Computation over Groups Some Special Features

Christine Gaßner
Greifswald

CiE 2008

Computation over Groups Some Special Features

Our goal:

Investigate possible relationships between the classes

$$P_G \subseteq DNP_G \subseteq NP_G$$
,

$$P_G^A \subseteq DNP_G^A \subseteq NP_G^A$$
.

Investigate special features resulting from the existence of only one constant.

Computation over Groups Some Special Features

- 1. The uniform model of computation
- 2. A finite group with $P \neq NP$
- 3. Groups and oracles with $P^A = NP^A$
- 4. Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$
- 5. Embedding of a group into a structure with P = NP

The uniform model of computation

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

A structure:
$$\Sigma = (U; c_1, ..., c_u; f_1, ..., f_v; R_1, ..., R_w, =)$$

Computation:
$$l: Z_k = f_j(Z_{k_1}, ..., Z_{k_{m_j}});$$
 $l: Z_k = c_i;$

Branching: *l*: if
$$R_j(Z_{k_1},...,Z_{k_{n_j}})$$
 then goto l_1 else goto l_2 ; l : if $Z_k = Z_j$ then goto l_1 else goto l_2 ;

Copy:
$$l: Z_{I_k} = Z_{I_i};$$

Index computation: $I_k = 1$; $I_k = I_k + 1$; if $I_k = I_i$ then goto l_1 else goto l_2 ;

The machine and the input

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

The input:
$$(Z_1,...,Z_n) := (x_1,...,x_n); I_1 := n; I_2 := 1;... I_{k_M} := 1;$$

Computation in polynomial time

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Computation in polynomial time:

For any machine M there is some polynomial p_M such that

$$M$$
 halts for $\mathbf{x} = (x_1, ..., x_n)$ within $\mathbf{p}_M(n)$ steps.

The execution of one operation is one time unit.

$$\Rightarrow P_{\Sigma} \subseteq DEC_{\Sigma}$$
 ($P_{\Sigma} \triangleq$ problems are decidable in polynomial time)

The non-deterministic instructions

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

The non-determinism of the first kind:

goto
$$l_1$$
 else goto l_2 ;

$$\Rightarrow$$
 $P_{\Sigma} \subseteq DNP_{\Sigma} \subseteq DEC_{\Sigma}$

The non-determinism of the second kind:

guess (Z_k) ; Arbitrary elements can be guessed!

 \Rightarrow $P_{\Sigma} \subseteq NP_{\Sigma}$ If Σ contains two elements, then $DNP_{\Sigma} \subseteq NP_{\Sigma}$.

Some $P_{\Sigma} \stackrel{?}{=} NP_{\Sigma}$ problems for several structures

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Σ	$P_{\Sigma} = DNP_{\Sigma}$?	$DNP_{\Sigma} = NP_{\Sigma}?$
$(\mathbb{C};\mathbb{C};+,-,\cdot\;;\;=)$?	?
$(\mathbb{R};\mathbb{R};+,-,\cdot\;;\leq)$?	?
$(\mathbb{R};\mathbb{R};+,-,\cdot\;;\;=)$?	no (≤)
$(\mathbb{R};\mathbb{R};+,-;\leq)$?	yes (Koiran)
$(\mathbb{R};\mathbb{R};+,-;=)$	no (Meer / Koiran)	yes (Koiran)
$(\mathbb{Z};\mathbb{Z};+,-;\leq)$?	no (even integers)
$(\mathbb{Z};\mathbb{Z};+,-;=)$	no (inf. abl. groups)	no (even integers)
infinite ablian groups	no	no / yes

Instructions for groups

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Let $(G; e; \circ; =)$ be a group.

