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1 Exposé

1.1 Introduction

Recent advances in nanoengineering and laser optics allow for the fabrication of
a wide range of systems that subject fermionic particles to geometric restrictions.
This may happen, e.g., through the reduction of dimensionality, as in mesoscopic
junctions [1] and quantum wells [2], or through the creation of trapping poten-
tials, as in optical lattices [3]. Such systems provide a highly controllable envi-
ronment for the investigation of many-body interactions. A significant factor is
the coupling of the fermions to internal or external bosonic fields. For instance,
quasi one-dimensional systems are prone to metal-insulator transitions that are in-
duced by the interaction with quantized lattice vibrations, i.e., phonons [4]. Also,
restricted semiconductor geometries permit long lifetimes and high densities of ex-
citons and exciton-polaritons, allowing the investigation of light-matter interaction
and quantum-condensation. In addition, the fine tuning of electrical and optical
characteristics suggests practical applications, such as the construction of novel elec-
tronic and thermoelectric devices using spintronics and molecular transistors, or the
simulation of other many-body systems [3]

This thesis considers two of these systems, specifically the thermoelectric trans-
port through a molecular junction, and the Bose-Einstein condensation and lumines-
cence of several species of trapped semiconductor excitons. While the systems are
discussed in more detail in Secs. 1.2 and 1.3, respectively, their main characteristics
are given in Fig. 1.

A molecular junction consists of a small organic molecule that is contacted by
two metallic leads. Under voltage or temperature bias, molecular junctions show
non-linear transport characteristics, such as hysteresis, switching and negative-
differential conductance. They are, therefore, considered a promising candidate
in the search for further miniaturization and new functionality of electronic de-
vices. When being occupied by charge carriers, the molecule may undergo struc-
tural changes, rotations or vibrations. These processes correspond to the interaction
of passing electrons with local phonon modes of considerable energy. They can be
observed as vibrational signatures in the current-voltage characteristics of the de-
vice [5–8]. The situation resembles the coupling of electronic excitations to lattice
vibrations in an infinite molecular crystal, which has been studied extensively by
means of the Holstein model [9–11]. For strong electron-phonon coupling, this model
predicts the formation of small polarons, i.e., electrons dragging a phonon cloud
through the lattice, thereby greatly reducing their mobility [11–13]. In the case
of molecular junctions, translational symmetry is broken and the electron-phonon
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1 Exposé

Fig. 1: Illustration of the common characteristics of the molecular junction and the

system of trapped semiconductor excitons.

interaction is restricted to a small area and few, well separated levels. [14–18]. Trans-
port through the junction will, therefore, strongly depend on the ratio of electron-
phonon and molecule-lead coupling strengths. The question arises how quasiparticle
renormalization accounts for the vibrational signatures in the current-voltage and
thermopower characteristics of the junction, and whether the formation of a tran-
sient, polaron-like state at the molecule is a possible explanation for the observed
non-linear phenomena [19].

The junction can be described as a quantum dot, i.e., as a quantum system of
finite size and reduced dimensionality, that interacts with macroscopic charge and
heat reservoirs. According to the formula by Meir and Wingreen [20], the charge
current between the reservoirs is determined by the interacting electronic spectral
function of the dot, the calculation of which is the central task of our work. A basic
model for a deformable junction results from adding local Holstein coupling to a
Fano-Anderson-impurity model. Previous approaches, that were based on a Lang-
Firsov shift transformation, found that strong electron-phonon coupling reduces the
effective coupling to the leads, but may also facilitate transport by lowering the tun-
neling barrier and permitting phonon-assisted, quasi-elastic transmission [21–24]. In
the works presented here, we follow an approach previously developed for the Hol-
stein molecular crystal model [9–11]: We account for polaronic effects away from the
strong-coupling antiadiabatic limit by using a variational form of the Lang-Firsov
transformation. In this way, we are able to interpolate between the regime of weak
scattering, quasi-coherent lead-to-lead tunneling and incoherent hopping transport
via a polaron-like dot state.

The second system considered here is a mixture of several species of excitons in
a small semiconductor crystal that are spatially restricted by a stress induced po-
tential trap. As with phonons, excitons are an elementary excitation of a solid body
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1.1 Introduction

system. They consist of a bound pair of excited electrons and holes. For strong
Coulomb interaction the overlap of electron and hole wave functions creates, to first
order, a composite boson. As such, excitons have long been considered ideal candi-
dates for the observation of Bose-Einstein condensation, due to their small mass and
because high densities are achievable via laser excitation [25–29]. Our work is mo-
tivated by recent experiments by Stolz et al. on the Bose-Einstein condensation of
para- and orthoexcitons in cuprous oxide (Cu2O) [30]. At ultracold temperatures,
the excitons are created via laser excitation and confined to the trap to counter
diffusion processes and achieve critical densities.

Small, long living trapped excitons can be described as weakly interacting Bose
gases in external potentials, the thermodynamics of which has been investigated
extensively in the theory of one-component atomic gases [31–34], and has been
applied to excitons [35, 36]. Given the generalisations to multi-component atomic
gases [37–41] and spinor polaritons [42, 43], this thesis describes a generalisation to
a multi-component gas of interacting para- and orthoexcitons. We derive coupled
equations of motion for the condensate wave functions and the field operators of non-
condensed excitons. Applying a mean-field approximation to the inter- and intra-
species coupling, as well as a Bogoliubov-transformation we obtain and numerically
evaluate self-consistent expressions for the spatially dependent exciton densities and
dispersions in the trap.

In the experiment, however, the exciton density distribution is not directly ac-
cessable. Yet, excitons are only quasi-stable and decay via the emission of photons,
which provides the primary method of detection. Then the question is, what are
the footprints of a possible exciton condensate in the decay luminescene signal.
In the articles IV-VI, we consider this problem based on the formula by Shi and
Verechaka [44], according to which the luminescence intensity of the direct paraex-
citon and phonon-assisted orthoexciton decay is given by the respective excitonic
spectral functions. In the article VII, we extend the theory of paraexciton decay by
including anomalous processes in the exciton-photon interaction Hamiltonian. The
resulting luminescence formula is dependent on the photonic correlation function.

For both systems considered in this work, the calculation of the experimentally
relevant signal — the thermoelectric junction current and the excitonic decay lumi-
nescence, respectively — requires us to derive suitable interacting correlation and
spectral functions at finite temperatures. In doing so, we suppose a steady-state
situation: At the quantum dot, the charge current is driven by differing, fixed chem-
ical potentials or temperatures in the leads. Similarly, for the extended exciton
luminescence theory we suppose that the excitons achieve quasi-equilibrium before
recombination, so that they act as a constant reservoir for the creation of photons.
We work with the non-equilibrium Green function technique, that was formulated
differently yet equivalently by Kadanoff and Baym [45], and Keldysh [46]. It is
based on generalized Green functions that are defined on a contour running along
the imaginary time axis (Kadanoff-Baym) or from the time the disturbance was
switched on to the present and back again (Keldysh). Upon the contour, the Dyson
equations or perturbation series are structurally equivalent to the equilibrium the-
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1 Exposé

ory. Neglecting initial correlations, the wanted correlation functions result from
analytical continuation to the real time axis.

1.2 Phonon-assisted transport through Molecular

Junctions

Molecular junctions are electronic devices where the functional element is a single or-
ganic molecule contacted by a number of metallic electrodes or leads. Such systems
may feature single aromatic rings, molecular wires [47], C60 fullerene molecules [8,48]
or suspended carbon nanotubes [49,50]. The position of the molecular levels can be
tuned with the help of a gate electrode [51,52], while their broadening is given by the
dot-lead coupling strength, which depends, e.g., on the lead distance or the metal-
molecule anchoring group [53]. Due to their highly energy-dependent and tunable
transmission, molecular junctions may also constitute small and efficient power gen-
erators or heat pumps. Their theoretical efficiency has been shown to approach the
Carnot value in the weak dot-lead coupling limit. [54] However, since moderate level
broadening is needed for useful power output, the regime of comparable electronic
and phononic time scales becomes interesting.

Quantum dot model We consider the well-known Anderson-Holstein model,
which is sketched in Fig. 2 and is given by the following Hamiltonian (~ = 1):

H = (∆− µ)d†d − gω0d
†d(b† + b) + ω0b

†b

+
∑

k,a

(εka − µ)c†kacka −
1√
N

∑

k,a

(
tkad

†cka + t∗kac
†
kad
)
. (1)

The organic molecule is represented by a single dot level ∆ with the fermionic op-
erators d(†). Its vibrational degrees of freedom are subsumed into the interaction
(∝ gω0) with a single optical phonon mode with operators b(†) and energy ω0. More-
over, the dot level is coupled to the left and right leads (∝ tka with a = L,R), which
are modeled as two continuous sets of free fermion states, with energies εka and
operators c

(†)
ka . In equilibrium, the system is characterized by a common chemical

potential µ. In the nonequilibrium situation, each lead is held at its own thermal
equilibrium with the chemical potentials µa = µ − Ua [55]. The application of the
voltage bias Φ = (UL − UR)/e is described by adding to (1) the term

Hint =
∑

a

Ua
∑

k

c†kacka , (2)

with the electron charge e < 0. For a given lead density of states Γ(0)(ω), the electron
current J through the dot is calculated using the Meir-Wingreen formula [20]

J =
e

2

∫ ∞

−∞

dω

2π
Γ(0)(ω + µ)Ã(ω;U) [fL(ω + UL)− fR(ω + UR)] . (3)
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1.2 Phonon-assisted transport through Molecular Junctions

Fig. 2: Sketch of the quantum dot

model. A single electronic level ∆

is coupled to two macroscopic leads,

each in its own thermal equilibrium

with the chemical potentials µL,R.

The dot electrons interact with an

optical phonon mode of energy ω0.

In the above expression, Ã is the electronic dot spectral function, which contains all
the effects of the electron-phonon (EP) and dot-lead (DL) interactions at the dot.
Its calculation is the central task of the work presented in the following sections.

Variational ansatz If we set the DL coupling tka = 0 in Eq. (1), the Hamiltonian
represents an isolated vibrating dot and can be diagonalized via a canonical Lang-
Firsov shift transformation [12]. In the corresponding ground state, an electron at
the dot is accompanied by a finite number of phonons, in analogy to polarons. In
contrast, for vanishing EP coupling g = 0 the Hamiltonian in Eq. (1) reduces to that
of a rigid tunneling impurity, and is readily solved in the Green functions formal-
ism [56]. To account for the competition between polaron localization and coherent
tunneling in the full model, we apply to Eq. (1) two variational shift transforma-
tions [19, 57–59], introducing the parameter γ ∈ [0, 1]:

S1(γ) = exp{γg(b† − b)d†d} , S2(γ) = exp{(1− γ)g(b† − b)nd} . (4)

The transformation S2(γ) models the adiabatic regime, where the equilibrium posi-
tion of the oscillator is shifted according to the mean occupation nd = 〈d†d〉 of the
dot level. The transformation S1(γ) describes the antiadiabatic regime, in which
the dot deformation adjusts quickly to the presence of an electron. For γ → 1, it
coincides with the Lang-Firsov transformation. Thus, the parameter γ can be un-
derstood as a measure of the polaronic character of the dot state. The transformed
Hamiltonian H̃ = S1S2HS2S1 reads

H̃ = (∆̃− µ) d†d − Cd(d†d− nd) + ω0b
†b+ εp(1− γ)2n2

d

+
∑

k,a

(εka − µ)c†kacka −
∑

k,a

(
Ckad

†cka + C†kac
†
kad
)
, (5)

with so-called polaron binding energy εp = g2ω0 (which will be used as a measure of
the EP coupling strength) and the renormalized dot level and interaction parameters

∆̃ = ∆− εpγ(2− γ)− 2εp(1− γ)2nd , (6)

Cka =
tka√
N

e−γg(b
†−b) , Cd = gω0(1− γ)(b† + b) . (7)

For finite γ, the transformations reduce the effective EP coupling in Cd at the cost
of an exponential suppression of the effective DL coupling in Cka. Note that the
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1 Exposé

transformed Hamiltonian is written in the polaronic picture, i.e., the operators d
and b in Eq. (5) now represent dressed electrons and the excitations of a shifted

oscillator. The original electron and phonon operators read d̃ = e γg(b
†−b)d and

b̃ = b+ γgd†d+ (1− γ)gnd.

Polaronic spectral function To find the electronic spectral function Ã needed
for the current formula (3), we first factorize the electronic Green function G̃dd into
polaronic and phononic parts [22–24]:

G̃dd(t1, t2;U, t0) ≈ Gdd(t1, t2;U, t0)〈Tτeγg(b
†(t1)−b(t1))e−γg(b(t2)†−b(t2))〉 . (8)

The phononic average in Eq. (8) is evaluated assuming an independent Einstein-

oscillator. The resulting relations between the electronic (Ã) and polaronic (A)
spectral functions is given in Eqs. (89) of article I. The polaronic Green function in
Eq. (8) is defined as

Gdd(t1, t2;U, t0) = − i

〈S〉〈Ttd(t1)d†(t2)S〉 , (9)

and is a function of complex times t ∈ [t0, t0 − iβ], whereby t0 is the switch on time
of the disturbance Hint and β = 1/kBT . The average 〈. . . 〉 and the time dependence

of the operators d(†) are determined by H̃ while the external disturbance Hint is
separated in the time-ordered exponential operator

S = Tt exp

{
−i

∫ t0−iβ

t0

dt Hint(t)

}
. (10)

As is shown in detail in Secs. B and C of article I, we write the function Gdd as a
functional of a polaronic self-energy Σdd and use it to derive the equations of motion
of the real-time response funcitons g≷dd. After a Fourier transformation, the formal
solution of the steady-state equations can be written as g<dd(ω;U) = A(ω;U)f̄(ω;U)
and g>dd(ω;U) = A(ω;U)(1− f̄(ω;U)), with the polaronic dot spectral function

A(ω;U) =
Γ(ω;U)

[
ω − ∆̃ + µ− P

∫
dω′
2π

Γ(ω′;U)
ω−ω′

]2

+
[

Γ(ω;U)
2

]2 , (11)

the dot occupation f̄(ω;U) = Σ<
dd(ω;U)/Γ(ω;U), and the damping function Γ(ω;U) =

Σ>
dd(ω;U) + Σ<

dd(ω;U).
In Sec. D of article I, we derive an approximation to Σ≷

dd by adding to Hint the
interaction with fictitious external fields {V }, expressing the equation of motion
of Gdd in terms of functional derivatives δΣdd/δV and solving it iteratively up to
second order in Cka and Cd. Letting {V } → 0, the Fourier transform of the polaronic
self-energy reads

Σ<
dd(ω;U) = Σ

(1)<
dd (ω;U)

+ [(1− γ)gω0]2
[
A(ω − ω0;U)nB(ω0)f̄(ω − ω0;U)

+ A(ω + ω0;U)(nB(ω0) + 1)f̄(ω + ω0;U)
]
, (12)
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1.2 Phonon-assisted transport through Molecular Junctions

Fig. 3: Illustration of the dot-lead

and electron-phonon coupling strength

regimes given by the relative magni-

tudes of the tunneling rate Γ0 and the

polaron binding energy εp. The self-

consistent Born-approximation (SCBA)

and the small polaron approach (SP)

are applicable in the adiabatic, weak

coupling regime and the (extended)

antiadiabatic, strong coupling regime,

respectively. The variational calcu-

lation allows the investigation of the

crossover regime with comparable cou-

pling strengths.

with the result after the first iteration step,

Σ
(1)<
dd (ω;U) = e−γ

2g2 coth θ
∑

a

{
I0(κ)Γ(0)

a (ω + µ)fa(ω + Ua) +
∑

s≥1

Is(κ)2 sinh(sθ)

×
[
Γ(0)
a (ω + µ− sω0)nB(sω0)fa(ω + Ua − sω0)

+ Γ(0)
a (ω + µ+ sω0)(nB(sω0) + 1)fa(ω + Ua + sω0)

]}
, (13)

and θ = βω0/2 and κ = γ2g2/ sinh θ. The function Σ>
dd follows from Eq. (12) by

interchangig nB ↔ (1 + nB), fa ↔ (1− fa), and f̄ ↔ (1− f̄).
The self-consistent set of Eqs. (6), (11) and (12) is the central result of our theory

and the basis for the numerical calculation of the nonequilibrium dot spectrum
and the junction current. The functions Σ≷

dd describe the damping of the dot state
resulting from the in- and out-scattering of polaron-like quasiparticles. They account
for inelastic (quasielastic) dot-lead transport involving the emission and absorption
of an unequal (equal) number of phonons. The corresponding dot spectral function
includes terms of arbitrarily high order in g, through the explicit summation over s
in Eq. (13) and the iteration of the self-consistent equations (11) and (12).

