: ~ g o apente s RY LS

— e

Randomness-and quantum compt
: e 3 \:'_ — —'"""-‘j‘:::?':i.“

< ".".1':'-' -:'r(c';.

TAPDIOT .\_..,A-_' %

Yl < iff'-.-.‘._b‘
. Lo P e
o ‘-f"{’(qgg"-.d..,:,..:.

X . Sy
3 3 -

,



00100111000101111010101000010101101111011000010111101010
100101011000111110101100011001111111011000001110011121000
00110011011110100011110100011100101011011001011100010110
01100110001111000010011001011101100100101000001110001111
11100100011000101111110100010111110011011100100110011010
00111111011010101101001101010110000011000001001101011100
00111000000000111000110000011101100001001100000001111011
00001000110011000100110100011100110111010101111010100111
11111011001001111101110111110000001010110011101001000100
01100001010000101010110011001100110110001101011010110001
11110010100001110001001100011101110101111100001110101000
01100011001010010010111011011000111101000111111000101111
00111001000100101101000010011110011111101100011112110110
01001001001011010001010000110100010100011100001100000100
11000111110111001000011001011010100111101111010101111111
00000001010011110010000000011011001010011010101101000010



00100100001111110110101010001000100001011010001100001000
11010011000100110001100110001010001011100000001101110000
01110011010001001010010000001001001110000010001000101001
10011111001100011101000000001000001011101111101010011000
11101100010011100110110010001001010001010010100000100001
11100110001110001101000000010011011101111011111001010100
01100110110011110011010011101001000011000110110011000000
10101100001010011011011111001001011111000101000011011101
00111111100001001101010110110101101101010100011100001001
00010111100100100001011011010101110110011000100101111001
11111011000110111101000100110001000010111010011010011000
11011111101101011010110000101111111111010111001011011011
11010000000110101101111110110111101110001110000110101111
11101101011010100010011001111110100101101011101001111100
10010000010001011111000100101100011111111001100100100100
10100001100110010100011110110011100100010110110011110111



Did you notice any difference
between the bit sequences?

* First sequence: 896 quantum random bits

 Second sequence: the initial 896 bits of the
binary expansion of it - 3

http://www.befria.nu/elias/pi/binpi.html




Compressibility

The binary expansion of -3 can be compressed:

given n, compute the first n bits, using that

W‘i 1 ( 4 2 1 1 )
T4~ 16i\8i+1 8i+4 8+5 Bi+6

The length of this description is:
number of binary digits of n + constant

(Simon Plouffe, 1995, source: Wikipedia)



Defining Randomness

Can we compress a long sequence
of random bits?

NO.

For finite objects, incompressibility can be taken
as a formal definition of the intuitive concept of
randomness.



Random versus patterned objects

We have already seen that random objects can
resemble patterned ones. Here’s a musical
example, courtesy of D. Hirschfeldt.

Music of Changes by John Cage (1951)
has aleatoric elements
Structures for Two Pianos by

Pierre Boulez (1961) is an example of serialism
(deterministic music)




Music of Changes (Cage)
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It takes random samples from [ Ching, the “book of
changes” (which the Chinese used for divination).



Serialism (Messiaen/Boulez)
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Based on a 12-tone series, which
determines all the other musical elements



Compressibility and
information content

Objects can have low information content for
two reasons:

* Highly compressible

* Highly random

A sequence of 896 zeros is highly compressible,
and has no information besides the length.

A sequence of 896 quantum random bits is
incompressible, and has no information besides
the length.






Random and structured parts: Green & Tao

The dichotomy of random versus structured is
prominent in the work of Green and Tao.

Szemeredi’s theorem: every set of natural numbers

with positive upper density has arbitrarily long
arithmetic progressions.

Each of the known proofs proceeds by showing
that the set contains a large (pseudo)random
subset of a structured set (Tao, 2006 ICM).

