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Abstract

We deal with some questions arising from the comparison of dif-
ferent models for computation over algebraic structures. One of these
models is the machine-oriented BSS RAM model. Here, we extend the
BSS RAM’s in order to compare the BSS RAM model with a machine-
independent model of abstract computation developed by Moschovakis
and models in recursion theory. We introduce a nondeterministic oper-
ator similar to an operator considered by Moschovakis and determinis-
tic operators derived from this operator. Two of the deterministic oper-
ators used as oracles allow to compute measures of sets semi-decidable
or decidable by BSS RAM’s and the limits of these sets, respectively.
Here, the focus is on structures over which it is possible to simulate
BSS RAM’s with measure operators by BSS RAM’s equipped with a
limit operator and by strong Type-2 BSS RAM’s, respectively.

1 Introduction

We present some recent advances in the investigation of abstract computa-
tion related to operators for BSS RAM’s. The here considered models of
computation are based on the concept and design of the well-known random
access machines. Besides BSS RAM’s over several mathematical structures
we consider Type-2 RAM’s and introduce Type-2 BSS RAM’s. These ma-
chines are generalizations of the uniform BSS model of computation over the
real numbers introduced in [Blum et al. ’89], the analytic machines intro-
duced by Günter Hotz, Gero Vierke, and Börn Schieffer in [Hotz et al. ’95]
in accordance with ideas presented in [Hotz, ’94] (cp. [Gärtner ’08]), the
Type-2 Turing machines studied based on books such as [Weihrauch ’00] in
the field of computability and complexity in analysis, and the infinite Turing
machines considered, for instance, by Philipp Schlicht (for the definition see
[Carl & Schlicht ’16]) and other researchers, respectively. Since a system-
atic comparison of these models plays an important role in understanding
questions about computability and for answering them, we want to study
the typical features of the BSS RAM model for some structures, as well
as to compare it, for several structures, with other models of computation.
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Here we would also like to follow up on the discussion about the strength
of operators introduced — in analogy with operators considered by Stephen
Cole Kleene and Yiannis Nicholas Moschovakis — for our BSS RAM’s, sim-
ilar new operators, and the relationship between BSS RAM’s with these
operators and other RAM’s.

For this purpose, we give the most important definitions in Section 2.
In Section 3 we give the definitions of a nondeterministic and deterministic
operators and characterize halting problems for the classes of nondetermin-
istic and deterministic BSS RAM’s by the introduced operators. In Section
4, we consider several classes of structures and discuss the possibilities to
compute the measures of semi-decidable and decidable sets and the integrals
of computable functions by Type-2 BSS RAM’s.

2 BSS RAM’s and Type-2 RAM’s

Let A = (U ; (ci)i∈I ; f1, . . . , fn1 ; r1, . . . , rn2) be a first-order structure con-
taining at least two different constants c0, c1 ∈ U (0, 1 ∈ I, c0 6= c1). Any
infinite dimensional BSS RAM over A or A-machine M is equipped with
an infinite number of Z-registers Z1, Z2, . . . for the elements of the universe
U and a finite number of index registers I1, . . . , IkM for the addresses of the
Z-registers. They can execute each single application of a function fi and
copy single elements by indirect addressing from one Z-register into another
Z-register in a fixed time unit and we assume that each relation ri can also
be evaluated, for given values in the Z-registers, in one step. The allowed
types of instructions are presented in Figure 1.

We will distinguish between the ordinary BSS RAM and finite and infi-
nite Type-2 RAM’s. The ordinary BSS RAM can process inputs (x1, . . . , xn)
of any length. As defined in [Gaßner ’09], at the beginning, besides assigning
the input (x1, . . . , xn) ∈ U∞ =df

⋃∞
i=1 U

i to Z-registers, an index register of
such a BSS RAM obtains the length n by an input procedure (cp. Figure 2).
The nondeterministic machines are additionally able to guess an arbitrary
finite number m of arbitrary elements y1, . . . , ym ∈ U which are provided by
an input and guessing procedure (cp. Figure 3) for the further work. The
output is done by an output procedure where the length of the output is
dependent on the value of a certain index register (cp. Figure 4).