Our result is dependent on the variational parameter γ, which allows for the in-
vestigation of the vibrating quantum dot system in a wide range of EP and DL
coupling strengths. This is depicted in Fig. 3, whereby we suppose identical leads
with Γ

(0)
a (ω) = const = Γ0. For γ → 0, our result corresponds to the selfcon-

sistent Born-approximation (SCBA), which starts from the rigid dot and expands
the electronic self-energy to second order in gω0 [56]. This approximation is ap-
plicable to the adiabatic regime Γ0 � ω0 with small EP coupling. For γ → 1,
our approximation is comparable to approaches based on the complete Lang-Firsov
transformation [21–24], which are applicable to the strong coupling, antiadiabatic
regime Γ0 � ω0. Eidelstein et al. [60] argued that this regime can be extended to
Γ0 . ω0 if the exponential renormaliation of the effective DL coupling is so strong
that Γ0 e−g

2 � ω0. Only when Γ0 e−g
2

approaches ω0 the system crosses over to the

7



1 Exposé

adiabatic regime, whereby γ provides a measure of the polaronic character of the
dot state.

We determine the optimal parameter, γmin, by minimizing the thermodynamical
potential, which can be derived for ∆T = 0 using the famous “λ-trick” [61], and
reads

Ω =− 1

β
ln(1 + e−β(∆̃−µ)) + εp(1− γ)2n2

d

−
∫

dω

π
f̄ (1)(ω)

{
∆̃− µ− ω
|∆̃− µ− ω|

+ arctan

(
ω − ∆̃ + µ− P

∫
dω′
2π

Γ(1)(ω′)
ω−ω′

Γ(1)(ω)/2

)}
,

(14)

with Γ(1) = Σ
(1)>
dd + Σ

(1)<
dd and f̄ (1) = Σ

(1)<
dd /Γ(1).

In the following, we give an overview over our numerical results for the dot spec-
trum and the linear and nonlinear conductance in different DL and EP coupling
regimes. We compare our variational calculation to the appropriate limits, i.e., to
the SCBA with γ = 0 and the small polaron picture with γ = 1. Thereby we use
ω0 = 1 as the energy unit and set µ = 0. If not otherwise noted, we keep T = 0.01.

Results I: Electronic spectral function Fig. 4(a) presents our results for the
adiabatic regime with Γ0 = 10. The γ = 0 spectrum is a single Lorentzian with a
width of Γ0, signaling the hybridization of the dot level with the lead states. Even
for strong EP coupling εp = 5, only small dips and peaks at ω = ±ω0 suggest a
phononic influence [62]. The variational calculation yields γmin = 0.28. Now the
spectrum shows several prominent phononic features at integer multiples of ω0 due
to logarithmic singularities in the denominator of Eq. (11). Here, incoming high
energy particles scatter to lower states via the emission of phonons. Most notably,
Ã(0) is diminished, meaning transport through the dot remains coherent, but with
a lower tunneling amplitude than predicted by the SCBA calculation.

In Fig. 4(b) we consider the antiadiabatic system with Γ0 = 0.1 and moderate
EP coupling εp = 1. The half width of the central Lorentzian peak is now given by

Γ̃0 ≈ Γ0 e−γ
2g2 . Around the central resonance peak at ω = ∆̃ = 0, the dot density

of states is exponentially suppressed, which is the hallmark of the so-called Franck-
Condon blockade [63]. We find several pronounced side bands separated from the
main peak by integers of ω0. They are weighted according to a Poisson distribution
with the mean γ2g2, suggesting that incoherent hopping transport takes place via
an intermediate polaronic dot state. The variational calculation yields γmin = 0.81,
which, compared to the small polaron case γ = 1, shifts spectral weight from the
sidebands back to the main peak.

Lastly, Fig. 4(c) exhibits the dot spectrum in the regime of comparable electronic
and phononic time scales with Γ0 = 1 and intermediate EP coupling εp = 2. We
find γmin ≈ 0.5 and a dot state that shows characteristics of both limiting cases:
A central zero-phonon peak and few phonon sidebands with a width of the order
of their spacing, clearly separated by the logarithmic suppression effect. Due to
Pauli-blocking, for low temperatures the sidebands are always offset by ω0 from the

8



1.2 Phonon-assisted transport through Molecular Junctions
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Fig. 4: Electronic equilibrium spectral function. Panel (a): Adiabatic regime with

Γ0 = 10, εp = 5, ∆ = 0. The variational result with γmin = 0.28 is compared to the

SCBA with γ = 0. Arrows mark the phononic features. Panel (b): Antiadiabatic

regime with Γ0 = 0.1, εp = 1, ∆ = 1, and γmin = 0.81, compared to the small polaron

picture with γ = 1. Panel (c): Crossover regime with Γ0 = 1, εp = 2, ∆ = 2, and

γmin = 0.53. Adapted from article I.

Fermi level, irrespective of ∆. This “floating” [16] of the side bands is missed by
single particle approaches [22,23].

Results II: Charging transition and linear response Fig. 5(a) shows how
in the intermediate regime with Γ0 = 1 the dot charges as the bare dot level ∆
is lowered. For growing EP coupling the transition shifts, becomes steeper and
even discontinuous. Here the system switches between two stable solutions nd, the
effective dot level ∆̃ skips the Fermi energy, and there is no particle-hole symmetric
situation. The parameter γmin slightly grows with εp, but is roughly constant as a
function of ∆.

For vanishing voltage bias Φ → 0, we express the current as J = −LΦ, with the
linear conductance

L = lim
Φ→0
{−J/Φ} =

e2Γ0

2

∫ ∞

−∞

dω

2π
[−f ′(ω)] Ã(ω) . (15)

As Fig. 5(b) documents, the linear conductance of the vibrating dot has a maximum

at ∆ = εp, when ∆̃ crosses the Fermi energy and resonant tunneling is possible. The
signals width decreases with growing εp, due to the Franck-Condon blockade. This
result coincides with the findings of Entin-Wohlmann et al. [62] and contradicts
the broadening of the resonance shown in the work of Mitra et al. [16]. In the
discontinuous case the resonance is skipped altogether and the signals maximum
decreases. Yet even for strong EP coupling, due to the floating of the phonon side
bands we find no signatures that would directly indicate the vibrational structure
of the dot state.

If we increase the global temperature to T ≈ ω0 (cf. Fig. 5(c)), the conductance
resonance spreads, since for thermally excited lead electrons the injection gap is
reduced. Now, free dot phonons may be absorbed by incident electrons. Our ansatz
accounts for this with γmin approaching one near the resonance. In contrast to the
low temperature result, we now find three peaks in the condunctance signal: The
floating condition is relaxed and phonon side bands contribute. More importantly,
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Fig. 5: Panels (a) and (b): Equilibrium dot occupation and linear conductance as

functions of the bare dot level for Γ0 = 1, T = 0.01 and several εp. Panel (c): Linear

conductance as a function of the bare dot level for Γ0 = 0.3, εp = 4, and T = 0.3

compared to the low temperature case. Inset: renormalized DL coupling strength.

Adapted from article I.

when the polaron forms, the effective DL coupling reduces by one order of magnitude
(see inset), causing dips in the conductance. That is why the side peaks in L are
not situated a full ω0 away from the main resonance.

Results III: Differential conductance When we increase the voltage bias Φ
between the leads, the nonequilibrium spectral functions of different adiabaticity
and coupling regimes retain the essential features of their equilibrium counterparts
in Fig. 4 (cf. Figs. 4, 5, and 6 in article I) We now examine the influence of these
features on the differential conductance dJ/dΦ of the quantum dot system.

Figure 6(a) presents our results for the adiabatic, off-resonant tunneling regime
(Γ0 = 10, ∆ = 8, εp = 2). Compared to the rigid dot, the γ = 0 calculation predicts
an increase in the low voltage conductance due to the lowering of the effective
dot level. For finite γmin (see inset) this positive contribution is countered by the
reduction of the effective DL coupling. This effect strengthens as the voltage grows
and causes a pronounced dip in the differential conductance. At Φ = ω0 = 1,
phonon emission by incident electrons becomes possible and opens up a new, inelastic
transport channel. This is typically signalled by a step in the conductance signal.
For γ = 0, we find a single small downward step, while for finite γmin, there are
several large upward steps, which are followed by the DL renormalization dip.

In the antiadiabatic, resonant tunneling regime (Γ0 = 0.1, ∆ = εp = 2), the
conductance signal presented in Figs. 6(b) show pronounced peaks whenever the
voltage equals multiple integers of 2ω0. They indicate resonant transport through
the polaronic side bands in Ã, i.e., via a transient polaronic dot state. Between
these peaks, due to the Franck-Condon blockade, the differential conductance ap-
proaches zero. For γ = 1 it stays strictly positive. In the variational calculation,
where the polaronic renormalization grows stronger with increasing voltage bias, the
differential conductance becomes negative. At Φ = 1 and Φ = 3, positive inelastic
conductance steps (as we have seen in the adiabatic case) render the differential
conductance positive again.

Fig. 6(c) shows the conductance signal in the resonant, intermediate coupling
regime (Γ0 = 1, ∆ = εp = 2). As the voltage grows, the polaron effect strength-
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Fig. 6: Differential conductance as a function of the voltage bias. Panel (a): Adia-

batic, off-resonant regime with Γ0 = 10, ∆ = 8, and εp = 2. The variational result

(γmin given in inset) is compared to the SCBA with γ = 0 and the rigid dot with

εp = 0. Panel (b): Antiadiabatic regime with Γ0 = 0.1, ∆ = 2, and εp = 2. Inset:

Zoom on the low-voltage region and comparison with the small polaron picture with

γ = 1. Panel (c): Crossover regime with Γ0 = 1, ∆ = 2, and εp = 2. Inset: Zoom on

the low-voltage region. Adapted from articles I and II.

ens whenever a new inelastic channel is accessible, as is shown by means of the
renormalized DL coupling Γ̃0 = Γ0 e−γ

2g2 in the inset. The vibrational features in
the conductance signal overlap, have comparable spectral weight and are heavily
modulated by the voltage dependent polaronic renormalization. There is no clear
distinction between quasielastic peaks and inelastic steps. Moreover, the differential
conductance approaches zero between the broad conductance peaks, but remains
strictly positive. In their work, La Magna and Deretzis [19] suggested the variation-
ally determined renormalization of the dot-lead coupling as a possible mechanism
for the observed nonlinear behavior of the differential conductance. We conclude
that for the antiadiabatic regime, this remains true within our approximation. In
the intermediate regime however, the occurence of negative differential conductance
is suppressed when multi-phonon transport processes are taken into account.

Results IV: Sticking effect In the previous section, the conductance features of
the system have mainly been explained through the voltage dependent renormaliza-
tion of the DL coupling. In Fig. 7 we present another interesting consequence of the
variational polaron formation, concerning the effective dot level. For weak to inter-
mediate EP coupling εp = 0.11 . . . 0.33, our result for γ = 0 is in good agreement
with the work of Entin-Wohlman et al. [62]. However, for εp = 0.33 the variational
calculation shows an additional peak-like feature atop the broad conductance res-
onance. This can be understood from Fig. 7(b): With growing voltage bias the

variational parameter increases, so that the level ∆̃ shifts upwards until at Φ = 0.62
it equals the chemical potential of the right lead. For 0.65 < Φ < 0.8, the variational
parameter decreases in such a way that ∆̃ stays in resonance with the sinking lead
chemical potential, simultaneously relaxing the renormalization of the DL coupling.
Thereby, the system maximizes the tunneling current, forming the new conductance
peak. For strong EP coupling, this “sticking” of the polaronic dot level to the lead
chemical potentials may occur in conjunction with negative differential conductance,
as Fig. 6 of article II shows.
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Fig. 7: Panel (a): Differential conductance as a function of the voltage for Γ0 = 0.33,

∆ = 0 and different εp. The variational calculation is compared to the SCBA with

γ = 0. Panel (b): Optimal variational parameter γmin and renormalized dot-level ∆̃

as functions of the voltage for εp = 0.33. Adapted from article II.

Thermoelectric transport In article III we extend the theory presented above to
incorporate a finite temperature bias between the leads. In addition to the chemical
potentials µa, the leads are now characterized by the temperatures Ta. The dot
oscillator is supposed to be strongly coupled to a heat bath of temperature TP .

