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Theorem (Levin, Schnorr). X € 2% is Martin-Lof random iff
VnK(X [n)>n—O(1).

This is the special case for Lebesgue measure A of this general
statement for arbitrary computable measures u:

Theorem (Levin, Schnorr). X € 2% is y-Martin-L6f random iff
Vi K(X [ 7) 2 —log(au([X [])) — O(1).

Therefore: The possible growth rates of K for u-random
sequences are related to the structure of u.



Study how properties of u are reflected in the growth rates of K
for u-random sequences.

Study the growth rates of K for proper sequences, i.e., sequences
random for some computable measure w.

Use the techniques and results to study computable measures
whose set of randoms is “small.”
(in a sense to be explained)
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Measures and atoms

Definition. y is computable if 0 — u([o])) is a computable
real-valued function.

Definition. y is atomic if there is X € 2¢ with u({X})> 0.

m Then X is called an atom of u.

= Atoms,, is the set of all atoms of u.

Fact. Atoms of a computable measure yu are trivially y-random
and computable.

Definition. If u is not atomic, then it is continuous.



Properness, atoms, complexity
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Complex sequences

Definition. X is complex if there is a computable order
h:w — w such that

VnK(X [n) > h(n).

Intuition. For complex sequences a certain Kolmogorov
complexity growth rate is guaranteed everywhere.
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From continuity to complexity

Theorem (essentially Bienvenu, Porter).
If X €2® is y-Martin-Lof random for u computable and
continuous, then X is complex.

The converse is false, as there are complex non-proper sequences.

m Miller showed that there is a sequence of effective Hausdorff
dimension 1/2 that does not compute a sequence of higher
effective Hausdorff dimension.

m Such a sequence is clearly complex.

m If it computed any (non-computable) proper sequence, then it
would compute an MLR sequence (Zvonkin, Levin; Kautz),
contradiction.

Question. For given computable and continuous y;, is there a
single computable order function witnessing complexity of
u-random sequences?



From complexity to continuity

There is a restricted converse of the Theorem.

Theorem (Ho6lzl, Porter). Let X € 2% be proper. If X is
complex, then X € MLR , for some computable, continuous
measure (.

Proof idea.

m Let v be a computable non-continuous measure witnessing
X’s properness.

u The complexity of X allows “patching” v to remove the
(non-complex) atoms without affecting X’s randomness. O

Question. Can we remove the atoms, while protecting the
randomness of all non-atom random sequences?



Definition (Reimann, Slaman). For u continuous, the
granularity of y is defined as

g,: n—min{{: Yo e2’: w[o]) <27}

Lemma (H6lzl, Porter). If u is continuous and computable,
there is a computable order b such that |h(n)— g;l(n)| <0O(1)
and for every X € MLR ,, K(X [7) = h(n).

Intuition.

= g,' provides a global lower bound for the initial segment
complexity of every u-random sequence.

= g, itself is in general not computable, but g;l can be replaced by
the computable 5 above.
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Nonremovability of atoms

Question, restated. For a computable, atomic measure y with
VX €2°(XeMLR,\ Atoms, = X is complex),
is there a computable, continuous measure v such that
MLR ,\ Atoms, C MLR,?

Theorem (H6lzl, Porter). No. For some y, there is no such v.



Nonremovability of atoms

Proof sketch.

Atomic measures obviously have no granularity function.

Definition. But we can define a local granularity function

g:f(n) =min{{: u([X[{])<27"}.
Suppose there is a computable, continuous measure v such that
MLR, \ Atoms, C MLR,.
By the Lemma there is a common computable order 5
witnessing the complexity of all X € MLR, D MLR , \ Atoms,,.
One can show that then g‘zf (n) for all such X is dominated by
(a slight modification of) this single h.

[@ So to obtain a contradiction, we need to build a u such that for
every computable order b there is an X € MLR , \ Atoms, for

which gff dominates A.



Nonremovability of atoms

Cone [0°1] is used to defeat ¢,, if it is a computable order.

If , is partial we ensure that all randoms in [0°1] are atoms.
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Trivial and diminutive measures

Definition. u is trivial if u(Atoms,) = 1.
Definition.

= (Binns) € C 2% is diminutive if it does not contain a
computably perfect subclass.

u (Porter) Let u be a computable measure, and let (%), be the
universal u-Martin-Lo6f test. Then y is diminutive it % is
diminutive for every 7.

Intuition. The collection of randoms is “small” for both types
of measures.

= (Higuchi, Kihara) The set of randoms for a diminutive measure
has strong effective measure 0.

= The randoms for a trivial measure may be of two types:

countably many atoms measure 0 many non-atoms



A non-trivial diminutive measure

Proposition (Holzl, Porter). Every computable trivial
measure is diminutive.

Proposition (H6lzl, Porter). A computable measure y is
diminutive if and only if there is no complex X € MLR .

Theorem (H6lzl, Porter). There is a computable diminutive
measure yu that is not trivial.

Proof idea. Build a ¢ that is non-zero only on non-complex
sequences, while maintaining u(Atoms,, ) < 1.
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A non-trivial diminutive measure

(Kautz) There is a ¢ with A(dom(¢)) > 0, dom(g) € I1, and for
X € dom(g), ¢* is not dominated by a computable function.

19/22



A non-trivial diminutive measure

gfdom(ga)

(Kautz) There is a ¢ with A(dom(¢)) > 0, dom(g) € I1, and for
X € dom(g), ¢* is not dominated by a computable function.