The A-computable functions are determined by the input-output behav-
ior of the BSS RAM’s over A. Infinite dimensional deterministic BSS RAM’s
compute partial functions of the type described by f :⊆U∞ → U∞. Infinite
dimensional nondeterministic BSS RAM’s compute partial functions of the
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Computation instructions:
` : Zj := fi(Zj1 , . . . , Zjmi

) ( e.g. ` : Zj := Zj1 + Zj2)

` : Zj := ci
Branching instructions:

` : if ri(Zj1 , . . . , Zjki ) then goto `1 else goto `2
Copy instructions:

` : ZIj := ZIk
Index instructions:

` : Ij := 1
` : Ij := Ij + 1
` : if Ij = Ik then goto `1 else goto `2

Stop instruction:
` : stop.

Figure 1: BSS RAM’s and the allowed instructions

type described by f :⊆U∞ → P(U∞).
Note, that it is also possible to use finite dimensional BSS RAM’s for

computing — deterministically or nondeterministically — functions f :⊆
Un → Um and f :⊆Un → P(Um), respectively. Type-2 RAM’s work with
additional read-only input and write-only output tapes. This means that
there are an additional infinite sequence of input registers and an additional
infinite sequence of output registers. While executing the program, stepwise
reading inputs from the input tape and writing outputs on the output tape
are possible via two additional types of instructions, called read instruc-
tion and print instruction, respectively. We distinguish (∞, ω)-, (ω, ω)-,
and (ω,∞)-RAM’s over A. Finite Type-2 RAM’s provide output values in
U∞ after a finite number of steps. We are also interested in computable
enumerations over U and over U∞, the resulting sequences in Uω given
after an infinite number of steps, and their limits. Therefore, we also con-
sider infinite Type-2 BSS RAM’s working with a procedure for inputting
finite or infinite sequences (where only in the first case the length of the
input is assigned to an index register and in any case a second index reg-
ister gets an information about the input type 1 or 2), an instruction for
reading values given on an input tape, an instruction for writing values on
an output (or print) tape, an additional output index register I0 (for de-
termining the length of a possible limit), and a forward-looking procedure
for outputting sequences in Uω (and maybe the value of I0). For a given
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x1 x2 xn

↓ ↓ ↓
Z1 Z2 . . . Zn Zn+1 Zn+2 Zn+3 . . .

↑ ↑ ↑
xn xn xn

I1 I2 I3 I4 . . . IkM

↑ ↑ ↑ ↑ ↑
n 1 1 1 1

Figure 2: The input of x1, . . . , xn) by an input procedure of any deterministic
BSS RAM

x1 x2 xn

↓ ↓ ↓
Z1 Z2 . . . Zn Zn+1 Zn+2 . . . Zn+m Zn+m+1 . . .

↑ ↑ ↑ ↑
y1 y2 ym xn

I1 I2 I3 I4 . . . IkM

↑ ↑ ↑ ↑ ↑
n 1 1 1 1

Figure 3: Guessing by an input-guessing procedure of nondeterministic ma-
chines

sequence of metrics (dm)m∈N+ with dm : (Um)2 → R+
1 we consider also

infinite-limit Type-2 BSS RAM’s providing only the limit in U∞ for each
sequence (y1+kc(I0), . . . , y(k+1)c(I0))k∈N+ in (U c(I0))ω if the sequence y1, y2, . . .
is written on the print tape after copying the current value m = c(I1) of the
index register I1 into the register I0 and the limit exists with respect to
dc(I0). If A is the ordered field of reals and the considered metrics dm are
the Euclidean metrics, then the infinite-limit Type-2 BSS RAM’s with the
input space U∞ can provide limits that can also be computed — by defi-
nition — by analytic machines (with the same constants). Analogously to
the strong analytic machines considered in [Gärtner & Ziegler ’11]2, we will

1R+ = {x ∈ R | x ≥ 0}
2By [Gärtner & Ziegler ’11], a strong analytic machine computes ~y ∈ R∞ if it produces
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I1 I2 I3 I4 . . . IkM

↓
m

Z1 Z2 . . . Zm Zm+1 Zm+2 . . .

↓ ↓ ↓
z1 z2 zm

Figure 4: Output procedure of any BSS RAM

also consider the strong infinite-limit Type-2 BSS RAM’s and the strong
infinite Type-2 BSS RAM’s where we get an output only if the sequence
y1, y2, . . . — written on the output tape after writing m into I0 — satisfies
dm((y1+kc(I0), . . . , y(k+1)c(I0)), ~y) ≤ 1

2k
for some ~y ∈ Um and all k ∈ N+ such

that the considered sequence (y1+km, . . . , y(k+1)m)k∈N+ in (Um)ω converges
rapidly to the limit ~y ∈ Um.