In this situation the effective electron temperature at the dot is not generally
known. In Sec. B of article III we argue in detail how the Kadanoff-Baym formalism
can, nevertheless, be applied to this situation. In short, we note that the formalism
does not refer to some special properties of the statistical ensemble. We therefore
generalize the definitions (9) and (10) to time variables in the interval [t0, t0 − iσ],
replacing the usual β = 1/kBT with a time ordering parameter σ that has no physical
meaning. We neglect initial correlations and assume that before the disturbance
Hint was turned on, the system was in a steady state with the temperatures Ta
and TP . The function Gdd defined in this way serves purely as a functional of the
time ordered operators determining g≷dd. As a result, the solution of the steady-state
equations is formally equivalent to the result in Eq. (11). We concentrate on the
effect of the DL coupling renormalization and use the self-energy function after the
first iteration step, i.e., Eq. (13). The different temperatures enter the self-ernergy
through the Bose function nB of the phonon bath and the Fermi functions fa of
the leads. Lastly, we suppose the parameter γmin to be mainly determined by the
EP and DL interaction and assume the equilibrium thermodynamic potential of the
system to be a reasonable approximation for the variational function.

Results V: Thermocurrent and thermovoltage In the following, we consider
the particle current through the junction resulting from a finite temperature differ-
ence ∆T between the leads. Thereby we suppose TL = T + ∆T and TP = TR = T
with T = 0.01. Figures 8 and 9 present our results in the regime of intermediate DL
and EP coupling. For small ∆T , it is instructive to consider the thermoelectrical
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Fig. 8: Panel (a): Equilibrium electronic spectral function near resonance with Γ0 = 1,

∆ = 2, and εp = 2. The variational calculation (black line) is compared to the small

polaron limit γ = 1 (red dashed line) and to the result for εp = 0 (blue dot-dashed

line). In the latter two cases ∆ is set in such a way that ∆̃ is the same as in the

variational calculation. Panel (b): Same as (a), but for Γ0 = 0.5, ∆ = 2.5, εp = 2.

Panels (c) and (d): Junction current as a function of the temperature bias for the

same parameters as in (a) and (b), respectivly. Adapted from article III.

conductance defined as

X = lim
∆T→0

{TJ/∆T} =
eΓ0

2
β

∫ ∞

−∞

dω

2π
ω f ′(ω) Ã(ω) . (16)

It implies that the net linear thermoelectric current is determined by the flow and
counterflow of hot and cold charge carriers near the Fermi level. In the particle-hole
symmetric case with ∆̃ = 0 these flows cancel exactly. Near resonance (0 < |∆̃| <
Γ̃0), finite EP interaction increases the slope of Ã around the Fermi level, as can be
seen in Fig. 8(a). Now the quantum dot acts as a more effective energy filter and the
linear thermoelectric response increases compared to the noninteracting case, as can
be seen in Fig. 8(c). In contrast, in the tunneling regime (|∆̃| > Γ̃0) the value and

slope of Ã at the Fermi surface is strongly diminished due to the Franck-Condon
blockade. Hence, the linear thermocurrent decreases compared to the rigid dot, as is
verified in Figs. 8(b) and (d). We find however, that the maximum current through
the vibrating molecule is always smaller than for the rigid dot, since considerable
spectral weight is shifted to the floating phonon side bands. Even for large ∆T ,
their contribution is exponentially small.

In a typical experiment, the strength of the thermoelectric effect is measured
via the thermovoltage Φ0, i.e., the voltage bias necessary to cancel the thermally
induced current. In the off-resonant situation considered in Fig.8(b), the Franck-
Condon blockade reduces the electrical conductance. Consequently, the voltage
bias Φ0 required to compensate the thermally induced current grows compared to
the rigid dot, as Figures 9(a) shows. For large temperature differences, we find a
maximum value Φ0 = 1.5. Here one of the lead chemical potentials crosses the zero-
phonon peak at ω = Φ0/2 in the spectrum (cf. Fig. 8(b)). The systems conductance
grows considerably and any thermally induced current can easily be compensated
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Fig. 9: Panel (a): Thermovoltage as a function of the temperature bias for Γ0 = 0.5,

εp = 2, and ∆ = 2.5. Panel (b): Thermovoltage as a function of the bare dot level for

Γ0 = 0.5, εp = 2, and ∆T = 0.25. Adapted from article III.

by a slight growth in Φ. That is why for fixed ∆̃, we find no phononic features in
Φ0(∆T ).

Lastly, in Fig. 9(b) we fix the temperature bias ∆T = 0.25 and vary the dot
level. The thermovoltage signal runs linearly through zero, resembling the tooth-
like thermopower predicted in Ref. [64] and measured in Ref. [51]. For temperature
differences of the order of the phonon energy, the floating condition of the phonon
side bands is relaxed. When the side bands cross the Fermi surface, we find slight
drops in the thermovoltage, that hint at the polaron-like character of the dot state.

Summary and outlook In the work presented here, we have investigated the
steady-state thermoelectric transport through a contacted organic molecule. Based
on the Anderson-Holstein model for a vibrating quantum dot, we calculated the sys-
tems interacting spectral function and self-energy within the nonequilibrium Green
function formalism. To account for the polaronic character of the dot state we
applied a variational Lang-Firsov transformation and determined the optimal varia-
tional parameter self-consistently by minimizing the thermodynamic potential. This
allowed a detailed study of the dot spectrum for small-to-large DL coupling and
weak-to-strong EP interaction and an investigation of the polaronic signatures in
the transport properties of the system.

In the adiabatic regime, our variational calculation shifts spectral weight from
elastic to inelastic transport processes. Though transport remains overall coherent,
inelastic scattering causes pronounced upward steps in the differential conductance.
In the extended antiadiabatic regime, prominent conductance peaks signal inco-
herent transport trough a transient polaronic dot state. Between these peaks, the
growing polaron effect causes negative differential conductance. In the intermediate
regmie, our results confirm that the ∆-dependent linear conductance signal narrows
with growing EP interaction due to the Franck Condon blockade effect. Only for
temperatures comparable to the phonon energy, secondary resonances arise, since
now the polaron effect grows stronger when the dot level approaches resonance.
When the renormalized DL coupling becomes larger than the phonon energy, the
occurrence of negative differential conductance is prevented by the onset of inelastic
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1.2 Phonon-assisted transport through Molecular Junctions

transport. The step- and peak-like signatures of inelastic and quasi-elastic transport
have comparable weight. In the off-resonant situation, the polaronic level sticks to
the shifting lead chemical potentials, thereby creating a new, peak-like conductance
feature.

The influence of polaron formation on the thermoelectric effect is strongly de-
pendent on the relative position of the dot level to the lead Fermi-surfaces. Near
resonance, the Franck-Condon blockade increases the imbalance between the streams
of hot and cold carriers, thereby boosting the induced current. As a function of ∆T ,
the thermo-voltage shows no polaronic features, since the thermocurrent is small
and is easily compensated by zero-phonon transport. As a function of the dot level,
however, weak polaronic sidebands arise when ∆T is of the order of ω0 and the
floating condition is relaxed.

A possible extension of our work concerns the inclusion of Coulomb interaction
effects: For a combined Holstein-Hubbard quantum dot model strong EP coupling
may result in a net attractive Coulomb interaction. [65] Andergassen et al. [66]
argued that for the negative–U Anderson model the charge Kondo effect enhances
the thermoelectric response due to a highly asymmetric dot spectral function. Our
variational ansatz might account for the competition of a repulsive dot potential with
the negative polaronic level shift and, therefore, interpolate between the positive–U
Holstein-Hubbard dot model and an effective anisotropic Kondo regime.

Moreover, we have not yet considered energy transport through the junction. En-
ergy deposition, i.e., heating or cooling of the molecule should strongly depend on
the renormalized electron-phonon interaction given by the variational parameter.
Preferably, such a calculation would also account for the dynamics of the phonon
subsystem by means of nonequilibrium phonon Green functions. The resulting ef-
fective temperature of the dot electrons could to be determined numerically [67]. In
this way, the nonlinear behaviour of the variational parameter, which was responsi-
ble for the negative differential conductance, could be carried over to the discussion
of thermoelectric transport.

While the local Holstein coupling captures the molecules vibrations, the defor-
mation of the dot-lead anchoring groups could be modeled by introducing phonon-
affected dot-lead hopping, in analogy to the Edwards fermion-boson model [68–71].
The latter describes a particle distorting an ordered background medium. Unre-
stricted electron hopping is amended by a term that creates (destroys) a boson at
the site the particle leaves (enters). Then particle mobility is governed by the relax-
ation rate of the resulting string of background fluctuations. It would be interesting
to investigate this “string effect” when it is restricted to few sites at the quantum
dot.

Lastly, in the light of recent advances in the fabrication of nanostructures, new
geometries should be considered, like multi-terminal junctions or a molecule placed
on an Aharonov-Bohm ring.
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1 Exposé

1.3 Luminescence of trapped semiconductor

excitons

The theoretical work presented here was motivated by recent experiments on natu-
ral cuprous oxide crystals performed by Stolz et al. , which are sketched in Fig. 10
and described in detail in article VI. Excitons of the so-called yellow series in
cuprous oxide (Cu2O) have a large binding energy of 150 meV and a Mott den-
sity of 3 · 1018 cm−3 at cryogenic temperatures [72, 73]. Due to the doubly degen-
erate valence and conduction bands, the ground state of this series splits into the
triply degenerate orthoexciton and the nondegenerate paraexciton. The orthoex-
citon is only weakly optically allowed while the paraexciton is optically forbidden
in all orders. Their lifetime is of the order of microseconds, so that thermody-
namic quasi-equilibrium may be reached. In the experiment, excitons are created
via laser excitation. To increase particle density, stress is applied to the crystal,
which deforms the band structure and creates an effective trapping potential for
the paraexcitons and two of the orthoexciton species. The trapped excitons decay
by emitting light which is imaged on a spectrograph. Luminescense, therefore, is
the principal method of detection. It contains information about the exciton energy
spectrum, their spatial density distribution and, possibly, on whether an exciton
condensate has formed.

Model: Multispecies trapped boson gas Our calculation of the thermody-
namics of a K-component exciton system is based on the Hamiltonian typically
used for a gas of weakly interacting structurless bosons. It is modified by introduc-
ing the sum over a species index i. In the grand canonical ensemble it reads:

H =
K∑

i=1

∫
d3r ψ†i (r, t)

(
−~2∇2

2Mi

+ Vi(r)− µi
)
ψi(r, t)

+
1

2

K∑

i,j=1

∫
d3r hijψ

†
i (r, t)ψ

†
j(r, t)ψj(r, t)ψi(r, t) . (17)

Here, ψi(r, t) is the bosonic field operator of exciton species i, with the respec-
tive trap potential Vi and the chemical potential µi. We assume a contact poten-
tial for the exciton–exciton interaction, with the intra- and inter-species interac-
tion strengths hij = 2π~2(M−1

i +M−1
j )asij given by the respective s-wave scattering

lengths asij.

The field operators ψi(r, t) are decomposed using the Bogoliubov prescription

ψi(r, t) = Φi(r) + ψ̃i(r, t), with the condensate wave functions Φi(r) = 〈ψi(r, t)〉 =

〈ψi(r)〉 and the operators of the noncondensed excitons ψ̃i(r, t). Then the Heisenberg
equations of motion i~∂tψi = [ψi,H] give 2K coupled equations (arguments dropped
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1.3 Luminescence of trapped semiconductor excitons

Fig. 10: Experimental setup. A small cuprous oxide crystal is cooled to ultralow

temperatures in a cryostat. Along the z-axis, pressure is applied via a glass lens.

Excitons are created by focusing a dye laser (propagating along the x-axis) close to

the induced strain trap. The excitons diffuse towards the trap center, reaching thermal

quasi-equilibrium. Their decay luminescence signal is monitored via a CCD-detector

and spatially resolved along the y- and z-direction. Adapted from article VI.

for brevity), the so-called Gross-Pitaevskii equations for the condensates,

0 =

(
− ~2∇2

2Mi

+ Vi − µi + hii (nii + ñii) +
∑

j 6=i

hijnjj

)
Φi

+hiim̃iiΦ
∗
i +

∑

j 6=i

hij

(
ñjiΦj + m̃jiΦ

∗
j

)
, (18)

and the equations of motion for the noncondensed excitons,

i~
∂ψ̃i
∂t

=

(
− ~2∇2

2Mi

+ Vi − µi + 2hiinii +
∑

j 6=i

hijnjj

)
ψ̃i

+hiimiiψ̃
†
i +

∑

j 6=i

hij

(
nijψ̃j +mijψ̃

†
j

)
, (19)

with the averages nij ≡ Φ∗jΦi+ñij, mij ≡ ΦjΦi+m̃ij, ñij = 〈ψ̃†i ψ̃j〉, and m̃ij = 〈ψ̃iψ̃j〉.
As a first approximation, we neglect the nondiagonal averages with j 6= i in Eqs. (18)
and (19). Also, we suppose the extension of the potential trap to be large compared
to the thermal de Broglie wavelength of the excitons. Then we can apply the local
density approximation, i.e., we treat the exciton gas as locally homogeneous, setting
∇2 → −|k|2 with a wavevector k in Eq. (19). For the same reason we neglect the
kinetic energy term in (18). Then the spatial dependence enters our equations solely
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through the external potentials Vi. With these simplifications, Eq. (19) is solved by
a linear Bogoliubov transformation,

ψ̃i =
∑

k

[
ui(k)bi(k)e−iEi(k)t/~ + v∗i (k)b†i (k)eiEi(k)t/~

]
, (20)

with the creation and annihilation operators b
(†)
i of new quasiparticles, so-called

bogolons. The densities nTi ≡ ñii of noncondesed excitons are given by

nTi (r) =

∫
d3k

8π3

[
Li(k, r)

Ei(k, r)

(
nB(Ei(k, r)) +

1

2

)
− 1

2

]
Θ
(
Ei(k, r)2

)
(21)

with nB(E) = [exp(E/kBT )− 1]−1. To guarantee gapless excitation spectra Ei, we
apply the Popov approximation, neglecting the anomalous averages m̃ii [44]. Then
the bogolon dispersion reads

Ei(k, r) =
√
Li(k, r)2 − (hiinci(r))2 , (22)

Li(k, r) =
~2k2

2Mi

+ Vi(r)− µi + 2hiini(r) +
∑

j 6=i

hijnj(r) , (23)

with nci ≡ |Φi|2 and ni ≡ nii = nTi + nci . From the simplified Gross-Pitaevskii
equation, the condensate densities follow as

nci(r) =
1

hii

(
µi − Vi(r)− 2hiin

T
i (r)−

∑

j 6=i

hijnj(r)
)
, (24)

whenever this expression is nonnegative, while nci(r) = 0 otherwise. Equations (21)-
(24) have to be solved self-consistently.