Computation:

$$(1) l: Z_k = Z_i \circ Z_i;$$

(2) without parameters: $l: Z_k := e$; $\Rightarrow (G; e; \circ; =)$ -machines

with parameters $g \in G$: $l: Z_k := g$; $\Rightarrow (G; G; \circ; =)$ -machines

Branching: l: if $Z_k = Z_i$ then goto l_1 else goto l_2 ;

Copy: $l: Z_{I_k} = Z_{I_j};$

Decidability by

 $(G; e; \circ; =)$ -machines

The uniform model of computation A finite group with $P \neq NP$

Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

We cannot separate

elements of the same order without additional parameters.

$$A \subseteq G$$

$$x \in A$$
, $y \notin A$, $\operatorname{order}(x) = \operatorname{order}(y) \Rightarrow A \notin \operatorname{DEC}_G$.

The dihedral group D(2,4) =

$$(\{e, r, r^2, r^3, s, rs, r^2s, r^3s\}, \circ)$$

								7
0	e	r	r ²	r ³	S	rs	r ²	$\gamma^3 S$
e	e	r	r^2	r^3	S	rs	r^2S	r^3S
r	r	r^2	r^3	e	rs	r^2S	r^3S	S
r ²	r^2	r^3	e	r	r^2S	r^3S	S	rs
γ^3	r^3	e	r	r^2	r^3S	S	rs	r^2S
S	S	r^3S	r^2S	rs	e	r^3	r^2	r
rs'	rs	S	r^3S	r^2S	r	e	r^3	r^2
r ² S	r^2S	rs	S	r^3S	r^2	r	e	r^3

S

rs

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Reflection of a square:

$P_{D(2,4)} \neq NP_{D(2,4)}$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

0	e	r	r ²	r ³	S	rs'	r ²	r^3S
e	e	r	r^2	r^3	S	rs	r^2S	r^3S
r	r	r^2	r^3	e	rs	r^2S	r^3S	S
r ²	r^2	r^3	e	r	r^2S	r^3S	S	rs
γ^3	r^3	e	r	r^2	r^3S	S	rs	r^2S
\boldsymbol{S}	S	r^3S	r^2S	rs	e	r^3	r^2	r
rs'	rs	S	r^3S	r^2S	r	e	r^3	r^2
r^2S	r^2S	rs	S	r^3S	r^2	r	e	r ³
r^3S	V^3S	r^2S	rs	S	r^3	r^2	r	e

$$A = \{x \mid \exists y (y \circ x \neq x \circ y)\}\$$

$$\mathbf{P}_{D(2,4)} \neq \mathbf{N}\mathbf{P}_{D(2,4)}$$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

0	e	r	r ²	√ 3	S	rs'	y 2	V ³ S'
e	e	r	r^2	r^3	S	rs	r^2S	r^3S
r	r	r^2	r^3	e	rs	r^2S	r^3S	S
r ²	r^2	r^3	e	r	r^2S	r^3S	S	rs
y 3	r^3	e	r	r^2	r^3S	S	rs	r^2S
<u>S</u>	S	r^3S	r^2S	rs	e	r^3	r^2	r
rs ⁻	rs	S	r^3S	r^2S	r	e	r^3	r^2
r ² S'	r^2S	rs	S	r^3S	r^2	r	e	r^3
r ³ S'	V^3S	r^2S	rs	S	r^3	r^2	r	e

 $A = \{x \mid \exists y (y \circ x \neq x \circ y)\} = \{r, r^3, s, rs, r^2s, r^3s\}$

$$\mathbf{P}_{D(2,4)} \neq \mathbf{NP}_{D(2,4)}$$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