Similar to the ν-operator given in [Moschovakis ’69] and Kleene’s µ-
operator, we introduced several Moschovakis operators, a ν-operator for
nondeterministic ν-oracle machines, further operators for partially ordered
structures such as νmin, νinf , . . ., operators νlim defined by metrics on subsets
of U∞, and measure operators defined by measures on σ-algebras over the
universe. We will present details and first results of comparing some oracle
BSS RAM’s with Type-2 RAM’s. In the following, A is a structure with
constants c0 and c1 (c0 6= c1) such that {c0} and {c1} are decidable and, for
any problem P , the characteristic function χP : U∞ → {c0, c1} is defined
by χP (~x) = c0 if ~x ∈ P and χP (~x) = c1 if ~x 6∈ P .

3 A nondeterministic operator, deterministic op-
erators, and halting problems

ν-oracle BSS RAM’s and nondeterministic ν-oracle instructions.
For the structure A and any function f :⊆U∞ → U∞ computable by a usual
BSS RAM over A, we allow that ν-oracle BSS RAM’s can — in addition
to the instruction types of the usual BSS RAM’s — execute a ν[f ]-oracle
instruction. More precisely, for

ν[f ](x1, . . . , xn)

a sequence (~y(n))n∈N with dim(~y(n)) = dim(~y) and ||~y(n) − ~y|| ≤ 1
2n

for all n ∈ N.
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=df {y1 ∈ U | (∃(y2, . . . , ym) ∈ U∞)(f(x1, . . . , xn, y1, y2, . . . , ym︸ ︷︷ ︸
~y∈U∞

) = c0)}

we allow the labeled ν[f ]-oracle instruction of the form

` : Zj := ν[f ](Z1, . . . , ZI1).

In this way, by ν[f ] :⊆ U∞ → P(U), the register Zj obtains the value
y1 ∈ ν[f ](z1, . . . , zn) if the content of I1 is n, the contents of Z1, . . . , Zn
are z1, . . . , zn, and y1 ∈ U is some value such that there are an m and
y2, . . . , ym ∈ U satisfying f(z1, . . . , zn, y1, . . . , ym) = c0, and otherwise Zj
does not obtain a value and the machine again goes to the label ` (cp.
Figure 5, [Gaßner & Valencia ’15], and [Gaßner ’16/B]).

z1 · · · zn
↓ ↓

NONDETERMINISTIC! ` : Zj := ν[f ](Z1, . . . , ZI1)
↓
y1

ν[f ](z1, . . . , zn) 6= ∅ ⇒ Zj contains some y1 ∈ ν[f ](z1, . . . , zn).

ν[f ](z1, . . . , zn) = ∅ ⇒ No stop (the machine loops forever).

Figure 5: Oracle instruction with ν-operator

This new type of instructions allows to compute multiple-valued functions
from U∞ to the power set of U∞. For computation over A, we say that a
problem P ⊆ U∞ is ν-semi-decidable by a ν-oracle BSS RAMM (using ν[f ]
applied on some BSS RAM computable f) when M computes a multiple-
valued function g so that c0 ∈ g(~x) iff ~x ∈ P .

Enumerability. A set P ⊆ U∞ is enumerable (over A) if there is an
A-computable surjective function f : {c1}∞ → P . Hence, for a structure
with N ⊆ U , the constant c1 = 0, the computable successor function s
with s(x) = x + 1 for x ∈ N, and a relation = decidable for non-negative
integers in N, the set P ⊆ U∞ is enumerable over A if and only if there
is an A-computable surjective function f : N → P since we can compute
n 7→ (0, . . . , 0) ∈ Nn+1 for all n ∈ N and (0, . . . , 0) ∈ Nn 7→ (n − 1) for all
n ∈ N. Note that, for computations over such a structure, there is an (∞, ω)-
machine computing f :⊆U∞ → Uω if and only if a function g :⊆U∞ → U
satisfying3 f(~x) = (g(n . ~x))n∈N can be computed by a BSS RAM.