Luminescence spectrum In the articles IV and V, we suppose that the lumines-
cence intensity spectrum is determined by the excitonic spectral function according
to the formula by Shi-Verechaka [44,74]:

Ii(r, ω) ∝ 2π|Si(0)|2δ(~ω′ − µi)nci(r)

+
∑

k 6=0

|Si(k)|2nB(~ω′ − µi)Ai(r,k, ~ω′ − µi) . (25)

The first term in Eq. (25) contains the condensate peak, the second term accounts
for the luminescene of non-condensed particles. The latter is given by the exciton
spectral function, which follows from the Bogoliubov amplitudes ui and vi and the
quasiparticle spectrum in (22):

Ai(r,k, ω) = 2π~

[
u2
i (k, r)δ(~ω − Ei(k, r))− v2

i (k, r)δ(~ω + Ei(k, r))

]
. (26)

In Cu2O, orthoexciton decay takes place via phonon emission, so that ω′ = ω −
Eg/~ − ωphonon with Eg being the excitonic band gap. The paraexcitons decay
directly, so we set ω′ = ω − Eg/~ and S(k) = S0δ(k − k0) with k0 being the
wavevector at the intersection of photon and exciton dispersions. Consequently, in
our approximation, the paraexciton condensate with k = 0 does not contribute to
the luminescence process.
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130 160 190 220

−0.4

−0.2

0.0

0.2

0.4

z [µm]

ε
−

µ
p
 [
m

e
V

]

 

 

130 160 190 220

−0.2

0.0

0.2

0.4

0.6

0.8

z [µm]

ε
−

µ
−

 [
m

e
V

]

130 160 190 220
0

1.0

2.0

3.0

4.0

5.0

z [µm]

n
 [
1
0

4
 µ

m
−

3
]

 

 

130 160 190 220
0

0.2

0.4

0.6

0.8

1.0

z [µm]

n
 [
1
0

4
 µ

m
−

3
]

 

 

V(z,0)−µ

E(0,z,0)
E

id
(0,z,0)

n
p

T

n
id

T

n
−

T

n
id

T

z [µm]

ε
−

µ
−

 [
m

e
V

]

130 160 190 220
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z [µm]

ε
−

µ
p
 [
m

e
V

]

130 160 190 220
−0.2

0.0

0.2

0.4

0.6

Fig. 11: Left side: Dispersions and density profiles in z-direction at (x, y) = (0, 0)

for paraexcitons (left column) and orthoexcitons (right column) with T = 2.2K, Np =

5 × 109, and N− = N+ = 5 × 108. Right side: Corresponding luminescence spectra.

Adapted from article IV.

Results I: Multispecies luminescence Figures 11-13 present our results for
the equilibrium particle densities and emission spectra of trapped Cu2O paraexci-
tons (labeled ‘p’), and orthoexcitons (‘+’ and ‘−’). To account for the experimen-
tal situation, we convolute the emission spectrum in Eq. (25) with a slit function
exp[−(ω/∆)4], with spectral resolution ∆. Moreover, we consider the luminescence
spectrum in z-direction, by integrating over the x- and y-directions. The respective
(cylindrically symmetrical) trapping potentials Vi were fitted to experimental data.
To illustrate our results, we assign each species one of two possible particle num-
bers, Ni = 5 · 109 and Ni = 5 · 108, and vary the temperature around the respective
single species critical values T 0

c ≈ 2K and T 0
c ≈ 1K. We note that the description of

exciton-exciton interaction strengths is a long-standing problem. The values used
here are deduced from the scattering lengths of the positronium problem given in
Ref. [75]: h++ = h−− = 0.71hpp, hp+ = hp− = 0.33hpp, and h+− = 1.77hpp, with
hpp = 7.5 · 10−4 µeV µm3.

In Fig.11 we set Np = 5 · 109 and N± = 5 · 108, with T = 2.2 K well above
both of the single species critical temperatures. The interspecies interaction causes
a noticable shift of the orthoexciton population and a weak renormalization of the
Bogoliubov dispersions Ei, which nevertheless roughly follow the external potentials.
Since |k0| ≈ 30 µm−1 is rather small, the zero-phonon emission spectrum of the
paraexcitons resembles the minimal excitation energy Ep(k = 0, z, % = 0), while for
orthoexcitons, every k-vector contributes and we find a broad energy distribution.

If we lower the temperature to T = 1.2 K, the paraexcitons form a condensate. As
can be seen in Fig.12, their dispersion is cut at the chemical potential, which exceeds
the bare trapping potential. Now the luminescence spectrum shows a flat bottom
and a weak secondary Bogolibov branch, both of which could act as experimental
footprints of the otherwise undetectable paraexciton condensate. In contrast to the
single species case, we find no orthoexciton condensate in the full calculation: The
presence of multiple repulsive species lowers the critical temperature. Because of the
different minimum positions of the para- and orthoexciton potentials, the thermal
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130 160 190 220

−0.4

−0.2

0.0

0.2

0.4

z [µm]

ε
−

µ
p
 [
m

e
V

]

 

 

V(z,0)−µ

E(0,z,0)

E
id

(0,z,0)

130 160 190 220

−0.4

−0.2

0.0

0.2

0.4

0.6

z [µm]

ε
−

µ
−

 [
m

e
V

]

130 160 190 220
0

0.4

0.8

1.2

1.6

2.0

z [µm]

n
 [
1
0

5
 µ

m
−

3
]

 

 

n
p

T

n
p

c

n
id

T

n
id

c

130 160 190 220
0

1.0

2.0

3.0

4.0

z [µm]

n
 [
1
0

4
 µ

m
−

3
]

 

 

n
−

T

n
−

c

n
id

T

n
id

c

z [µm]

ε
−

µ
−

 [
m

e
V

]

130 160 190 220
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z [µm]

ε
−

µ
p
 [
m

e
V

]

130 160 190 220
−0.2

0.0

0.2

0.4

0.6

Fig. 12: Left side: Dispersions and density profiles in z-direction at (x, y) = (0, 0)

for paraexcitons (left column) and orthoexcitons (right column) with T = 1.2K, Np =

5 × 109, and N− = N+ = 5 × 108. Right side: Corresponding luminescence spectra.

Adapted from article IV.

orthoexciton cloud is pushed aside, which is refelcted in their emission spectrum.

Next, we keep T = 1.2K, but exchange the particle numbers of para- and or-
thoexcitons. The results are shown in Fig.13. Both orthoexciton species condense
and, due to their strong repulsion, separate into a ball-and-shell structure with fi-
nite overlap [37, 38]. With h2

+− > h++h−−, our interaction parameters fulfill the
condition for phase-separation of interacting trapped condensates [37,39]. The com-
bined orthoexciton emission spectrum shows no clear sign of this phase separation.
However, the displacement of the noncondensed paraexciton cloud and the resulting
distortion of the emission spectrum is strongest in the area of overlapping orthoexci-
ton condensates. As we argued in article V, this W-shaped signature could provide
an indirect footprint of a phase separation of orthoexciton condensates. If detected,
it would suggest that h+− > h++.

If we lower the temperature to T = 0.8 K (not shown) all the species condense.
The ortho- and paraexciton condensates do not separate due to their weak inter-
action. The paraexciton spectrum develops a flat bottom and the aforementioned
W-shaped distortion vanishes.

Extended luminescence theory The luminescence formula according to Shi [44]
used in the articles IV and V takes into account “normal” processes that involve the
annihilation of an exciton and subsequent creation of a photon. To be consistent
with the Bogoliubov picture of condensed excitons, however, anomalous processes
should also be included. The aim of article VII was to derive such an expression for
the zero-phonon paraexciton decay luminescence.

As seen above, the Bogoliubov transformation converts the system of interacting
excitons into a system of noninteracting bogolons with the operators b

(†)
q and the

dispersion Eq. Similarly, we write the photon field as a sum of oscillator modes with

the operators a
(†)
q and the dispersion ωq = qc0/

√
εb, where c0 is the vacuum veloc-

ity of light and εb is the background dielectric constant. The interaction between
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Fig. 13: Left side: Dispersions and density profiles in z-direction at (x, y) = (0, 0)

for paraexcitons (left column) and orthoexcitons (right column) with T = 1.2K, Np =

5 × 108, and N− = N+ = 5 × 109. Right side: Corresponding luminescence spectra.

Adapted from article IV.

bogolons and photons is given by the minimal coupling Hamiltonian [76],

Ĥxp = − e

m0

∑

j

Â(rj) · p̂j +
e2

2m0

∑

j

|Â(rj)|2 , (27)

with the mass m0, the position r̂j, and the momentum p̂j of the j-th electron. We
expand the position operator to lowest order in terms of the bogolon states |ΨB

q 〉 and

evaluate the Heisenberg equation of motion i~p̂j = m0 [̂rj, Ĥx]. Writing the vector
potential operator in terms of the photonic operators, Â(r) ∝ ∑q(âq + â†−q), the

total Hamiltonian Ĥ = Ĥx + Ĥp + Ĥxp takes the form

Ĥ =
∑

q

Eqb̂
†
qb̂q +

∑

q

~ωqâ
†
qâq + i

∑

q

Cq(âq + â†−q)(b̂−q − b̂†q)

+
∑

q

Dq(â−q + â†q)(âq + â†−q) , (28)

with the coupling strength parameters Dq = C2
q/Eq and

C2
q =

~2e2

4ε0εrm0

f

V

Eq

~ωq

, f =
2m0Eq

~2
| 〈ΨB

q | eqλ ·
∑

j

rj |0〉 |2 . (29)

Here, f is the oscillator strength of paraexciton decay [77], which we do not derive
microscopically, but replace with the experimentally obtained value. In the next
step, we consider the (normal-ordered) field–field correlation function

g
(1)
EE(r1, t1; r2, t2) = 〈Ê(−)(r2, t2)Ê(+)(r1, t1)〉 , (30)

where E(±) are the field components of positive and negative frequencies [78]. The
frequency-dependent intensity signal I(r, ω) follows from the Fourier transform of
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this correlation function at r1 = r2 = r, i.e.,

I(r, ω) ∝ g
(1)
EE(r, r, ω) =

i~2

2V ε0

∑

qq′

(1 + cos Θ)
√
ωqωq′ g11<

aa (q,q′, ω) ei(q−q′) · r , (31)

with Θ = ∠(q,q′). In contrast to Eq. (25) the luminescence now depends on the
photonic real-time correlation function

g11<
aa (q,q′, t1, t2) ≡ −i~〈â†q′(t2)âq(t1)〉 . (32)

To calculate g11<
aa , a number of similar normal and anomalous real-time correlation

functions of mixed photon and bogolon operators have to be evaluated (cf. Eq.(28) of
article VII). To this end, we define corresponding Keldysh Green functions Gαβ

XY [46,
79] on the two-branch time contour. Based on the Heisenberg equations of motion

of the operators â
(†)
q and b̂

(†)
q we arrive at a number of coupled selfconsistent Dyson

equations on the contour, which can be analytically continued to the real time
axis via the Langreth rules [80]. Assuming a steady-state, Fourier transformation
results in a system of four coupled equations for g11<

aa (q,q′, ω), g21<
aa (q,q′, ω), and

the two respective retarded or advanced functions, a closed solution of which is still
pending. The solution of the subsystem of retarded and advanced functions can be
given straightforwardly,

g11r/a
aa (q,q′, ω) =

1

~
δ(q− q′)

× ((ω ± iε) + ωq + 2dq)((ω ± iε)2 − e2
q) + 2c2

qeq

((ω ± iε)2 − ω2
q − 4dqωq)((ω ± iε)2 − e2

q)− 4c2
qeqωq

. (33)

with Eq = ~eq, Cq = ~cq, and Dq = ~dq. The poles of these functions give the
excitation spectrum. We find four solutions (ω ± iε) = ±Ω±q , with

Ω±2
q =

1

2
(e2

q + ω2
q + 4dqωq)± 1

2

√
(e2

q − ω2
q − 4dqωq)2 + 16c2

qeqωq . (34)

This result is analogous to the Hopfield polariton spectrum [81] with its noncrossing
upper and lower polariton branches. The energy Eq is now the Bogoliubov dispersion
of the interacting, condensed exciton system, so that the new quasiparticles will be
called “bogolaritons” in the following. The corresponding photonic spectral function
reads

Aaa(q,q
′, ω) = 2πδ(q− q′)

[
U+2
q δ(ω − Ω+

q ) + V +2
q δ(ω + Ω+

q )

+U−2
q δ(ω − Ω−q ) + V −2

q δ(ω + Ω−q )
]
. (35)

with the weights of the positive and negative upper and lower bogolariton branches
given in Eqs. (38)-(41) of article VII. We note that, in contrast to the bogolon
spectrum in Eq. (26), the bogolariton spectrum features four branches, even for
nc = 0. Only for Cq = 0, the spectrum reverts to a single free photon branch.
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Fig. 14: Panel (a): Upper and lower bogolariton spectrum E = ~Ω±q − Eg − V0 + µ

as a function of q, for r = 0 and T = 2K. The inset magnifies the (avoided) crossing

region of the free photon and bogolon dispersions. Panel (b): spectral weights of the

upper and lower bogolariton spectrum, in dependence on q, for the same parameters.

Adapted from article VII.

Results II: Bogolariton spectrum The numerical calculation of the paraexciton
luminescence is carried out in two steps: First, we calculate self-consistently the
paraexciton density distribution using a one-species version of Eqs. (21)-(24). For
simplicity we consider a spherical harmonic trap V (r) fitted to the bottom of the
experimentally observed trap potentials. The total exciton number is N = 1010,
which gives a critical temperature of Tc ≈ 1.5K. Secondly, the resulting bogolon
spectrum Eq and the free photon dispersion ωq are put into the bogolariton spectrum
Ω±q . For the oscillator strength per unit cell we use the experimental values f =

4.7× 10−10 and V = (4.48Å)3.
Figure 14(a) shows the resulting positive upper and lower branches of the bogo-

lariton spectrum as a function of q at the trap center r = 0. The inset of Fig. 14(a)
shows a zoom in on the crossing point of the uncoupled photon and bogolon disper-
sions. It illustrates how the upper and lower bogolariton branches avoid crossing,
resulting in a gap with a width of 2Cq ≈ 90µeV. Varying r shifts the energetic
position of this gap according to Eq(r).

Figure 14(b) gives the q-dependence of the spectral weights U± 2
q and V ± 2

q in the
photonic spectral function. Far from the gap, the weights U± 2

q equal one or zero,
representing the undisturbed photon states. Near the gap, they smoothly switch
roles. In contrast to the weights vq of the bogolon mirror branch, the V ±q are finite
even for nc = 0. The weights of the mirror branches, however, are smaller by ten
orders of magnitude, and they will be ignored in the following.