0	e	r	r ²	<i>y</i> .3	S	rs'	y 2	√ 3S
e	e	r	r^2	r^3	S	rs	r^2S	r^3S
r	r	r^2	r^3	e	rs	r^2S	r^3S	S
r ²	r^2	r^3	e	r	r^2S	r^3S	S	rs
// 3	r^3	e	r	r^2	r^3S	S	rs	r^2S
S	S	r^3S	r^2S	rs	e	r^3	r^2	r
rs ⁻	rs	S	r^3S	r^2S	r	e	r^3	r^2
r ² 5'	r^2S	rs	S	r^3S	r^2	r	e	r^3
r ³ S	r ³ s	r^2S	rs	S	r^3	r^2	r	e

$$A \in NP_{D(2,4)}$$

2.
$$A \notin P_{D(2,4)}$$
 since

$$S \in A$$

$$r^2 \notin A$$

and

$$order(s) = order(r^2) = 2$$

$$A = \{x \mid \exists y (y \circ x \neq x \circ y)\} = \{r, r^3, s, rs, r^2s, r^3s\}$$

$$P_{D(2,4)} \neq NP_{D(2,4)}$$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

0	e	r	r^2	y 3	<u>s</u>	rs	y 2	r ³ s
e	e	r	r^2	r^3	S	rs	r^2S	r^3S
r	r	r^2	r^3	e	rs	r^2S	r^3S	S
γ^2	r^2	r^3	e	r	r^2S	r^3S	S	rs
<i>y</i> ³	r^3	e	r	r^2	r^3S	S	rs	r^2S
2	S	r^3S	r^2S	rs	e	r^3	r^2	r
rs .	rs	S	r^3S	r^2S	r	e	r^3	r^2
r ² 5	r^2S	rs	S	V^3S	r^2	r	e	r^3
r ³ S	r ³ s	r^2S	rs	S	r^3	r^2	r	e

$$A \in \mathrm{NP}_{D(2,4)}$$

2.
$$A \notin P_{D(2,4)}$$

since

$$s \in A$$
$$r^2 \notin A$$

and

$$\operatorname{order}(S) = \operatorname{order}(r^2) = 2$$

$$A = \{x \mid \exists y (y \circ x \neq x \circ y)\} = \{r, r^3, s, rs, r^2s, r^3s\}$$

Oracle machines

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Oracle query:

$$l: \text{ if } (Z_1, ..., Z_{l_1}) \in A \text{ then goto } l_1 \text{ else goto } l_2;$$

The length can be computed by $I_1 = 1$; $I_1 = I_1 + 1$;

$$A \subseteq G^{\infty} = \bigcup_{n \ge 1} G^n$$

We will define oracles such that

$$DNP_G^O = NP_G^O$$
 and $DNP_G \neq NP_G$ (e.g. for $G = (\mathbb{Z}; 0; +; =)$)

$$DNP_{\bar{G}}^{Q} \neq NP_{\bar{G}}^{Q}$$
 and $DNP_{\bar{G}} = NP_{\bar{G}}$ (e.g. for $\bar{G} = (\mathbb{R}; \mathbb{R}; +; =)$)

(cp. also Baker, Gill, and Solovay; Emerson; ... for Turing machines...)

An oracle O with

$$P_{\bar{G}}^{o} = NP_{\bar{G}}^{o}$$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

A universal oracle for $\bar{G} = (G; G; \circ; =)$ with $a, b \in G$:

$$O = O_{\bar{G}} = \{(x, Code(M), \underbrace{e, \dots, e}_{t}) \in G^{\infty} \mid Code(M) \in \{a, b\}^{\infty}\}$$

& M is an $NP_{\bar{G}}^{O}$ -machine

&
$$M(x) \downarrow^t$$

M accepts input $x = (x_1, ..., x_n) \in G^{\infty}$ within *t* steps

Proposition:
$$P_{\bar{G}}^{O} = DNP_{\bar{G}}^{O} = NP_{\bar{G}}^{O}$$

(with parameters).

An oracle O with $P_G^O = NP_G^O$?

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

$$O = O_G = \{(x, Code(M), e, ..., e) \in G^{\infty} \mid Code(M) \in \{a, b\}^{\infty} \}$$
 & M is an NP_G^{O} -machine & $M(x) \downarrow^t \}$

 $A \subseteq \{e\}^{\infty}$ cannot be reduced to O if $Code(M_A) \in \{a, b\}^{\infty}$ cannot be computed from the input.