Green and Tao (2006) used this idea to get

arbitrarily long arithmetic progressions in the
primes. E.g.5, 11,17, 23, 29



Ulam’s spiral of prime numbers
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Souce: Wikipedia
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Examples of compression

and of short descriptions



A compression algorithm

Many of you have used compression to save
disk space. Usually this compression is based
on the DEFLATE algorithm (P. Katz).

Given a long string of symbols:

e First step: create a dictionary of substrings that
repeat often. In this way we don’t have to write out

repeated strings. (Lempel-Ziv 1977)

 Second step: Huffman (1951) encoding. Rare

symbols get represented by the longer binary
strings, and frequent symbols by the shorter strings.



Genome —compressible how far ?

Fruit fly: 100 million base pairs (Mbp) spread over 8
chromosomes. The “3L arm” chromosome has 24.5 Mbp.
Compressible to about 1/8 using gzip.

Human: 3.3 billion base pairs (i.e. about 840 Megabytes when
encoding a base pair by two bits). Compressible to about 1.1
Megabyte using DNAzip and now GenomeZip (1200 fold)

Developed at UC Irvine , 2011. Based on Huffman compression. But uses
reference genome (of J. Watson) and only describes the changes.

en.wikipedia.org/wiki/Compression of Genomic Re-Sequencing Data

It’s not surprising that some randomness remains: genome is
product of random mutations and selection.



Compression versus description |

Compressing an object: the compressed form is
of the same type as the given object. E.g.,
compress a bit sequence to a shorter one.

0010010000111111011010101000
1000100001011010001100001000 Il ~— 101011101



Compression versus description |l

Describing an object: The description can be of
a different type from the given object.

o Gle) = YelPLg) — 2]
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of view: SR
Description is syntax.
Object is semantics.




Syntax Semantics

TAGGGAGAAATATGATCGCGTATGCGA
GAGTAGTGCCAACATATTGTGCTCTTTG
ATTTTTTGGCAACCCAAAATGGTGGCGG
ATGAACGAGATGATAATATATTCAAGTT
GCCGCTAATCAGAAATAAATTCATTGCA
ACGTTAAATACAGCACAATATATGATCG
CGTATGCGAGAGTAGTGCCAACATATTG
TGCTAATGAGTGCCTCTCGTTCTCTGTCT
TATATTACCGCAAACCCAAAAAGACAAT
ACACGACAGAGAGAGAGAGCAGCGGAG
ATATTTAGATTGCCTATTAAATATGATCG
CGTATGCGAGAGTAGTGCCAACATATTC
TGCTCTCTATATAATGACTGCCTCT ...

Initial piece of the "3Larm" chromosome of the
fruit ﬂy http://www.fruitfly.org/sequence



TAGGGAGAAATATGATCGCGTATGCGAG
AGTAGTGCCAACATATTGTGCTCTTTGAT
TTTTTGGCAACCCAAAATGGTGGCGG

Yes No

We can only compress symbolic expressions (syntax).
First describe object, then compress the description.



Describing finite mathematical structures

We want short descriptions in logic.
We consider two types of structures:

* Graphs are binary relationships between
elements.

* Groups are symmetries of a set of elements.
E.g. the 120 movements that fix the

dodecahedron. (Group Agx Z,.) ’



Re-labeling of graphs

They can be identified after re-labeling second graph



Many non-isomorphic graphs

There are “lots” of graphs on n vertices that remain
different even when one can re-label. This implies:

For each n, there is a graph on n vertices

such that each binary description of a relabeling
has length at least € (n2—6 log n).

The naive description of a graph has length n%/2 .




Finite groups have short
first-order descriptions

Last year N. and Katrin Tent showed the
following, starting from some earlier work of
N. with summer student Y. Maehara:

Each group of n elements has a description in

first-order logic of size

Such a description is invariant under
re-labeling of the group elements.

Example of a first-order sentence: \v’xﬂy[y Y = X]



Godel incompleteness (1931)

For each sufficiently strong formal system F, there
is an expression that is true but unprovable. It says

“I am not provable in system F”.

Paris/Harrington (1977) provided a true
mathematical fact that is unprovable in the usual
formal system axiomatizing arithmetic (Peano
arithmetic).