Combining our results for the dispersions and weights, Fig. 15 presents the photon
spectral function Aaa(q, E) in the vicinity of the gap. The photon dispersion is
considerably renormalized, with a hockey stick like structure at the gap. In contrast
to the Shi-formula in Eq. (25), where the paraexciton luminescence was given by
the single value q0 = 30.2 µm−1 at the intersection bogolon and photon dispersions,
the signal now depends on two critical wavenumbers q±0 . For a given energy, we
numerically determine the wavenumbers q±0 so that E = ~Ω±q . As Fig. 15(b) shows,
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for energies E below the gap, the wavenumber q+
0 is undetermined and we find

q−0 ∼ q0. After E crosses the gap position, we find q+
0 ∼ q0, while q−0 grows due

to the q2-dependence of the bogolon dispersion. The smallest difference between q+
0

and q−0 is found at the gap: q−0 − q+
0 = 0.38 µm−1.

Summary and outlook We have presented a theoretical approach for the de-
scription of multi-component interacting excitonic gases in potential traps. Based
on the grand canonical Hamiltonian of weakly interacting Bose gases in external
potentials, we used the Bogoliubov prescription to derive self-consistent equations
of motion for the condensed and noncondensed excitons. Applying the local density
approximation and neglecting mixed-species averages, we arrived at Hartree-Fock-
Bogoliubov equations for the densities of condensed and thermal excitons. The
corresponding excitonic spectral functions yielded the systems luminescence signal
via the formula by Shi and Verechaka [44].

Based on these equations, we have investigated numerically the interplay of three
exciton species in Cu2O and their influence on thermodynamical and spectral fea-
tures for different combinations of temperature and particle numbers. Due to the
mutual repulsion, the critical temperatures lower compared to the single species sit-
uation. In our local density aproximation, the paraexciton condensate is invisible,
due to wavevector conservation. However, signatures of a possible Bose-Einstein con-
densate might be found in the luminescene spectra of noncondensed particles: Our
calculation predicts the formation of a flat bottom and weak second, bogolon mirror
branch in the paraexciton spectrum. Moreover, since the para- and orthoexciton
trap centers are not aligned, the paracondensate pushes the selfconsistent orthoex-
citon densities and spectra aside. In case of an orthoexciton condensate, the strong
repulsion between orthoexciton species leads to a spatial separation of the respective
condensates into a ball-and-shell structure. This is not obvious from the combined
orthoexciton spectrum, but the para spectrum is distorted at the crossover region,
providing an experimental footprint of this phase separation. If detected, the inter-
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and intra-species interaction strengths of the ortho(+) and (−) species would satisfy
the relation h+− > h++.

We extended our theory of the zero-phonon decay luminescene by using an interac-
tion Hamiltonian that accounts for anomalous exciton-photon coupling terms. The
resulting luminescence formula is dependent upon the interacting photonic Green
functions, whose equations of motion were derived in a nonequilibrium Green func-
tion framework. We investigated the spectral features by means of the photonic
spectral function. Near the former crossing point of free bogolon and photon disper-
sions, a hockey stick structure hints at the formation of polariton-like quasiparticles,
which we call bogolaritons. The calculation predicts mirror branches even without
the formation of a condensate, which, however, carry negligable spectral weight. In
contrast to the Shi-formula, the luminescence signal will now be given by the spec-
tral weight at two distinct wavevectors. The very next step of our calculations will
be the solution of the equation of motion of the phononic correlation function.

In the future, the theory may be extended in several ways. Neglecting the
Thomas–Fermi approximation, the full Gross–Pitaevskii equation for the conden-
sate function in the external potential should be solved numerically. This would
provide a better solution at the condensates boundaries. Moreover, the wavefunc-
tions Fourier transform would include contributions with finite wavevectors, so that
the paraexciton condensate may contribute to the luminescence.

The multi-component theory for the noncondensed particles could be improved
by including the mixed-species averages. This would overcome the effective single-
component picture with a pure mean-field coupling, but complicate the Bogoliubov
transformation approach. Moreover, one could consider spectral broadening due
to exciton-exciton interactions, i.e., go beyond the Hartree-Fock-Bogoliubov-Popov
approximation by incluging higher order correlations on the level of the Beliaev
approximation [82].

Our luminescene theory should be extended to orthoexciton decay, i.e., consider
phonon assisted exciton-photon interaction within the self-consistent Green function
calculation. Lastly, profound evidence for the creation of an exciton condensate
would be the emission of coherent light. That is why the theoretical calcualtion of
higher order correlation functions should be pursued.
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We consider a quantum dot, affected by a local vibrational mode and contacted to macroscopic leads, in
the nonequilibrium steady-state regime. We apply a variational Lang-Firsov transformation and solve the
equations of motion of the Green functions in the Kadanoff-Baym formalism up to a second order in the
interaction coefficients. The variational determination of the transformation parameter through minimization of
the thermodynamic potential allows us to calculate the electron/polaron spectral function and conductance for
adiabatic to antiadiabatic phonon frequencies and weak to strong electron-phonon couplings. We investigate the
qualitative impact of the quasiparticle renormalization on the inelastic electron tunneling spectroscopy signatures
and discuss the possibility of a polaron induced negative differential conductance. In the high-voltage regime,
we find that the polaron level follows the lead chemical potential to enhance resonant transport.

DOI: 10.1103/PhysRevB.84.125131 PACS number(s): 72.10.−d, 71.38.−k, 73.21.La, 73.63.Kv

I. INTRODUCTION

Recent advances in nanotechnology have made possible the
creation of electronic devices with the active element being a
single organic molecule. Such molecular junctions may be
an alternative to semiconductor technology in the search for
further miniaturization and novel transport properties. They
can be described as quantum dots, i.e., as systems of finite size
coupled to macroscopic leads acting as charge reservoirs. As
with metallic or semiconducting junctions, energy level quanti-
zation determines transport. In addition, when being occupied
by charge carriers, molecular quantum dots are susceptible
to structural changes that may be induced by the interaction
with optical phonons. As a consequence, vibrational signatures
show up in the current-voltage characteristics. Moreover, they
render inelastic tunneling spectroscopy (IETS), the primary
experimental tool for the identification and characterization of
molecular quantum dots.1,2

For a thorough understanding of the underlying transport
mechanisms suitable theoretical models have to be studied.
The simplest one is based on a modified Fano-Anderson
model where the static impurity is replaced by a single site
coupled to a local phonon mode. Then the current is given
by the interacting dot spectral function and the voltage bias
between the noninteracting macroscopic leads.3 The transport
properties of the system strongly depend on the relative time
scales of the electronic and phononic subsystems.4

In the regime of fast electron motion and weak electron-
phonon (EP) coupling, standard perturbation theory applies.5–7

Here, IETS signatures result from the interference of
(quasi)elastic and inelastic tunneling processes.8,9 The calcu-
lated line shapes in the total current are found to be especially
sensitive to changes in the dot-lead coupling parameter and the
dot-level energy.10,11 In general, both these quantities should
be affected by conformational changes of the molecule. In the
equilibrium situation, the question remains whether vibrational
coupling leads to a broadening6 or narrowing7 of the linear
conductance resonance as a function of the dot level.

On the other hand, in molecular quantum dots the vi-
brational frequency can be larger than the kinetic energy of

incident electrons. From the study of the Holstein molecular
crystal model,12 it is well known that in this regime, strong
EP interaction may heavily reduce the “mobility” of the
electrons through the formation of small polarons (electrons
dressed by phonon clouds).13,14 Consequently, for quantum
dots, the formation of a local polaron is considered a possible
mechanism for the observed nonlinear transport properties,
such as hysteresis, negative differential conductance (NDC)
and switching.15–18 Approaches based on the application of
a Lang-Firsov transformation19,20 to the Hamiltonian suggest
that the vibrational structure of the polaron state is revealed by
distinct steps in the current-voltage signal.6,21,22 Here, electron
transport takes place via resonant tunneling through phonon
sidebands.

In this paper, we investigate steady-state transport through
molecular quantum dots for small-to-large dot-lead coupling
and weak-to-strong EP interaction. Using the Meir-Wingreen
current formula,3 our main task is the determination of the
interacting electronic spectral function of the quantum dot. As
the background of our calculations we choose the formalism
of Kadanoff-Baym,23 which relies on the correspondence
of the nonequilibrium Green functions of complex times to
the real-time response functions. Starting from the Dyson
equation, the general steady-state equations for the response
functions will be deduced. The solution of the latter equations
will lead to a nonequilibrium spectral function, which has a
form analogous to the equilibrium one. The dot self-energy
determining the spectral function will be calculated from the
equations of motion of the Green functions up to a second
order in the interaction coefficients.

Our approach is based on a variational Lang-Firsov trans-
formation, which was developed for Holstein polarons at finite
densities24 and recently applied to the molecular quantum
dot in equilibrium.25 We extend these calculations to the
nonequilibrium situation and to finite temperatures, whereby
the dot self-energy will be calculated self-consistently to ac-
count for the density-dependent oscillator shift. The variational
parameter of the Lang-Firsov transformation is determined
numerically via the minimization of the thermodynamic
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potential. In this way, we are able to interpolate between the
self-consistent Born approximation (SCBA)11,26 and the small-
polaron approach22 previously used in the weak and strong EP
coupling limits. We note that already in the equilibrium case,
our variational calculation introduces important corrections
to the corresponding spectral functions that determine the
conductance in the linear response theory. We reexamine the
low-temperature equilibrium quantum dot system and analyze
the occurrence of high-temperature phonon sidebands in
the linear conductance.

In the nonequilibrium situation, we show the impact of
the optimal polaron state on the IETS signatures mentioned
above. For comparable electronic and phononic time scales,
we study the crossover from coherent tunneling to sequential
hopping via a transient polaron state, where the interplay
of both resonant and off-resonant multiphonon processes
leads to complicated electron tunneling spectra. Recently La
Magna and Deretzis17 applied a similar variational ansatz
to an effective electron Hamiltonian and found polaron-
formation-induced NDC. Considering the dependence of the
current-voltage characteristics on the full spectral function, we
critically discuss this effect.

The paper is organized as follows: Sec. II A introduces the
model Hamiltonian and describes the variational Lang-Firsov
transformation. In Secs. II B and II C, a formal steady-state
solution to the equations of motion is presented. In Sec. II D,
we derive an approximation to the polaronic self-energy that
is self-consistent and depends on the variational parameter.
The latter is determined from the numerical minimization
of the thermodynamic potential that is deduced in Sec. II E.
Section II F gives the relation between the electronic and
polaronic spectral functions. In Sec. II G, the general current
formula for arbitrary voltage is discussed and the special case
of linear conductance is mentioned. Section III presents our
numerical results and Sec. IV summarizes.

II. THEORY

A. General equations

Our considerations are based on the standard Hamiltonian
of the single-site quantum dot model:

H = (� − μ)d†d − gω0d
†d(b† + b) + ω0b

†b

+
∑
k,a

(εka − μ)c†
kacka − 1√

N

∑
k,a

(tkad
†cka + t∗kac

†
kad).

(1)

Here, the quantum dot is represented by the energy level �,
with the fermionic creation (destruction) operator d† (d). The
dot is coupled to a local phonon mode b(†) of energy ω0,
with g being the dimensionless EP coupling strength. The εka

(for k = 1, . . . ,N ) are the energies of noninteracting electrons
in the left and right lead (a = L,R) with the equilibrium
chemical potential μ. The corresponding operators c

†
ka (cka)

create (annihilate) free fermions in the N lead states. The last
term in Eq. (1) allows for dot-lead particle transfer.

We apply to the model (1) a variational Lang-Firsov
transformation,17,19,25,27 introducing two parameters γ and γ̄ :

H̃ = S
†
2(γ̄ )S†

1(γ )HS1(γ )S2(γ̄ ), (2)

S1(γ ) = exp[γg(b† − b)d†d], (3)

S2(γ̄ ) = exp[γ̄ g(b† − b)]. (4)

S1(γ ) describes the antiadiabatic limit where the phononic
time scale is much faster than the electronic time scale and
the deformation of the dot adjusts instantaneously to the
presence of an electron. For γ = 1, it coincides with the
shift transformation of the Lang-Firsov small polaron theory,19

which eliminates the second term on the right-hand side of
Eq. (1) and lowers the dot level by the polaron binding energy:

εp = g2ω0. (5)

To account for the competition between polaron localization
and charge transport, an incomplete Lang-Firsov transfor-
mation with γ ∈ [0,1] is used where γ will be determined
variationally. The second shift transformation S2(γ̄ ) describes
the regime of fast electron motion, where the quasistatic
displacement of the equilibrium position of the oscillator
affects transport. According to similar considerations in
Ref. 27, the parameter γ̄ is fixed by the condition that the
oscillator shift is stationary in the equilibrium and steady state.
Then γ̄ = (1 − γ )nd , with the dot occupation

nd = 〈d†d〉, (6)

where 〈· · ·〉 denotes the steady state mean value.
After the transformation, the Hamiltonian reads

H̃ = η̃ d†d − Cd (d†d − nd ) + ω0b
†b + εp(1 − γ )2n2

d

+
∑
k,a

ξkac
†
kacka −

∑
k,a

(Ckad
†cka + C

†
kac

†
kad), (7)

with

η̃ = � − μ − εpγ (2 − γ ) − 2εp(1 − γ )2nd, (8)

g̃ = γg, ξka = εka − μ, (9)

Cka = tka√
N

e−g̃(b†−b), Cd = gω0(1 − γ )(b† + b). (10)

Here, η̃ is the renormalized energy of the single dot level.
Cka and Cd are the renormalized interaction coefficients of
the dot-lead transfer and the EP interaction, respectively. Note
that now the operators d and b represent dressed electrons
(in analogy to polarons) and the shifted local oscillator. The
original electron and oscillator operators, now denoted by d̃

and b̃, read

d̃ = e g̃(b†−b)d, b̃ = b + g̃d†d + (1 − γ )gnd. (11)

We describe the application of a potential difference between
the leads by adding to Eq. (7) the interaction with the external
fields {U} and define the voltage bias � accordingly:

Hint =
∑

a

Ua

∑
k

c
†
kacka, with Ua = −δμa, (12)

� = (UL − UR)/e, (13)
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where e is the (negative) elementary charge. The response
of the quantum dot is given by the polaronic nonequilibrium
real-time Green functions:

gdd (t1,t2; U ) = −i〈T dU (t1)d†
U (t2)〉, (14)

g<
dd (t1,t2; U ) = i〈d†

U (t2)dU (t1)〉, (15)

g>
dd (t1,t2; U ) = −i〈dU (t1)d†

U (t2)〉. (16)

Remember that 〈· · · 〉 denotes the equilibrium average with
respect to H̃ , while the time dependence of the operators d (†) is
now given by H̃ + Hint. The time ordering operator in Eq. (14)
is defined by

T dU (t1)d†
U (t2) = dU (t1)d†

U (t2), t1 − t2 > 0, (17)

= −d
†
U (t2)dU (t1), t1 − t2 < 0. (18)

According to Kadanoff-Baym,23 the real-time response func-
tions (14)–(16) may be deduced using the equations of motion
for the nonequilibrium Green functions of the complex time
variables t = t0 − iτ , τ ∈ [0,β], defined as

Gdd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d(t1)d†(t2)S〉, (19)

G<
dd (t1,t2; U,t0) = i

〈S〉 〈Tτ d
†(t2)d(t1)S〉, (20)

G>
dd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d(t1)d†(t2)S〉, (21)

where the order of t1 and t2 is fixed in G<
dd and G>

dd . The
time dependence of all operators is determined by H̃ and the
external disturbance is explicit in the time-ordered exponential
operator S:

S = Tt exp

{
− i

∫ t0−iβ

t0

dt Hint(t)

}
. (22)

In Eqs. (19)–(21) and (22), the operator Tτ orders times
according to

Tτ dU (t1)d†
U (t2) = d(t1)d†(t2), i(t1 − t2) > 0, (23)

= −d†(t2)d(t1), i(t1 − t2) < 0. (24)

In the following, the Green functions of “mixed” operators
Gcd (k,a; t1,t2; U,t0) and gcd (k,a; t1,t2; U ) will be used, which
are defined similar to Eqs. (14)–(21). The functions g

follow from the functions G through the limiting procedure
t0 → −∞.