O is not NP_G^{O} -complete (without parameters).

An oracle O with $P_G^O = NP_G^O$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

A universal oracle for G:

$$O = O_G = \bigcup_{a,b \in G} \{(x, Code(M), a, ..., a) \in G^{\infty} \mid Code(M) \in \{a, b\}^{\infty}\}$$

$$\& M \text{ is an } \operatorname{NP}_G^{\circ}\text{-machine}$$

$$\& M(x) \downarrow^t\}$$

$$\cup \{e \in \{e\}^{\infty} \mid e \text{ is the code of a } ((e, ..., e), M, t)$$

$$\& M(x) \downarrow^t\}$$

 \Rightarrow $A \subseteq \{e\}^{\infty}$ can be reduced only to $O_G \cap \{e\}^{\infty}$.

Proposition:
$$P_G^O = DNP_G^O = NP_G^O$$
 (without parameters).

An oracle Q with $DNP_G^Q \neq NP_G^Q$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

For any oracle $B \subseteq G^{\infty}$,

let N_i^B be the DNP_G^B-machine

• executing $p_i(n)$ instructions of program P_i for any $x \in G^n$.

$$\begin{array}{l} V_0 = \varnothing \text{, } m_0 = \text{0.} \\ \text{Stage } i \geq 1 \colon \text{ Let } n_i > m_{i-1} \,, \quad m_i = 2^{n_i} \,, \quad p_i(n_i) + n_i < m_i \text{.} \\ W_i = \cup_{j < i} V_j \end{array}$$

 $V_i = \{x \in G^{n_i} \mid N_i^{W_i} \text{ does not accept } (e,...,e) \in G^{n_i} \}$

& x is not queried by $N_i^{W_i}$ on $(e,...,e) \in G^{n_i}$

$$Q = Q_G = \bigcup_{i \ge 1} W_i \qquad L = \{ y \mid (\exists i \ge 1) (y \in G^{n_i} \& V_i \ne \emptyset) \}$$

Proposition: If G is infinite, then $DNP_G^Q \neq NP_G^Q$ (without parameters).

We use diagonalization

techniques.

An oracle Q with $DNP_{\bar{G}}^{Q} \neq NP_{\bar{G}}^{Q}$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

If G is countable, for any oracle $B \subseteq G^{\infty}$,

let N_i^B be the DNP g^B -machine

 $Q = Q_{\bar{G}} = \bigcup_{i>1} W_i$

executing $p_i(n)$ instructions of program P_i for any $x \in G^n$.

$$V_0 = \emptyset$$
, $m_0 = 0$.
Stage $i \ge 1$: Let $n_i > m_{i-1}$, $m_i = 2^{n_i}$, $p_i(n_i) + n_i < m_i$.
 $W_i = \bigcup_{j < i} V_j$
 $V_i = \{x \in G^{n_i} \mid N_i^{W_i} \text{ does not accept } (e, ..., e) \in G^{n_i}$
& x is not queried by $N_i^{W_i}$ on $(e, ..., e) \in G^{n_i}$ }

Proposition: If G is infinite and countable, then DNP_{\bar{G}} $^{Q} \neq NP_{\bar{G}}$ (with p.).

 $L = \{ \mathbf{y} \mid (\exists i \ge 1) (\mathbf{y} \in G^{n_i} \& V_i \ne \emptyset) \}$

An oracle Q with $P_{\bar{G}}^{Q} \neq DNP_{\bar{G}}^{Q}$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

If G is countable and $|G| \geq 2$, for any oracle $B \subseteq G^{\infty}$,

let N_i^B be the $P_{\vec{G}}^B$ -machine

executing $p_i(n)$ instructions of program P_i for any $x \in G^n$.