3(~x . ~y) = (x1, . . . , xn, y1, . . . , ym) if ~x = (x1, . . . , xn) and ~y = (y1, . . . , ym).
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BSS RAM’s and deterministic oracle instructions. For any structure
A with a partial order r1 on U , let us consider oracle machines such as νmin-
oracle BSS RAM’s defined in [Gaßner ’15/B]. By the labeled νmin[f ]-oracle
instruction ` : Zj := νmin[f ](Z1, . . . , ZI1) the register Zj obtains the value
y1 if Zj := ν[f ](Z1, . . . , ZI1) provides at least one value for Zj , the set of
these possible values has a minimum, and y1 is this minimum. In all other
settings, Zj does not obtain a value and the machine again goes to the label
`.

In a similar way, we can define operators νinf , νmax, . . . for νinf -, νmax-,
and further oracles. Note, that Pedro F. Valencia Vizcáıno gave talks in
Greifswald where he presented, for the computation over the field of reals,
the ideas for the simulation of the νmax[f ]-oracle instruction by a νsup-oracle
BSS RAM. If ν[f ](~x) provides a set of values for structures with a metric,
then an operator νlim provides the limit (the only accumulation point) of
this set if it is applied on f and ~x and the limit exists. Note, that the corre-
sponding operators for providing minimal elements or accumulation points
are suitable to extend BSS RAM’s by nondeterministic oracle instructions.

In order to define several measure operators as in [Gaßner ’16/A], let
~ν[f ](~x) = {~y ∈ U∞ | f(~x . ~y) = c0} and let ~ν(k)[f ] be a projection of
~ν[f ] on Uk. In more details, let ~ν(k)[f ](~x) = {~w ∈ Uk | f(~x . ~w) = c0 ∨
(∃~y ∈ U∞)(f(~x . ~w . ~y) = c0)} for k ≥ 1. By the way, this means that
~ν(1)[f ](~x) = ν[f ](~x). Then, for any structure A with N ⊆ U , we can con-
sider the σ-algebra A = P(U∞) and, thus, the ~νnumb[f ]-oracle instruction
Zj := ~νnumb[f ](Z1, . . . , ZI1) where the measure operator ~νnumb : ⊆U∞ → N
is defined by means of the counting measure such that ~νnumb[f ](~x) =df |A|
if A = ~ν[f ](~x) and |A| < ∞ and ~νnumb[f ](~x) is not defined otherwise. The
corresponding νnumb[f ]-oracle instruction refers to ν[f ](~x).

For structures of the reals, we will consider the deterministic oracle in-

struction Zj := ~ν
(k)
Lebes[f ](Z1, . . . , ZI1) with the Lebesgue measure operator

~ν
(k)
Lebes defined by ~ν

(k)
Lebes[f ](~x) = λk(~ν(k)[f ](~x)) and the Lebesgue measure λk

for Borel or Lebesgue sets given in the form of sets ~ν(k)[f ](~x) ⊆ Rk (where

~ν
(k)
Lebes[f ](~x) is not defined if ~ν(k)[f ](~x) is not in the considered σ-algebra),

and the corresponding instruction determined by the uniform Lebesgue mea-
sure operator ~νLebes given by ~νLebes[f ](~x) =df

∑
k λ

k(~ν(k)[f ](~x) ∩ ~ν[f ](~x)).
For any σ-algebra A ⊆ P(Un) and any measure κ on A, we denote the

corresponding measure operator also by ~νAκ and ~νκ, respectively.

Halting problems and operators. For the class MA of all deterministic
BSS RAM’s over A and for the class MN

A of all nondeterministic BSS RAM’s
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over A we will consider the halting problems HA and HN
A given by

H[N]
A = {(~x . code(M)) | ~x ∈ U∞ & M∈ M

[N]
A & M(~x) ↓}

where, in the nondeterministic setting, M(~x) ↓[≤k] means that M halts on
~x for some guesses y1, . . . , ym [after at most k steps].4 Analogously to the
relationship between deterministic and nondeterministic Turing machines,
there holds HN

A ≡A HPROJ
A for

HPROJ
A

=
∞⋃
n=1

{(~x . code(M)) | ~x ∈ Un & M∈ MA& (∃~y ∈ U∞)(M(n . ~x . ~y) ↓)},

and we have HN
A ≡A HEXI

A for

HEXI
A = {(~x . code(M)) | ~x ∈ U∞& M∈ MA& (∃~y ∈ U∞)(M(~x . ~y) ↓)}.

