GGC and indep. then XY € GGC.

The proof is not easy. This problem had been open for 20 ~ 30
years.

Theorem (Bondesson '13)

If X € GGC then eX € GGC.

If X € GGC and p > 1, then XP € GGC.

This conjecture was proved for some subclasses of GGC.
If this conjecture is true, then X € GGC = 1+ % € GGC =

(1+%)P € GGC = &* € GGC.



Question by Bondesson

Is there a set of probability measures P on [0, c0) such that
o If X € Pand c >0 then cX € P.
o If X, Y € P are indep. then X + Y, XY € P.
@ P is closed wrt the weak convergence.

GGC is only the nontrivial example of such P (“trivial” means that
P = {do} or P is the set of all probability measures on [0, c0).



Bondesson’s question in the free probability setting

Consider the free analogue of Bondesson's question:
o If X € Pand c >0 then cX € P.
o If X, Y € P are free indep. then X + Y, VXY VX € P.
@ P is closed wrt the weak convergence.

Is there such a nontrivial class P? = Yes!
Let FS be the set of distributions of free subordinators, i.e.

FS = {u € FID | supp(p™*) C [0, 00), ¥t > 0}

Theorem (Arizmendi-Sakuma-T.H. '13)

If X, Y € FS and free indep. then X + Y, VXYVX € FS.

Use the identity (u X v)®t = Dl/t(uEEt X 8.




What is a free gamma distribution?

@ The 1st definition (Bozejko-Bryc '06): Free gamma
distributions as a special case of free Meixner distributions.

@ The 2nd definition (Haagerup & Thorbjgrnsen '14): The
classical gamma distribution has LK representation

/ e*U~(p,1)(dx) = exp <p/ (el — 1)67 dx)
(0,00) 0 X

In terms of Bercovici-Pata bijection we may define

9] 1 e~ X
R mm = —1) —dx.
free ga a(z) p/O <1 ~ xz > « X

@ The 3rd definition: free gamma = free Poisson. Why?




Free Poisson distribution = free gamma distribution

Theorem (Lukacs '55)

Suppose X, Y are indep Then X, Y have gamma distributions
v(p1,0),v(p2,0) iff X+Y’X + Y are indep.

.
.
| A

Theorem (Szpojankowski)

Suppose X, Y are free indep. Then X, Y have free Poisson
distributions 7(p1,0), m(p2,0) such that p1 + p» > 1 “iff”
(X + Y)12X(X + Y) Y2 X + Y are free indep.

A

Rem: Ry (p.60)(2)

=i 92 =Jo (1 - 1) pde(dx), p,0 > 0.
Another fact supporting the deflmtlon:

o X ~ N(0,1) = X2 ~ ~(1/2,2).
e X ~5(0,1) = X2~ w(1,1).



Free Poisson distribution = free gamma distribution

®: classical multiplicative convolution
X: free multiplicative convolution

Theorem (Steutel '70, '80, Kristiansen '94)

Let p < 2. Then for any p on [0, 00) we have

p®~(p,1) € ID.

p = 2 is optimal.

Theorem (Arizmendi et al. "10, Perez-Abreu & Sakuma ’12)

Let p < 1. Then for any p on [0,00) we have

puXm(p,1) € FS.




GFGC (Generalized Free Gamma Convolution)

GFGC:= the weak closure of
{6, B n(p1,601)B---Bx(pn,0n) | a,pi,0; >0,ne N} CFS.

Actually
GFGC =FS

because:

@ Recall

_opoz [ 1 .

@ 1 € FS is characterized by free LK

Ru(z) = az + /Ooo (1 _1XZ - 1) v(dx).




Bondesson’s conjecture for the free case

If X € FS and p > 1, is it true that XP € FS?
If X € FS, is it true that eX € FS?




Applications of FS

Theorem (Arizmendi-Sakuma-T.H. '13)

e If X,Y € FID are free, then i(XY — YX) € FID.
e If L(X) is symmetric (around 0), then

X € FID & £(X?) =7(1,1) X o for some o € FS.

Problem

Find a polynomial P(X,Y') which preserves the FID property.

Proposition (Arizmendi-Sakuma-T.H. 13,

)
If X ~ S(0,1) then X2, X* X° ¢ FID.

If X ~ 5(0,1) then X" € FID for all n € N.




Boolean stable law has strong ID property

Definition (Speicher-Woroudi '97)
A positive Boolean stable law b, is defined by

1

Gp,(2) = ()i

a € (0,1]

®: classical multiplicative convolution

Theorem (Arizmendi-T.H.)

Suppose a < % Then y® b, € FSN ID for any probability
measure y, on [0, 00).




Strange identity

@®: classical multiplicative convolution
X: free multiplicative convolution
uP: the law of XP when L(X) =

Theorem (Arizmendi-T.H.)
Suppose o € (0,1). Then

Ml/a ® ba _ M|X|1/a X ba

for any probability measure 11 on [0, 00).

Proof.

We show that G 1/agp, (2) = —(=2)*71G,(=(~2)¥). Then
Mut/esb, (2) = Mu(=(=2)*). Then Tvagp, (2) = 200y,

1—

Tu(2)Y(~2)% =L m1a(2)Ts,(2).

(z) =
0

v




Examples of FID

Theorem (Belinschi-Bozejko-Lehner-Speicher '11)
The normal law N(0, 1) is FID.

Theorem (T.H. '14)

o Beta distribution C - xP~1(1 — x)9 119 1)(x) dx € FID if
(p,q) € D,

@ Beta distribution of the 2nd kind:
C - 2oy L(0.00)(x) dx € FID if p € (0, 3] U [3, 00).

Figure : The region D



o v(p,0): C-xP~le=x/? L(0,00)(x) dx € FID for
p€(0,3]U[3,00)

o Inverse gamma: C - x P~le=0/x L(0,00)(x) dx € FID for all
p>0.

Rem: X ~ ~(p,0) = 1/X ~ inverse gamma



Free selfdecomposable distributions

Dcp is the law of c¢X when L(X) = p.

Definition

A measure 1 on R is selfdecomposable (SD), if

Ve € (0,1) 3uc s.t. o= Dep* pic.

Rem: pu and pc are necessarily 1D.

Definition

A measure . on R is FSD if

Ve €(0,1) uc s.t. o= Dep B pac.

Rem: wu and pc are necessarily FID.



Unimodality

Definition

A measure 1, on R is called unimodal, if, for some a in R, it has
the form
i = u({a})d, + F(x) dx,

where f is increasing on (—oc, a) and decreasing on (a, ).

Theorem (Yamazato '78)
All SD distributions are unimodal.

Theorem (Thorbjgrnsen-T.H. '15)

All FSD distributions are unimodal.




Open problems

@ Show that if X € GGC and p > 1, then X?P € GGC.

@ Show that if X € FS and p > 1, then XP € FS. If this is true,
then £(X9/2) = L(|Y|9) € FS for X ~ 7(1,1), Y ~ 5(0,1),
q>2

@ Show that if X ~ §(0,1) then X" € FID for all n € N.

e Find a selfadjoint polynomial P(X, Y) which preserves the
FID property.

@ Positive Lévy processes in quantum groups?