19/22



A non-trivial diminutive measure

dom(ga)i P

(Kautz) There is a ¢ with A(dom(¢)) > 0, dom(g) € I1, and for
X € dom(g), ¢* is not dominated by a computable function.

(Kautz) There are j and dom(¢) D 2 € H?’W with u(2)>27.

19/22



A non-trivial diminutive measure

(Kautz) There is a ¢ with A(dom(¢)) > 0, dom(g) € I1, and for
X € dom(g), ¢* is not dominated by a computable function.
(Kautz) There are j and dom(¢) D 2 € H?’W with u(2)>27.

Let (%i(b/)ie ., be the universal (-Martin-L&f test.



A non-trivial diminutive measure

(Kautz) There is a ¢ with A(dom(¢)) > 0, dom(p) €19, and for
X € dom(g), ¢* is not dominated by a computable function.

(Kautz) There are j and dom(¢) D 2 € H?’W with u(2)>27.
Let (%) )c,,

4 c 0’@/ W c o
So (%) e} and A((2))>1-27.

be the universal ¢-Martin-L6f test.



A non-trivial diminutive measure

(Kautz) There is a ¢ with A(dom(¢)) > 0, dom(p) €119, and for
X € dom(g), ¢* is not dominated by a computable function.

(Kautz) There are j and dom(¢) D 2 € H?’W with u(2)>27.
Let (%) ).,

4 c 0’@/ o c o
So (%) e} and A((2%))>1-27.
Lee 2 =20 (%)’

be the universal (-Martin-L6f test.



A non-trivial diminutive measure

E::dom(¢)§i 174

Then we have

19/22



A non-trivial diminutive measure

Then we have
n goX is total for all X € &,

19/22



A non-trivial diminutive measure

Then we have

= 9% istotal for all X € £,
m foral X e %, goX is not dominated by a computable function,

19/22



A non-trivial diminutive measure

Then we have

n goX is total for all X € &,

m foral X e %, goX is not dominated by a computable function,
m AR)>0,

19/22



A non-trivial diminutive measure

Then we have

n goX is total for all X € &,

m foral X e %, ng is not dominated by a computable function,
m AR)>0,
u 2 =[T] for some (-computable tree T,

19/22
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A non-trivial diminutive measure

We will apply two functionals to Z.

The first functional =
(inspired by a construction of Ng, Stephan, Yang, Yu)

m uses a computable approximation to T
to try to find longer and longer initial
segments of the input in it;

m whenever progress is made, outputs
one more bit of the input;

m while waiting for progress, outputs
padding bits;

m thus, maps all X € Z to Turing-
equivalent heavily padded versions;
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A non-trivial diminutive measure

We will apply two functionals to Z.

The first functional =
(inspired by a construction of Ng, Stephan, Yang, Yu)

29\ R

m uses a computable approximation to T
to try to find longer and longer initial
segments of the input in it;

m whenever progress is made, outputs
one more bit of the input;

m while waiting for progress, outputs
padding bits;

m thus, maps all X € Z to Turing-
equivalent heavily padded versions;

= maps everything else to an eventually
constant sequence, as eventually no
more progress will be made.

This makes = total.
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A non-trivial diminutive measure

The second functional A
m tries to find more and more coded bits

in the padded sequences in Z(2);
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A non-trivial diminutive measure

The second functional A

m tries to find more and more coded bits
in the padded sequences in Z(2);

m it then runs ¢ with these bits as oracle
for more and more computation steps.

m If more oracle bits are needed, it keeps
searching for them in the input.
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A non-trivial diminutive measure

The second functional A

m tries to find more and more coded bits
in the padded sequences in Z(2);
2\@2 { @ m it then runs ¢ with these bits as oracle
. for more and more computation steps.
= If more oracle bits are needed, it keeps
searching for them in the input.

m While it searches in this way for
terminating computations, it keeps
outputting blocks of identical bits.

For inputs in Z(2),
JA lA JA m ¢ is run with a “good” oracle, and
computes a fast growing function;
m while waiting for ¢ to converge the bit
R blocks will become very long;
m one can show that this implies that the
output is not complex.
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A non-trivial diminutive measure

If X € 2(2% \ #), by construction, X is
eventually constant.

non-complex
s 4
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A non-trivial diminutive measure

20\ %

If X € 2(2% \ #), by construction, X is
eventually constant.

Then A will find only finitely many
oracle bits, and output the same bit
forever.
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A non-trivial diminutive measure

e G .

----------------- If X € 2(2% \ #), by construction, X is
eventually constant.

Then A will find only finitely many
oracle bits, and output the same bit

forever.
The same can be forced for X ¢ Z(2%).

(But this is of no relevance here.)
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A non-trivial diminutive measure

Now let u be the measure induced by AoZ, that is,
U =MZ:NoZE(Z2) e ¥}

for all % C 2,

By the previous arguments, no X € MLR u 1 complex.

Then the Proposition implies that u is diminutive.

But every sequence in A o Z(2) computes a fast-growing
function, so is not computable, so is not an atom.

Then since u(AoZ(R))= A(Z) > 0, we have that
p(Atoms ) < 1, thus w is not trivial. O



A known result as an easy corollary

Corollary (Kautz). There is a computable, non-trivial
measure y such that no A9, non-computable X € MLR , €xists.

Proof.
= Non-computable randoms for u are images of MLR? sequences
under A o Z. Then they are MLR? with respect to .
= Any AJis trivially covered by a u-Martin-Lof test relative to (/.
= So no non-computable random for u can be AJ. O

This new proof is priority-free!
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Thank you for your attention.
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