A consequence is that a problem is ν-semi-decidable by a ν-oracle BSS RAM
over A if and only if there is a nondeterministic BSS RAM over A that
recognizes this problem (cp. Figure 6).

x1 · · · xn x1 · · · xn y1
↓ ↓ ↓ ↓ ↓

Zj := ν[f ](Z1, . . . , ZI1); . . . Zj := ν[f ](Z1, . . . , ZI1−1, ZI1) . . .
↓ ↓
y1 y2

⇒ f(x1, . . . , xn, y1, . . . , ym) = c0

Figure 6: Guessing by the ν-operator of a ν-oracle machine

Theorem 1 For the computation over A, the halting problem HA and con-
sequently all semi-decidable sets are decidable by a BSS RAM using one of
the following operators

• νmin provided that there is a partial order < on U with c0 < c1,

4Let code(M) ∈ {c1}× {c1}×U ×{c0}×U ×{c0}× · · · ×U ×{c0} be the code of the
program (which is a string) where any symbol of a constant is encoded by itself and the
other single symbols of the program are encoded by k elements in {c0, c1}.
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• νinf provided that there is a partial order < on U with c0 < c1,

• νlim and two effectively enumerable infinite sets {c(j)i | i ∈ N} with

limi→∞ c
(j)
i = cj (j ∈ {0, 1}) with respect to a metric on U provided

that x = c
(j)
i is decidable for i ∈ N and j ∈ {0, 1}.

• νnumb provided that N ⊆ U and x = 2 is decidable.

• ~νLebes provided that λ1(V ) > 0 for some V ⊆ R+ ⊆ U and c1 = 0.

If, for all nondeterministic A-machines M, M(~x) ↓≤k is decidable over A,
then the same holds for HN

A.

4 The computation of measures and integrals by
Type-2 BSS RAM’s

The simulation of the ~νLebes-operator by the νlim-operator. If we
want to compute, for the set A = {~y ∈ R∞ | f(~x . ~y) = 1} defined by a
computable totally defined function f , the sum of the Lebesgue measures
for all A ∩ Un (n ≥ 1) by a νlim-operator over the ordered ring of the reals,
then we can use that f is computable by a machine where any test Zi ≥ Zj is
replaced by a test Zi−Zj > 0, followed by the tests Zi−Zj = 0 (considered
in case that Zi−Zj > 0 is not satisfied) and Zi−Zj < 0 (considered in case
that Zi − Zj > 0 and Zi − Zj = 0 are not satisfied). This means that, in
this setting where all test functions are continuous, any new computation
path can be traversed only by inputs in an open set or only by zeros of
polynomials. Thus, it is sufficient to compute limits of values given by
the Lebesgue measure of open sets since the Lebesgue measure of the zero
sets vanishes for all non-constant polynomial functions. Consequently, this
observation allows to compute the Lebesgue measure sum ~νLebes[f ](~x) by
νlim. We want to make a first step to generalize this statement possible for
the ordered ring to structures with continuous basic functions. We know that
the set of closed cubes [(a1, . . . , an), (b1, . . . , bn)] =df [a1, b1] × · · · × [an, bn]
with ai < bi for all i ≤ n is sufficient to generate the σ-algebra B (Rn) of
Borel sets since any open set is the (σ-)union of closed cubes with disjoint
interiors defined as follows. For all l ∈ N, let

Wl = {[ i1
2l
,
i1 + 1

2l
]× · · · × [

in
2l
,
in + 1

2l
] | i1, . . . , in ∈ Z}.
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Then, any open set S ⊆ Rn can be described by

S =
∞⋃
l=0

⋃
W∈WS

l

W = lim
m→∞

m⋃
l=0

⋃
W∈WS

l

W

for

• WS
0 = {W ∈ W0 |W ⊆ S},

• WS
l = {W ∈ Wl |W ⊆ S & W ◦ 6⊂

⋃l−1
j=0

⋃
Wj∈WS

j
Wj} (l ≥ 1)5

(cp. [Hackenbroch ’87], p. 38). (For the background see also [Elstrodt ’02].)
In the following part we will use the latter property. Therefore, let the
class struc(I) be the class of structures (R; (ci)i∈I ; f1, . . . , fn1 ;≥) satisfying
the following requirements.