B. Equations of motion

We consider the polaronic dot Green function (19), where
the index “dd” will be omitted for the moment, and start from
the Dyson equation in the matrix form:

[G(0)−1(t1,t̄ ; U,t0) − �(t1,t̄ ; U,t0)] • G(t̄ ,t2; U,t0)

= δ(t1 − t2) . (25)

In Eq. (25), the matrix multiplication “•” is defined by∫ t0−iβ

t0
dt̄ · · · and the δ function of complex arguments is

understood with respect to this integration. With the inverse

zeroth-order Green function

G(0)−1(t1,t2) =
(

i
∂

∂t1
− η̃

)
δ(t1 − t2), (26)

Eq. (25) gives for i(t1 − t0) < i(t2 − t0)(
i

∂

∂t1
− η̃

)
G<(t1,t2; U,t0)

=
∫ t1

t0

dt̄ �>(t1,t̄ ; U,t0)G<(t̄ ,t2; U,t0)

+
∫ t2

t1

dt̄ �<(t1,t̄ ; U,t0)G<(t̄ ,t2; U,t0)

+
∫ t0−iβ

t2

dt̄ �<(t1,t̄ ; U,t0)G>(t̄ ,t2; U,t0), (27)

where the self-energy functions �≷ are defined analogously
to G≷:

�>(t1,t2; U,t0) = �(t1,t2; U,t0), i(t1 − t2) > 0, (28)

�<(t1,t2; U,t0) = �(t1,t2; U,t0), i(t1 − t2) < 0. (29)

On the other hand, the matrix-transposed form of (25) yields(
− i

∂

∂t2
− η̃

)
G<(t1,t2; U,t0)

=
∫ t1

t0

dt̄ G>(t1,t̄ ; U,t0)�<(t̄ ,t2; U,t0)

+
∫ t2

t1

dt̄ G<(t1,t̄ ; U,t0)�<(t̄ ,t2; U,t0)

+
∫ t0−iβ

t2

dt̄ G<(t1,t̄ ; U,t0)�>(t̄ ,t2; U,t0). (30)

Similarly to Eqs. (27) and (30), equations having
G>(t1,t2; U,t0) on the left-hand side are obtained in the case
i(t1 − t0) > i(t2 − t0). After the limiting procedure t0 → −∞,
we arrive at the equations for the real-time response functions
of the dot operators:(

i
∂

∂t1
− η̃

)
g≶(t1,t2; U )

=
∫ t1

−∞
dt̄ [�>(t1,t̄ ; U ) − �<(t1; t̄ ; U )]g≶(t̄ ,t2; U )

−
∫ t2

−∞
dt̄ �≶(t1,t̄ ; U )[g>(t̄ ,t2; U ) − g<(t̄ ,t2; U )],

(31)(
− i

∂

∂t2
− η̃

)
g≶(t1,t2; U )

=
∫ t1

−∞
dt̄ [g>(t1,t̄ ; U ) − g<(t1; t̄ ; U )]�≶(t̄ ,t2; U )

−
∫ t2

−∞
dt̄ g≶(t1,t̄ ; U )[�>(t̄ ,t2; U ) − �<(t̄ ,t2; U )].

(32)

The latter equations are general; up to this point no special
assumptions or approximations were made.
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C. Steady-state solution

Limiting ourselves to the steady-state regime, all functions
of (t1,t2) will be supposed to depend only on t = t1 − t2.
Then, after suitable change of the integration variables, the
difference of the equations for g< in Eqs. (31) and (32)

gives∫ ∞

−∞
dt̄ [g<(t̄ ; U )�>(t − t̄ ; U )−g>(t̄ ; U )�<(t − t̄ ; U )] = 0,

(33)

while the differential equation for (g> − g<) following from
Eq. (31) reads

(
i

∂

∂t
− η̃

)
[g>(t ; U ) − g<(t ; U )] =

∫ ∞

0
dt̄[�>(t̄ ; U ) − �<(t̄ ; U )][g>(t − t̄ ; U ) − g<(t − t̄ ; U )] −

∫ 0

−∞
dt̄[�>(t − t̄ ; U )

−�<(t − t̄ ; U )][g>(t̄ ; U ) − g<(t̄ ; U )]. (34)

Using the Fourier transformations of g≶ and �≶ with factors according to Kadanoff-Baym,23 e.g.,

g≶(ω; U ) = ∓i

∫ ∞

−∞
dt g≶(t ; U )eiωt , (35)

g≶(t ; U ) = ∓
∫ ∞

−∞

dω

2πi
g≶(ω; U )e−iωt , (36)

the following exact equations for the steady-state are obtained

g<(ω; U )�>(ω; U ) − g>(ω; U )�<(ω; U ) = 0, (37)[
ω − η̃ − P

∫ ∞

−∞

dω′

2π

�>(ω′; U )+�<(ω′; U )

ω − ω′

]
[g>(ω; U ) + g<(ω; U )]

= [�>(ω; U )+�<(ω; U )]P
∫ ∞

−∞

dω′

2π

g>(ω′; U ) + g<(ω′; U )

ω − ω′ . (38)

If we define, in analogy to the equilibrium expressions,23

A(ω; U ) = g>(ω; U ) + g<(ω; U ), (39)

g(z; U ) =
∫

dω

2π

A(ω; U )

z − ω
, (40)

�(ω; U ) = �>(ω; U ) + �<(ω; U ), (41)

�(z; U ) =
∫

dω

2π

�(ω; U )

z − ω
, (42)

Eq. (38) takes the form

[ω − η̃ − Re �(ω; U )]A(ω; U ) = �(ω; U ) Re g(ω; U ).

(43)

According to Eq. (39), we can write

g<(ω; U ) = A(ω; U )f̄ (ω; U ), (44)

g>(ω; U ) = A(ω; U )[1 − f̄ (ω; U )], (45)

introducing the nonequilibrium distribution f̄ , which follows
from the steady-state equation (37) and the definition (41) as

f̄ (ω; U ) = �<(ω; U )

�(ω; U )
. (46)

Looking for a solution A(ω; U ) of Eq. (43), which would be
equal to the equilibrium spectral function for {U} → 0, we

assume (according to similar considerations in Ref. 23) that
g(z; U ) has the form

g(z; U ) = 1

z − η̃ − �(z; U )
. (47)

Together with Eq. (40), Eq. (47) fulfils Eq. (43) identically,
and the polaronic nonequilibrium spectral function becomes

A(ω; U ) = �(ω; U )[
ω − η̃ − P

∫
dω′
2π

�(ω′;U )
ω−ω′

]2 + [
�(ω;U )

2

]2 . (48)

D. Self-energy

We determine the polaron self-energy �dd from the
equations of motion for the generalized Green functions of
complex time, which were considered for the equilibrium case
in Ref. 25. In particular, the coupled equations for Gdd and
Gcd read

G
(0)−1
dd (t1,t̄) • Gdd (t̄ ,t2; U,t0) = δ(t1 − t2)

+ i

〈S〉 〈TτCd (t1)d(t1)d†(t2)S〉

+
∑
k,a

i

〈S〉 〈TτCka(t1)cka(t1)d†(t2)S〉, (49)

G(0)−1
cc (k,a; t1,t̄ ; U ) • Gcd (k,a; t̄ ,t2; U,t0)

= i

〈S〉 〈TτC
†
ka(t1)d(t1)d†(t2)S〉, (50)
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where, in analogy to Eq. (26),

G(0)−1
cc (k,a; t1,t2; U ) =

(
i

∂

∂t1
− ξka − Ua

)
δ(t1 − t2). (51)

To deduce the functional differential equations for the self-
energy �dd = G

(0)−1
dd − G−1

dd , in addition to the physical fields
{U}, we introduce the fictitious fields {V } by adding to Hint

(cf. Refs. 23, 25, and 28 )∑
k,a

[Vka(t)Cka(t) + V̄ka(t)C†
ka(t)] + Vd (t)Cd (t). (52)

In the same way as in Ref. 25, the averages on the right-
hand side of Eqs. (49) and (50) are expressed by means of
the functional derivatives of Green functions with respect to
{V }. The resulting functional differential equation for �dd

is solved by iteration to the second order in the interaction
coefficients defined in Eq. (10). The correlation functions of the
interaction coefficients are evaluated supposing independent
Einstein oscillators. Letting then {V } → 0, the following self-
consistent result is obtained

�dd (t1,t2; U,t0) = �
(1)
dd (t1,t2; U,t0) + [gω0(1 − γ )]2

×Gdd (t1,t2; U,t0)F3(t1,t2). (53)

The result of the first iteration step,

�
(1)
dd (t1,t2; U,t0) =

∑
k,a

|〈Cka〉|2G(0)
cc (k,a; t1,t2; U )

+
∑
k,a

|〈Cka〉|2G(0)
cc (k,a; t1,t2; U )F1(t1,t2),

(54)

is independent of Gdd . The quasiequilibrium nonperturbed
Green functions of the leads read

G(0)<
cc (k,a; t1,t2; U ) = ie−iξka (t1−t2)f (ξka + Ua),

(55)
G(0)>

cc (k,a; t1,t2; U ) = −ie−iξka (t1−t2)[1 − f (ξka + Ua)],

with f (x) = (eβx + 1)−1. The functions F1 and F3 are given
by F<

1 and F<
3 for i(t1 − t2) < 0, and by F>

1 and F>
3 for

i(t1 − t2) > 0, respectively:

F
≷
1 (t1,t2) = exp{g̃2[(nB(ω0) + 1)e∓iω0(t1−t2)

+ nB (ω0)e±iω0(t1−t2)]} − 1, (56)

F
≷
3 (t1,t2) = (nB(ω0) + 1)e∓iω0(t1−t2)

+ nB (ω0)e±iω0(t1−t2), (57)

with nB(x) = (eβx − 1)−1. In Eq. (53), we perform the limit
t0 → −∞ and the continuation of the complex time variables
to real times, while keeping the condition i(t1 − t2) < 0 for
�<

dd and i(t1 − t2) > 0 for �>
dd . We arrive at

�
≶
dd (t1,t2; U )

= �
(1)≶
dd (t ; U ) + [(1 − γ )gω0]2 g

≶
dd (t1,t2; U )

×[(nB(ω0) + 1)e±iω0(t1−t2) + nB(ω0)e∓iω0(t1−t2)], (58)

�
(1)≶
dd (t1,t2; U )

=
∑
k,a

|〈Cka〉|2 g(0)≶
cc (k,a; t1,t2; U ){I0(κ)

+
∑
s�1

Is(κ)2 sinh(sθ )[(nB(sω0) + 1)e±isω0(t1−t2)

+ nB (sω0)e∓isω0(t1−t2)]}, (59)

where

θ = 1

2
βω0, κ = g̃2

sinh θ
, (60)

Is(κ) =
∞∑

m=0

1

m!(s + m)!

(κ

2

)s+2m

, (61)

and

g<
dd (t1,t2; U ) = −

∫
dω

2πi
A(ω; U )f̄ (ω; U ) e−iω(t1−t2), (62)

g>
dd (t1,t2; U ) =

∫
dω

2πi
A(ω; U )[1−f̄ (ω; U )]e−iω(t1−t2). (63)

Now we insert |〈Cka〉|2 = (|tka|2/N ) exp{−g̃2 coth θ} in
Eq. (59) and go from the k summation to the integration over
the lead states with the help of the density of states of lead a:

1

N

∑
k,a

|tka|2 · · · →
∑

a

∫ ∞

−∞
dω |ta(ω)|2�a(ω) · · · , (64)

�a(ω) = 1

N

∑
k

δ(ω − εka). (65)

We then Fourier transform Eq. (58) according to Eq. (35) and,
after evaluating the resulting delta functions, obtain

�<
dd (ω; U )

= �
(1)<
dd (ω; U ) + [(1 − γ )gω0]2[A(ω − ω0; U )

× f̄ (ω − ω0; U )nB(ω0) + A(ω + ω0; U )

× f̄ (ω + ω0; U )(nB(ω0) + 1)], (66)

�
(1)<
dd (ω; U )

= e−g̃2 coth θ
∑

a

{
I0(κ)�(0)

a (ω + μ)f (ω + Ua)

+
∑
s�1

Is(κ)2 sinh(sθ )
[
nB(ω0)�(0)

a (ω − sω0 + μ)

× f (ω − sω0 + Ua) + (nB(ω0) + 1)�(0)
a (ω + sω0 + μ)

× f (ω + sω0 + Ua)
]}

, (67)

�(0)
a (ω) = 2π |ta(ω)|2�a(ω). (68)

The function �<
dd (ω; U ) can be understood as a generalized

in-scattering function of polaron-like quasiparticles at the
dot.29 The second to fourth line in Eq. (67) accounts for
multiple-phonon emission and, if T > 0, absorption processes.
After some algebraic manipulations of the Bose- and Fermi-
functions, the first-order self-energy (67) may be written in the
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following form:

�
(1)<
dd (ω; U ) = �

(1)
L (ω; U )f (ω + UL) + �

(1)
R (ω; U )f (ω + UR), (69)

�(1)
a (ω; U ) = e−g̃2 coth θ

(
I0(κ)�(0)

a (ω + μ) +
∑
s�1

Is(κ)2 sinh(sθ )
{
�(0)

a (ω + μ − sω0)[nB(sω0) + 1 − f (ω + Ua − sω0)]

+�(0)
a (ω + μ + sω0)[nB(sω0) + f (ω + Ua + sω0)]

})
. (70)

Because �>
dd (ω; U ) results from interchanging nB ↔ (nB + 1), f ↔ (1 − f ) and f̄ ↔ (1 − f̄ ) in Eqs. (66)–(69), Eq. (41) gives

�(ω; U ) = �(1)(ω; U ) + [(1 − γ )gω0]2{A(ω − ω0; U )[nB(ω0) + 1 − f̄ (ω − ω0; U )]

+A(ω + ω0; U )[nB(ω0) + f̄ (ω + ω0; U )]}, (71)

�(1)(ω; U ) = �
(1)
L (ω; U ) + �

(1)
R (ω; U ). (72)

From Eq. (71), the spectral function follows using Eq. (48). For
any parameter γ < 1, the spectral function A and distribution
f̄ have to be determined self-consistently. Furthermore,
because the renormalized dot level defined in Eq. (8) depends
on the dot occupation nd , the latter has to fulfill the self-
consistency condition

nd =
∫ ∞

−∞

dω

2π
f̄ (ω; U )A(ω; U ). (73)

We note that for γ = 0, our results are equivalent to the
SCBA.26 For γ = 1, no self-consistency condition has to be
fulfilled, as �dd = �

(1)
dd and η̃ is independent of nd .