$$V_0 = \emptyset$$
, $m_0 = 0$.
Stage $i \ge 1$: Let $n_i > m_{i-1}$, $m_i = 2^{n_i}$, $p_i(n_i) + n_i < m_i$.
 $W_i = \bigcup_{j < i} V_j$
 $V_i = \{x \in G^{n_i} \mid N_i^{W_i} \text{ does not accept } (e, ..., e) \in G^{n_i}$
& $x \text{ is not queried by } N_i^{W_i} \text{ on } (e, ..., e) \in G^{n_i} \}$

$$Q = Q_{\bar{G}} = \bigcup_{i \ge 1} W_i \qquad L = \{ y \mid (\exists i \ge 1) (y \in G^{n_i} \& V_i \ne \emptyset) \}$$

Proposition: If G is countable and $|G| \ge 2$, then $P_{\bar{G}}^{Q} \ne DNP_{\bar{G}}^{Q}$ (with p.).

An oracle Q with $P_G^Q \neq DNP_G^Q$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

If $a, b \in G$, for any oracle $B \subseteq G^{\infty}$,

let N_i^B be the P_G^B -machine

executing $p_i(n)$ instructions of program P_i for any $x \in G^n$.

$$\begin{split} &V_0 = \varnothing, \ m_0 = 0. \\ &\text{Stage } i \geq 1: \quad \text{Let } n_i > m_{i-1}, \quad m_i = 2^{n_i}, \quad p_i(n_i) + n_i + 2 < m_i. \\ &W_i = \cup_{j < i} V_j \\ &V_i = \{ \pmb{x} \in \{\pmb{a}, \pmb{b}\}^{n_i} \setminus \{\pmb{a}\}^{n_i} | \ N_i^{W_i} \ \text{does not accept } (a, b, ..., b) \in G^{n_i} \\ &\& \quad \pmb{x} \ \text{ is not queried by } N_i^{W_i} \text{ on } (a, b, ..., b) \in G^{n_i} \} \end{split}$$

$$Q = Q_G = \bigcup_{i \ge 1} W_i \qquad L = \{ \mathbf{y} \mid (\exists i \ge 1) (\mathbf{y} \in \{\mathbf{a}, \mathbf{b}\}^{n_i} \setminus \{\mathbf{a}\}^{n_i} \& V_i \ne \emptyset) \}$$

Proposition: If $a, b \in G$, then $P_G^Q \neq DNP_G^Q$ (without parameters).

An oracle Q with $DNP_{\bar{G}}^{Q} \neq NP_{\bar{G}}^{Q}$

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

If G is not countable, for suitable codes $u \in U \subseteq G^{\infty}$ and any oracle $B \subseteq G^{\infty}$,

let N_{μ}^{B} be the DNP $_{G}^{B}$ -machine

executing $p_{\mu}(n)$ instructions of program P_{μ} for any $x \in G^n$.

$$V_0 = \emptyset$$
. Stage *i*

Stage $i \ge 1$:

$$K_i = \{ \boldsymbol{u} \in U \mid (\forall j \geq i) (\forall B \subseteq G^{\infty}) \}$$

 $(N_{\mathbf{u}}^{B} \text{ does not compute or use the value } a^{j} \text{ on } \mathbf{u})$

$$W_i = \bigcup_{k < i} V_k$$

$$V_i = \{(a^{i+1}, \mathbf{u}) \mid \mathbf{u} \in K_i \& N_{\mathbf{u}}^{W_i} \text{ does not accept } \mathbf{u}\}$$

$$Q = Q_{\bar{G}} = \bigcup_{i \ge 1} W_i$$
 $L = \{ y \mid (\exists n \ge 2)((a^n, y) \in Q_{\bar{G}}) \}$

Proposition:

If G contains a with order $(a) = \infty$, then $DNP_{\bar{G}}^{Q} \neq NP_{\bar{G}}^{Q}$ (with parameters).

An oracle Q with $P_{\bar{G}}^{Q} \neq DNP_{\bar{G}}^{Q}$?