1. For any i ≤ n1, the basic function fi : Rmi → R is totally defined and
continuous.

2. f1(x, y) = x+ y and f2(x, y) = x− y for all reals x and y.

3. c0 = 1 and c1 = 0.

4. The values c = 1
b and c2, c3, . . . are, for some b ∈ {2, 3, . . .}, effectively

enumerable by a BSS RAM over A.

5. The zero set Sh ⊆ Rn of any function h : Rn → R resulting from
composing some operations fi : Rmi → R and constant functions f(ci) :
Rn → {ci} has the Lebesgue measure 0 if the set is not the whole
domain Rn.

6. It is decidable whether the composition of functions fi : Rmi → R and
f(ci) : Rn → {ci} provides the trivial constant function f(0) : Rn → {0}.
For any code code(M) of a machine M with a straight-line program
(a program without branching instructions) we want to get the answer
for the function computed by M.

7. There is a BSS RAM N over A that decides for any function h :
Rn → R resulting from the composition of some fi : Rmi → R and
f(ci) : Rn → {ci} and for any open cube ]( i1

bl
, . . . , in

bl
), ( i1+1

bl
, . . . , in+1

bl
)[

whether the intersection of the zero set Sh and the cube is the empty
set.

5W ◦ =
⋃
{G ⊂W | G open}
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More precisely, we assume that the set {((i1, . . . , in, l) . code(Mh)) |
(∀~x ∈ Rn)(h(~x) = Mh(~x)) & ]( i1

bl
, . . . , in

bl
), ( i1+1

bl
, . . . , in+1

bl
)[∩Sh = ∅}

is decidable by N over A. 6

Theorem 2 If A is in struc(I) and f : R∞ → R∞ is any totally defined
function computable over A, then

~νLebes[f ](~x) is computable
— by some BSS RAM with νlim-oracle and
— by an infinite-limit Type-2 BSS RAM
over A.

A consequence is that the Lebesgue measure sum of every decidable set is
computable by an infinite-limit Type-2 BSS RAM. If we define g(1 . ~x) = 1 if
f(~x) = 1 for all ~x ∈ R∞ and g(1 . ~x) is not defined otherwise, then ~νLebes[g](1)
provides the Lebesgue measure sum of a semi-decidable set.

Theorem 3 If A is in struc(I) and f :⊆R∞ → U∞ is any function com-
putable over A, then

~νLebes[f ](~x) is computable
— by some BSS RAM with νlim-oracle and
— by an infinite-limit Type-2 BSS RAM
over A.

This means also that the Lebesgue measure sum of a semi-decidable set is
computable by an infinite-limit Type-2 BSS RAM.

For functions f : [0, 1]n → U∞, Theorem 2 can be improved as follows.

Theorem 4 If A is in struc(I) and f : [0, 1]n → U∞ is any totally defined
function computable over A, then ~νLebes[f ](~x) is computable by a strong
infinite-limit Type-2 BSS RAM over A.

A consequence is that the Lebesgue measure sum of every decidable set
A ⊆

⋃n
i=1[0, 1]n is computable by a strong infinite-limit Type-2 BSS RAM

if A is in struc(I).

κ-Integration and the operators ~νκ and νlim. In the following, let
struc(II) be the class of structures A = (U ; (ci)i∈I ; f1, . . . , fn1 ; r1, . . . , rn2)
with the following properties.

6For h : Rn → R, h(~x) =M(~x) means that h(~x) results from the input-output behavior
ofM. IfM computes f , we have h(~x) = f(~x) for the considered ~x ∈ Rn.
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1. R+ ⊆ {ci | i ∈ I}.

2. c = 1
2 and c2, c3, . . . are computable over A.

3. The function a : (R+)2 → R+ with a(x, y) = x+ y for all x, y ∈ R+ is
computable over A.

4. The function m : {c, c2, c3, . . .} × R+ → R+ with m(x, y) = (x · y) for
x ∈ {c, c2, c3, . . .} and y ∈ R+ is computable over A.