E. Variational procedure

To determine the variational parameter γ , we minimize the
thermodynamic potential �, which is given by the partition
function Q as

� = − 1

β
ln Q. (74)

We assume the leads to be macroscopic objects, which are
negligibly influenced by the states of the dot. Accordingly, the
contributions of the leads to � and to the mean energy 〈H̃ 〉
give only additive constants. Since the electronic degrees of
freedom of the dot are coupled to the oscillator ones by the
second term on the right-hand side of Eq. (7), a decoupling
approximation will be used to determine the electronic part of
the thermodynamic potential.

As a consequence of the equation of motion, the following
identity holds(

i
∂

∂t1
− i

∂

∂t2

)
d†(t2)d(t1)

∣∣∣
t2=t1

= η̃d†(t1)d(t1) − Cdd
†(t1)d(t1) + H ′(t1). (75)

Here, H ′ represents the part of the Hamiltonian (7) that
depends on the operators d† and d. As an approximation, we
neglect the second term on the right-hand side of Eq. (75) and
in H ′. Taking the statistical averages on both sides of Eq. (75),
remembering that

〈d†(t2)d(t1)〉 = −ig<
dd (t1,t2; U ) (76)

and using Eq. (62),

〈H ′〉 =
∫

dω

2π
(2ω − η̃) A(ω; U )f̄ (ω; U ) (77)

is obtained. To determine the corresponding electronic part of
the thermodynamic potential, �′, we consider the canonical
ensemble given by the Hamiltonian H ′

λ = H0 + Vλ, where
H0 = η̃d†d and Vλ represents the interaction part of the
Hamiltonian (7) with coefficients λCka and λCd , for λ ∈ [0,1].
Applying the result (77) gives

〈Vλ〉λ = 2
∫

dω

2π
(ω − η̃) Aλ(ω; U )f̄ (ω; U ). (78)

Here, 〈· · ·〉λ denotes the dependence of the statistical average
on λ and the indices λ on the right-hand side of Eq. (78) refer
to the interaction coefficients in H ′

λ. We use the well-known
general relations23,30 for the determination of �′, namely,

�′ = �′(λ = 1) = − 1

β
ln Q(λ = 1), (79)

ln Q(λ = 1) = ln Q(λ = 0) − β

∫ 1

0
dλ

1

λ
〈Vλ〉λ, (80)

where

ln Q(λ = 0) = ln(1 + e−η̃β). (81)

To make the integration in Eq. (80) feasible, the general
procedure leading to the thermodynamic potential outlined
above will be carried out using the solution for the dot response
in the first iteration step, described in the preceding section.
In particular, the spectral function Aλ(ω; U ) is determined
according to Eq. (48), using �

(1)
λ (ω; U ), which is proportional

to λ2: �
(1)
λ (ω; U ) = λ2�(1)(ω; U ). Similarly, f̄ (ω; U ) is deter-

mined by Eq. (46) using �
(1)<
dd and �(1) on the right-hand

side. Note, however, that η̃ will be determined from the
electron density nd corresponding to the complete self-energy
�

≶
dd (ω; U ).
To complete the function �, which is to be varied with

respect to γ , we have to take into account the renormalization
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of the oscillator energy given in the first line of Eq. (7). We
finally obtain that

� = − 1

β
ln(1 + e−η̃β) + εp(1 − γ )2n2

d +
∫ 1

0

dλ

λ

∫ +∞

−∞

dω

π

× (ω − η̃)f̄ (1)(ω; U ) λ2�(1)(ω; U )[
ω − η̃ − λ2P

∫
dω′
2π

�(1)(ω′;U )
ω−ω′

]2 + [
λ2 �(1)(ω;U )

2

]2

= − 1

β
ln(1 + e−η̃β) + εp(1 − γ )2n2

d −
∫

dω

π
f̄ (1)(ω)

×
{

η̃ − ω

|̃η − ω| + arctan

[
ω − η̃ − P

∫
dω′
2π

�(1)(ω′)
ω−ω′

�(1)(ω)/2

]}
.

(82)

The parameter γ resulting from the variation of Eq. (82) is
used to determine �

≶
dd (ω; U ) according to Eq. (66). The self-

energy functions obtained in this way give the distribution
function f̄ (ω; U ) and the spectral function A(ω; U ) according
to Eqs. (46) and (48), respectively.

F. Relation between electronic and polaronic functions

In the previous sections, the functions A(ω; U ) and
g<

dd (ω; U ) in polaron representation were deduced. Because
the current through the quantum dot will be given by the
corresponding electronic functions Ã(ω; U ) and g̃<

dd (ω; U ),
we have to find a relation between these quantities. We start
by decoupling the fermionic and bosonic degrees of freedom
in the electronic dot Green function of complex times:

G̃dd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d̃(t1)d̃†(t2)S〉

≈ Gdd (t1,t2; U,t0)〈Tτ e
g̃(b†−b)(t1)e−g̃(b†−b)(t2)〉.

(83)

Assuming an independent Einstein oscillator, we find

〈Tτ e
g̃(b†−b)(t1)e−g̃(b†−b)(t2)〉

= e−g̃2 coth θ
{
I0(κ) +

∑
s�1

Is(κ)
[
esθ e±isω0(t1−t2)

+e−sθ e∓isω0(t1−t2)
]}

, (84)

where the upper signs correspond to i(t1 − t2) > 0 and the
lower ones to i(t1 − t2) < 0. Going from the complex time
variables to the real ones, the following relation between
g̃

≶
dd (ω; U ) and g

≶
dd (ω; U ) is obtained

g̃
≶
dd (ω; U ) = e−g̃2 coth θ

{
I0(κ)g≶

dd (ω; U )

+
∑
s�1

Is(κ)
[
esθg

≶
dd (ω ± sω0; U )

+e−sθ g
≶
dd (ω ∓ sω0; U )

]}
. (85)

With the identities

esθ = 2 sinh(sθ )[1 + nB(sω0)], (86)

e−sθ = 2 sinh(sθ )nB(sω0), (87)

the electronic function g̃
≶
dd (ω; U ) may be expanded as

g̃
≶
dd (ω; U )

= e−g̃2 coth θ
(
I0(κ)g≶

dd (ω; U )

+
∑
s�1

Is(κ)2 sinh(sθ ){[1 + nB(sω0)]g≶
dd (ω ± sω0; U )

+ nB (sω0)g≶
dd (ω ∓ sω0; U )}). (88)

Considering Eqs. (44) and (45), the electronic spectral function
is obtained in terms of the polaronic one as

Ã(ω; U ) = g̃<
dd (ω; U ) + g̃>

dd (ω; U )

= e−g̃2 coth θ
(
I0(κ)A(ω; U ) +

∑
s�1

Is(κ)2 sinh(sθ )

×{[nB(sω0) + f̄ (ω + sω0; U )]A(ω + sω0; U )

+ [nB(sω0)+1−f̄ (ω − sω0; U )]A(ω − sω0; U )}).
(89)

G. Current

The operator of the electron current from lead a to the dot
reads

Ĵa = ie√
N

∑
k

[tkad̃
†cka − t∗kac

†
kad̃]. (90)

To calculate the mean value Ja = 〈Ĵa〉, the following connec-
tion of the expectation values to the real-time Green functions
is used

i〈d̃†cka〉 = g̃<
cd (k,a; t1,t1; U )

=
∫ ∞

−∞

dω

2π
g̃<

cd (k,a; ω; U ), (91)

i〈c†
kad̃〉 = g̃<

dc(k,a; t1,t1; U )

= −
∫ ∞

−∞

dω

2π
[̃g<

cd (k,a; ω; U )]∗. (92)

We start from the nonequilibrium Green function of the
complex time variables for the electron operators, namely,

G̃cd (k,a; t1,t2; U,t0) = − i

〈S〉 〈Tτ cka(t1)d̃†(t2)S〉, (93)

where S is given by Eq. (22). From the commutators with
the Hamiltonian in the electron representation, the equation of
motion is obtained

(
i

∂

∂t1
− ξka − Ua

)
G̃cd (k,a; t1,t2; U,t0)

= − t∗ka√
N

G̃dd (t1,t2; U,t0). (94)
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Equation (94) can be rewritten as

G̃cd (k,a; t1,t2; U,t0)

− t∗ka√
N

∫ t0−iβ

t0

dt̄ G(0)
cc (k,a; t1,t̄ ; U )G̃dd (t̄ ,t2; U,t0). (95)

Performing the limit t0 → −∞ while keeping i(t1 − t2) < 0,
the following equation for the real-time response functions is
obtained

−
√

N

t∗ka

g̃<
cd (k,a; t1,t2; U )

=
∫ t1

−∞
dt̄ g(0)>

cc (k,a; t1,t̄ ; U )̃g<
dd (t̄ ,t2; U )

+
∫ ∞

t1

dt̄ g(0)<
cc (k,a; t1,t̄ ; U )̃g<

dd (t̄ ,t2; U )

−
∫ ∞

t2

dt̄ g(0)<
cc (k,a; t1,t̄ ; U )̃g<

dd (t̄ ,t2; U )

−
∫ t2

−∞
dt̄ g(0)<

cc (k,a; t1,t̄ ; U )̃g>
dd (t̄ ,t2; U ), (96)

where the quasiequilibrium functions of the noninteracting
leads, g

(0)≶
cc , coincide with the expressions (55), with (t1 − t2)

real. Based on Eq. (96), the formal manipulations presented in
the Appendix, which are analogous to the considerations made
in Ref. 3, finally lead to the following formula for the electron
current from the lead a to the dot:

Ja = e

N

∑
k

|tka|2
∫ ∞

−∞
dω δ(ω − ξka)

× [f (ξka + Ua)Ã(ω; U ) − g̃<
dd (ω; U )]

= e

∫ ∞

−∞

dω

2π
�(0)

a (ω + μ)

× [f (ω + Ua)Ã(ω; U ) − g̃<
dd (ω; U )], (97)

where the electronic functions g̃<
dd (ω; U ), Ã(ω; U ) are given

by Eqs. (88) and (89), respectively. Since JL = −JR in steady
state, the current formula acquires the well-known form3

J = 1

2
(JL − JR)

= e

2

∫ ∞

−∞

dω

2π
�(0)(ω + μ) [fL(ω) − fR(ω)] Ã(ω; U ), (98)

with fa(ω) = f (ω + Ua). In Eq. (98), identical leads are
assumed, so that �(0)(ω) ≡ �

(0)
L (ω) = �

(0)
R (ω). As a check of

our numerics, we find indeed that the condition JL = −JR

holds, as expected for the SCBA. For vanishing voltage bias
� → 0, we can express the current as J = −L�, where the
linear conductance

L = lim
�→0

{−J/�} (99)

results from Eq. (98) as

L = e2

2

∫ ∞

−∞

dω

2π
�(0)(ω + μ) [−f ′(ω)] Ã(ω)

= e2

2
β

∫ ∞

−∞

dω

2π
�(0)(ω + μ)f (ω)[1 − f (ω)]Ã(ω), (100)

and the electronic spectral function is now calculated in
equilibrium.

III. NUMERICAL RESULTS

As stated above, the spectral function, dot occupation,
and γ have to be evaluated self-consistently. We do this in
a two-step manner: (i) for fixed γ and a starting value nd

in Eq. (8) we calculate �
(1)
dd (ω), �(1)(ω). The corresponding

A(1)(ω) and f̄ (1)(ω) are inserted for A and f̄ in the right-hand
side of Eqs. (66) and (71). All functions are then iterated until
convergence, which is signalled by

max
ω

{|Ai+1(ω; U ) − Ai(ω; U )|} < δ, (101)

with δ being a predefined tolerance. In analogy to the
occurrence of multiple stable solutions in the mean-field ansatz
of Galperin et al.,15 for strong EP coupling or high voltages,
several roots of Eq. (73) may exist. We choose the root that
minimizes the thermodynamic potential. (ii) We do this for all
parameters γ to find the global minimum of �[γ,nd (γ )]. The
corresponding parameter will be referred to as γmin.

In the following numerical calculations, we suppose iden-
tical leads and work in the wide-band limit, so that �(0)(ω) =
�(0) is energy independent.

The equilibrium state, as well as the transport proper-
ties of molecular junctions crucially depend on the time
scales of the electronic and phononic subsystem. While the
lifetime of an electron on the dot is given by the dot-lead
coupling parameter, τel ∝ 1/�(0),29 the phononic time scale
is given by the phonon energy τph ∝ 1/ω0. The ratio �(0)/ω0

determines which subsystem is the faster one. Moreover, one
should compare the polaron formation time τpol ∝ 1/εp to
the electron lifetime. If the latter is long enough, i.e., if the
ratio εp/�(0) is large, a transient polaron can form at the dot.
The parameter g2 will yield the mean number of phonons it
contains.

A. Equilibrium situation, low temperature

We first consider the equilibrium low-temperature limit
with μL = μR = μeq = 0 and T = 0.01. Before we study
the physically more interesting regime of equal electronic
and phononic time scales, we analyze the two limiting cases
�(0) � ω0 and �(0) � ω0. In the following, ω0 = 1 fixes the
energy unit.

1. Limiting cases

In the adiabatic case �(0) � ω0, the dot deformation adjusts
quasistatically to the average electronic occupation. For small
EP coupling, standard perturbation approaches are applicable
and the expansion of the self-energy to second order leads to
the Born-approximation (BA). On a higher level, the SCBA26

provides a partial resummation of the perturbation series by
replacing the zero-order Green function in the BA self-energy
with the full Green function in a self-consistent way. As was
mentioned above, our result (53) reduces to the SCBA for
γ → 0.