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

G is not countable and G is not abelian.

?

(If G is infinite and abelian, then $P_{\bar{G}}^{\emptyset} \neq DNP_{\bar{G}}^{\emptyset}$.)

Is there an oracle with $P_{\bar{G}}^{Q} \neq DNP_{\bar{G}}^{Q}$ (if parameters are allowed)?

Embedding of a group into a structure with P = NP

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Theorem: $(G; e; \circ; =)$ can be embedded into

$$\bar{G}_R^* = (G^*; A \cup \{\varepsilon\}; \circ, \text{add}, \text{sub}_1, \text{sub}_r; =, R)$$

such that
$$P_{\tilde{G}_R^*} = NP_{\tilde{G}_R^*}$$
, if $\{g_1, g_2\} \subseteq A \subseteq G$.

(CiE 2006 / 2007)

Disadvantage:

- The axioms of groups are satisfied only on *G*.
- \blacksquare $A = \{e\}$ is not sufficient.
- \Rightarrow A more natural extension Σ : derived from binary (searching) trees
 - with $P_{\Sigma} = DNP_{\Sigma}$ where the test of identity is possible,
 - with $P_{\Sigma} = NP_{\Sigma}$ where the identity is decidable.

cp. also C. Gaßner: Über die Konstruktion von Strukturen endlicher Signatur mit P = NP. Preprint 1/2004, Preprint-Reihe Mathematik, Greifswald.

Embedding of a group into a structure with P = DNP

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

Theorem: $(G; e; \circ; =)$ can be embedded into

 $G_R^{\text{tree}} = (\text{tree}(G); \text{ nil}; \circ, \text{concat}, \text{root}, \text{sub}_1, \text{sub}_r; =, R)$

satisfying the axioms of groups and $P_{G_R}^{\text{tree}} = DNP_{G_R}^{\text{tree}}$.

$$\operatorname{concat}(a, t_1, t_2) = \underbrace{t_1}_{t_1}$$

$$t$$
 + nil = t

R is satisfied by the codes of the elements of a universal DNP-oracle.

Summary

The uniform model of computation A finite group with $P \neq NP$ Groups and oracles with $P^A = NP^A$ Groups and oracles with $P^A \neq DNP^A$ or $DNP^A \neq NP^A$ Embedding of a group into a structure with P = NP

We know

groups G (e.g. $(\mathbb{Z}; 0; +; =)$ and $(\mathbb{R}; \mathbb{R}; +; =)$, respectively) with

$$P_G^O = DNP_G^O = NP_G^O$$

&
$$P_G \neq DNP_G \neq NP_G$$

$$P_G^O = DNP_G^O$$
 & $DNP_G^Q \neq NP_G^Q$ & $P_G \neq DNP_G = NP_G$

structures Σ (e.g. trees over a group with identity) satisfying the axioms of groups with

$$P_{\Sigma}^{O} \neq DNP_{\Sigma}^{O}$$
 & $DNP_{\Sigma}^{Q} = NP_{\Sigma}^{Q}$ & $P_{\Sigma} = DNP_{\Sigma} \neq NP_{\Sigma}$

■ structures Σ (e.g. (\mathbb{Z}^* ; $\mathbb{Z} \cup \{\varepsilon\}$; +, add, sub₁, sub_r; =, R)) with

$$P_{\Sigma}^{O} \neq DNP_{\Sigma}^{O}$$
 & $DNP_{\Sigma}^{Q} \neq NP_{\Sigma}^{Q}$ & $P_{\Sigma} = DNP_{\Sigma} = NP_{\Sigma}$

 \Rightarrow oracles are not very helpful for solving P $\stackrel{?}{=}$ NP problems.

Computation over Groups

Some Special Features

Thank you for your attention!

Christine Gaßner Greifswald.

Thanks also to

Robert Bialowons, Michael Kläre, Volkmar Liebscher, Rainer Schimming.