5. The relation ≤ restricted to (R+)2 is decidable.

For any A ∈ struc(II) and any σ-algebra A ⊆ P(Up), we consider func-

tions h : Up → {ah0 , . . . , ahih} with {ah0 , . . . , ahih} ⊆ R+. Any such function h

is given by7 h(~x) =
∑ih

i=0 ai1h−1({ai})(~x). If h is computable over A, then
the sets h−1({ai}) ⊆ Up are decidable over A. h is called A-A-simple if it
is computable over A and A-B (R) measurable. Thus, we get the following
for finite integrals in R+.

Theorem 5 For any A in struc(II), any measure κ over a σ-algebra A ⊆
P(Up) (with the universal set Up), and any A-A-simple function h given by
h(~x) =

∑ih
i=0 ai1h−1({ai})(~x) with ai ∈ {c, c2, c3, . . .}, the κ-integral of h over

Up is computable by a BSS RAM using the ~νAκ -operator if the integral is in
R+.

Corollary 1 For any A in struc(I)∩struc(II), the λp-integral of anyB (Rp)-
A-simple function h : Rp → {0, c, c2, c3, . . .} is computable over A

— by a BSS RAM using the ~ν
(p)
Lebes-operator,

— by some BSS RAM with νlim-oracle, and
— by a strong infinite-limit Type-2 BSS RAM

if the integral is in R+.

Theorem 6 For any A in struc(II), any measure κ over a σ-algebra A ⊆
P(Up)(with the universal set Up), and any non-negative A-B (R) measur-
able function f : Up → R+ totally defined and computable by a BSS RAM
over A, the κ-integral of f over Up is computable by an infinite-limit Type-2
BSS RAM using the ~νκ-operator if the integral is in R+.

We want to use that, for any A-B (R) measurable f : Up → R, there
are two non-negative A-B (R) measurable functions f+, f− : Up → R+

7The so-called indicator function 1S is the characteristic function of S.
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Figure 7: The simple functions hn

given by f+(~x) =df max{f(~x), 0} and f−(~x) =df max{−f(~x), 0} such that
we have f = f+ − f− and consequently∫

Up

fdκ =

∫
Up

f+dκ−
∫
Up

f−dκ

if one of the integrals has a value in R. Let struc(III) be the class of structures
in struc(II) with R ⊆ U such that the function s : R2 → R with s(x, y) = x−y
for all x, y ∈ R is computable and the relation ≤ restricted to R2 is decidable.

Theorem 7 For any A in struc(III), any measure κ over a σ-algebra A ⊆
P(Up)(with the universal set Up), and any A-B (R) measurable function
f : Up → R totally defined and computable by a BSS RAM over A, the κ-
integral of f over Up is computable by an BSS RAM using the νlim-operator
applied on functions computable by means of the ~νκ-operator if the κ-integral
of f+ over Up and the κ-integral of f− over Up are in R+.

Theorem 8 For any A in struc(III), any measure κ over a σ-algebra A ⊆
P([0, 1]p) (with the universal set [0, 1]p), and any A-B (R) measurable func-
tion f : [0, 1]p → [0, 1] totally defined and computable by a BSS RAM over
A, the κ-integral of f over [0, 1]p is computable by a strong infinite-limit
BSS RAM using the ~νκ-operator.
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Theorem 9 For any A in struc(I) ∩ struc(II) and any function f : Rp → R+

totally defined and computable by a BSS RAM over A, the λp-integral of f
over Rp is computable by an infinite-limit Type-2 BSS RAM.

Theorem 10 For any A in struc(I)∩ struc(II) and any function f : [0, 1]p →
[0, 1] totally defined and computable by a BSS RAM over A, the λp-integral
of f over [0, 1]p is computable by a strong infinite-limit BSS RAM.

5 Conclusion and Acknowledgment

Since R≤ = (R;R; +,−, · ;≤) ∈ struc(I) ∩ struc(II) holds, the presented
theorems can be applied to the BSS model and, thus, they help to bet-
ter understand the similarities and differences between the relationships of
different oracle BSS RAM’s and special Weihrauch reductions considered
by Arno Pauly for Type-2 Turing machines (cp. [Neumann & Pauly ’16]),
investigations on the computation of integrals by Florian Steinberg (cp.
[Steinberg ’17]), and their consequences.

I would like to thank Volkmar Liebscher for helpful discussions about the
”bad” properties of certain continuous functions. Moreover, I thank Arno
Pauly for critical reading the definitions and his proposal to introduce also
the strong Type-2 BSS RAM’s in this paper.
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