Their factis a strengthening of the finite Ramsey
theorem.



Chaitin’s proof of incompleteness (1969)

For a number n, consider the following true fact:
some string x is not compressible below length n.

If nis large compared to the size of a formal system
F, then the fact cannot be proved in F.

For otherwise, “the first string x that F can prove
to be incompressible below length n” yields a
description of that string x of length log(n) +
constant.



10100111000101111010101000010101101111011000010111101010
10010101100011111010110001100111111101100000111001111000
00110011011110100011110100011100101011011001011100010110
01100110001111000010011001011101100100101000001110001111
11100100011000101111110100010111110011011100100110011010
. Randomness and compression .
00111 1 1 I 0001111011
00001000110011000100110100011100110111010101111010100111
11111011001001111101110111110000001010110011101001000100
0110000101000010101011001 1@&1}0?%%)&?% 1@]@;%@# 0001
11110010100001110001001100011101110101111100 0101000
01100011001010010010111011011000111101000111111000101111
00111001000100101101000010011110011111101100011111110110
01001001001011010001010000110100010100011100001100000100

11000111110111001000011001011010100111101111010101111111
00000001010011110010000000011011001010011010101101000010



What is an infinite object?
E.g. a real number: it has infinite precision.
The real number t has a finite description,
Most real numbers don’t have one.

Can we compress an infinite object?
Not really.
But we can try to compress
all of its finite parts.



Prefix-free Kolmogorov complexity K(x)
For a finite sequence x, let K(x) denote the shortest
length of a compressed form of x

(Solomonoff/Kolmogorov).
We use a universal de-compressor U.
K(x) is the length of a shortest o such that U(o) = x.

o —_—> U — X

A technical, but important modification: if o, T are in the
domain of U, then t does not extend o.



Random versus trivial

Let Z be an infinite bit sequence.

Let Z/n denote the first n bits of Z.

e Zisrandom if for some number d
K(Z|n) 2 n-d for each n.

e Zis K-trivial if for some number b,
K(Z|n) <K(n) + b for each n.

An infinite sequences A is Bennett deep if for each computable t,
foreachc, fora.e.n, K(A|n)+c< Kt(n)(Al n).

Neither randoms (Bennett, 1988),
nor K-trivials (Moser/Stephan, 2014) are deep.



Far-from-random sequences

Z is K-trivial if for some number b, K(Z|n) <K(n) + b.

Musical example: Spiegel im Spiegel by Arvo Part.

FACT: If we can compute all the bits of Z,
then Z is K-trivial.

some Z is K-trivial but not computable.

This Z looks as far-from-random as possible,
but is still not totally predictable.



Far from random= close to computable

Numerous results suggest that far-from-random means
that the computational power is very low.

A bit sequence Z is called low for K if, when
using queries to Z as an auxiliary computational
device in de-compression, we don’t gain more

than a constant. .
c —>» UwithZ—> X

Z is K-trivial if and only if Z is low for K.



Randomness and'analysis
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Lebesgue’s theorem

Henri Lebesgue (1904) introduced a notion of
size for sets of real numbers.

This is used to express that a statement holds
with probability one.

His intuition may have been that the statement
holds for a “random” real.

Lebesgue, 1904:
Let f be increasing with domain [0,1].
Then f'(z) exists for a real z with probability 1.



Algorithmic forms of Lebesgue’s theorem |

We say that a real z is betting-random (Schnorr,
1975) if no effective betting strategy succeeds
on its binary expansion.

The strategy always bets on the value of next

bit. Success means the capital is unbounded.

(This randomness notion is weaker than the one we have
defined in terms of incompressible initial segments.)

Let f be increasing and computable.

Then f'(z) exists for any betting random real z.




Algorithmic forms of Lebesgue’s theorem Il

We say that a real z is polynomial time betting-
random if no polynomial time computable
betting strategy succeeds on the real.

Let f be increasing and polynomial time
computable.

Then f ’(z) exists for any polynomial time
betting random real z.




Computability in Physics

Undecidability of the spectral gap (Nature 2015)