Figure 1(a) shows the electronic spectral function of the
adiabatic quantum dot system with � = 0 and εp = 5. We
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FIG. 1. (Color online) For model parameters T = 0.01, μ = 0,
and � = 0. (a) Electronic spectral functions for �(0) = 10, εp = 5,
and � = 0 with γ = 0 and γmin = 0.28, respectively. Arrows mark
the phononic features for γ = 0. (b) Electronic spectral functions for
�(0) = 0.1, εp = 1, and � = 1 with γ = 1 and γmin = 0.81, respec-
tively. (c) Dot occupation and variational parameter as functions of
the bare dot level � for �(0) = 0.1 and εp = 0.3.

compare the SCBA result (γ = 0) to the result of the varia-
tional calculation, yielding γmin = 0.28. The SCBA spectrum
consists of a single band, whose width is given by �(0). Due
to the mean-field shift ∝ nd = 0.7, the renormalized dot level
lies beneath the Fermi level of the leads (at ω = 0) and the dot
acts as a tunneling well. Because of the short residence time
of electrons, the effects of inelastic scattering at the dot are
small. At ω = −ω0 (ω = +ω0), we find a small peak (dip) in
Ã (see arrows) due to narrow logarithmic singularities in the
denominator of Eq. (48).7

The variational calculation introduces several corrections to
the spectrum. The finite γmin reduces the effective mean-field
coupling, i.e., the last term in the polaron shift (8). Because it
is not fully compensated by the nd -independent contribution

to Eq. (8), the overall band shifts upward. In addition, situated
at integer multiples of ω0 from the lead chemical potential,
several inelastic resonances form overlapping phononic side-
bands. Because Ã(ω = 0) is lowered, transport through the
dot remains coherent, but with a slightly reduced tunneling
amplitude.

In the strong coupling, antiadiabatic case �(0) � ω0, the
electron occupies the dot long enough to loose coherence and
interact with the phonons. Several approaches20–22 handle this
regime by applying a complete Lang-Firsov transformation
(γ = 1)19 to the Hamiltonian, which gives the exact solution
for the isolated molecule or when the finite occupation of the
leads is neglected.31 Consequently, γmin can be considered a
measure of the small polaron character of the dot state.

Again we compare the corresponding limit γ = 1 to
the result of the variational calculation while setting � =
εp = 1 [see Fig. 1(b)]. In the former case, the dot level is
renormalized by the polaron binding energy and represented
by the zero-phonon peak at �̃ = � − εp = 0. In addition, we
find pronounced peaks separated by ω0, signaling the emission
of phonons by incident electrons and holes. The spectrum
documents the formation of a long-living polaron state at the
dot, with a mean number of phonons given by g2 = 1.

For the same parameters, the variational calculation yields
γmin = 0.81 < 1 and we find a somewhat broader main peak
and less spectral weight in the phonon sidebands (̃g2 = 0.66).
Consequently, incoherent hopping transport through the dot
takes place via an intermediate polaron state, whose spectral
weight and lifetime are smaller than predicted by the complete
(γ = 1) Lang-Firsov calculation.

Figure 1(c) finally shows the dot occupation and variational
parameter as functions of the dot level � in the antiadiabatic
case �(0) = 0.1, but for small EP coupling εp = 0.3. In this
regime, we find γmin ≈ 0.7. This is in good quantitative
agreement with the result of La Magna and Deretzis,17

who applied a variational Lang-Firsov transformation to an
effective electron model [cf. Fig. 2(b) in Ref. 17]. The above
calculations show that, although the Lang-Firsov approach
provides the correct physical mechanism, away from the
very strong coupling limit, adiabatic corrections may not be
neglected.

2. Intermediate dot-lead coupling regime

We now investigate the regime of comparable electronic and
phononic time scales by setting �(0) = 1. Figure 2 presents
the results of the equilibrium calculation for zero to large
EP coupling strengths. Shown here are, as functions of the
bare dot level �: the dot occupation nd (a), the variational
parameter γmin and the renormalized dot level η̃ (b), and the
linear conductance L (d). For fixed εp and �, Fig. 2(c) gives
the thermodynamic potential as a function of γ while Figs. 2(e)
and 2(f) display the electronic spectral functions at � = εp.

For εp = 0, the self-energy (53) is exact (black curves
in Fig. 2) and the rigid dot acts as a tunneling barrier. As
� is lowered and the dot charges continuously, the linear
conductance increases, reaching a maximum at � = 0, where
the dot level aligns with the lead chemical potentials and
resonant tunneling is possible. The width of the conductance
resonance is determined by the electron lifetime �(0).
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FIG. 2. (Color online) For model parameters �(0) = 1, T = 0.01, μ = 0, and � = 0. (a) Dot occupation as a function of the bare dot level
for several εp . (b) Variationally determined γmin and renormalized dot level as functions of the bare dot level �. (c) Thermodynamic potential as
a function of γ for εp = 6 and � in the vicinity of the discontinuous transition. Here, we consider the lower (black solid line) or upper (dashed
red line) root of the self-consistency equation for nd . (d) Linear conductance as a function of the bare dot level. (e) Electronic spectral function
for εp = 2 at resonance. (f) Electronic spectral functions for εp = 6 and � slightly above (� = 6+) and below (� = 6−) the discontinuous
transition.

For finite εp, the variational parameter γmin ≈ 0.5 and
grows only slightly at � = εp. As expected, for equal
electronic and phononic time scales we are far from the
weak coupling (γ = 0) and strong coupling (γ = 1) limits.
As a consequence of the EP coupling, the charging transition
from nd ≈ 0 to nd ≈ 1 shifts to higher � because of an
overall lowering of the effective tunneling barrier. Due to the
self-consistent mean-field coupling in Eq. (8), the transition
becomes more rapid and even discontinuous for εp > 5
(signalled by the dotted green lines). Here, the system switches
between two stable solutions of Eq. (73) in analogy to the
strong-coupling results of Refs. 15 and 17. Figure 2(c) shows
the thermodynamic potential as a function of γ for εp = 6
with � slightly below and above resonance. For γ < 0.55,
the effective mean-field coupling in Eq. (8) is so strong, that
Eq. (73) has two roots. For � < εp, the global minimum of
the thermodynamic potential, situated at γ = 0.5, corresponds
to high nd . As � crosses the resonance, the roots change
roles and the relevant nd jumps. An adiabatic phase transition
from nd = 0 to nd = 1 was also found for a single electron
at a vibrating quantum dot.14,32 Rapid polaron formation and
multistability are considered possible mechanisms for strongly
nonlinear transport properties of molecular junctions such as
NDC.15–17

From Fig. 2(a) we see that, in case of a continuous transition,
nd = 0.5 whenever � = εp. As can be easily checked from
Eq. (8), at this point the renormalized dot level resonates
with the lead chemical potentials, i.e., η̃ = 0 irrespective
of γmin. Figure 2(e) shows the corresponding electronic
spectral function for moderate coupling εp = � = 2. Few
(̃g2 = 0.5) broad sidebands signal phonon emission by either

particles (ω > 0) or holes (ω < 0). The spectrum suggests that
transmission remains coherent, but is governed by the slightly
increased lifetime of the transient polaron state ∝ 1/�̃(0),
with �̃(0) = 0.6. In case of a discontinuous charging, the
dot level is shifted instantly across the resonance and there
is no particle-hole symmetric situation, as is demonstrated
by the spectral functions near the transition for εp = 6 [see
Fig. 2(f)]. Because g̃2 = 1.5 > 1, spectral weight is shifted
from the narrow main peak to multiphonon states, reducing
the tunneling rate in the off-resonant situation considerably
(Franck-Condon blockade).

The effects of the EP coupling on the linear response of
the quantum dot can be seen in Fig. 2(d). Due to the rapid
charging and the growing lifetime of the transient polaron,
the symmetrical conductance resonance shifts and narrows.
This result coincides with the findings of Entin-Wohlmann
et al.7 and contradicts the εp-dependent broadening shown in
the work of Mitra et al.6 Note that in case of a continuous
transition, the maximum value of L is independent of the
EP coupling strength because the dependence of L on �̃(0)

cancels in the low-temperature limit.7,33 In the strong-coupling
limit, the resonance is skipped and the linear-response signal
lowers. In accordance with Refs. 7 and 6, we find no side
peaks in the linear conductance at low temperatures. This
is due to “floating” side bands6 in the electronic spectral
functions: for all � the phonon signatures are offset by
ω0 below and above the lead Fermi level, as can be seen
from Fig. 2(f). Consequently, they are not resolved in the
low-temperature linear response. This fact is missed by single-
particle approaches.21
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FIG. 3. (Color online) For model parameters �(0) = 0.3, μ = 0, � = 0, εp = 4, and several temperatures. (a) Dot occupation as a function
of the bare dot level. (b) Variationally determined γmin and renormalized dot level as functions of the bare dot level. (c) Thermodynamic potential
as a function of γ for T = 0.3 and � in the vicinity of the resonance. Here, we consider the lower (black solid line) or upper (dashed red line) root
of the self-consistency equation for nd . (d) Linear conductance as a function of the bare dot level. Inset: renormalized dot-lead coupling. (e) and
(f) Electronic spectral function Ã and integrated spectral weight S for T = 0.3 and � = 5 and � = 4.5, respectively.

B. Equilibrium, high temperature

In the following, we consider the effect of finite tempera-
tures on the equilibrium properties of the quantum dot. We set
�(0) = 0.3 and εp = 4, thereby entering the strong-coupling,
nonadiabatic regime. Figure 3 shows the same quantities as
Fig. 2, but compares the low-temperature result (T = 0.01,
black curves) to our findings for T = 0.3, which, considering
phonon energies in the order of 100 meV,2,34 corresponds to
room temperature.

Comparing the low-temperature result in Fig. 3(a) to the
one for εp = 4 in Fig. 2(a), we see that the reduction of the
bare-electron tunneling rate increases the effective EP coupling
strength in such a way that the charging transition becomes
discontinuous. If we increase the temperature, the transition
becomes continuous again. As Fig. 3(c) shows, for T = 0.3
the optimal γ is situated in a region where only a single root
of Eq. (73) exists [cf. Fig. 2(c)].

Moreover, at high temperatures the Fermi edges of the leads
soften. Thermally excited lead electrons see a considerably
reduced injection gap so that the charging transition becomes
wide spread. We know from Sec. III A 1 that in the strong-
coupling antiadiabatic regime at resonance, when phonon
emission by electrons and holes is possible, the variational
parameter γmin comes close to unity. At finite temperatures
T ≈ ω0 absorption of free phonons by incident electrons
opens additional inelastic transmission channels. Our ansatz
accounts for this with γmin approaching one at � ≈ 4.5
well above resonance. The polaron formation is signalled
by two wiggles in the renormalized dot level. The impact
on the linear conductance can be seen in Fig. 3(d): in

contrast to the low-temperature result, we now find three peaks
in L.

Figures 3(e) and 3(f) compare the electronic spectral
functions before and after the polaron formation. For � = 5
and γmin ≈ 0.6, nearly all spectral weight lies in a few
overlapping emission signals situated above the chemical
potential. Because at T ≈ ω0 the floating condition mentioned
in Sec. III A 2 is relaxed, we find a small phonon peak at the
chemical potential. That is why the conductance resonance
broadens with respect to the low-temperature result. For � →
4.5, the phonon peaks are shifted away from the chemical
potential. As γ approaches one, the polaron lifetime ∝ 1/�̃(0)

is increased by one order of magnitude [see inset Fig. 3(d)].
Consequently, the peaks in the spectral function narrow and
spectral weight is transferred to higher-order phonon signals.
The net linear response, being an average over transmission
channels near the chemical potential, decreases and shapes
the outer conductance peaks. At � = εp = 4 the narrow
zero-phonon peak crosses the usual resonance. We note that
the maximum value of L is smaller than in the low-temperature
calculation.

C. Nonequilibrium situation

The most important experimental technique for the charac-
terization of molecular junctions is IETS. Experiments can be
subdivided into nonresonant and resonant tunneling scenarios
(RIETS). In the former, the energy of the molecular ion (i.e.,
η̃) lies far above the lead chemical potentials. Consequently,
electron residence times are short and inelastic effects are
small. In the latter, resonance is achieved via the application
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FIG. 4. (Color online) For model parameters T = 0.01, �(0) =
10, εp = 2, and � = 8. (a) Second derivative of the electron current
as a function of the voltage bias for fixed γ = 0 (scaled by a factor of
20) and variationally determined parameter γmin, respectively. (b) and
(c) Electronic spectral functions and their first derivatives at � = ω0,
respectively.

of a gate voltage and strong EP interaction is expected. In
both cases the current-voltage characteristics exhibit distinct
features attributed to vibrational coupling at the junction.
In analogy to the preceding sections, we will analyze the
adiabatic and antiadiabatic limiting cases before considering
equal phononic and electronic time scales.

1. Limiting cases

Figure 4(a) shows the second derivative of the total electron
current as a function of the voltage in the nonresonant (� = 8)
adiabatic regime (�(0) = 10) for intermediate EP coupling
strength (εp = 2). For fixed γ = 0 we find a single dip at
� = ω0, where η̃ = 6.8. Here, phonon-emission by incident
electrons causes an additional inelastic tunneling current.
Moreover, quasielastic processes involving the emission and
subsequent absorption of a single phonon are no longer
virtual, because the intermediate polaron state is only partially
occupied. The tunneling current (98) is an integral over the
energies of all incident and outgoing electrons and does not
resolve the various tunneling processes. Therefore polaronic
features are observed in the second derivative of J . As
Persson showed,8 the destructive interference of the elastic
and quasielastic processes may overcompensate the positive
inelastic contribution, leading to the dip in the IETS signal. In
their SCBA analysis, Galperin et al.11 demonstrated the strong

qualitative dependence of this signature on the dot level � and
the bare molecule-lead coupling �(0). Our ansatz allows for the
polaronic renormalization of both these parameters; at � = ω0

the variational calculation gives an optimal γmin = 0.3 and the
effective dot level is further lowered (̃η = 6.4 at � = ω0). As
can be seen from the electronic spectral function in Fig. 4(b),
the spectral weight of inelastic electron tunneling processes at
ω � �/2 = 0.5 grows at the cost of the elastic transmission at
ω = 0. As a consequence, the overall IETS signal now shows
a pronounced peak at � = ω0 [note the scaling of the curves
in Fig. 4(a)] and additional phonon features whenever the
voltage crosses integer multiples of ω0. With the current being
an integral over the quantum dot spectrum, the qualitative
change in the one-phonon IETS signal can be traced back to
the first derivative of Ã(ω),10 which can be seen in Fig. 4(c).
When going from γ = 1 to γmin = 0.3, the sum of the peak
derivatives of Ã at ω = μL,R = ±�/2 changes sign, showing
that the inelastic tunneling current outweighs the destructive
interference of the elastic channels.

Figures 5(a) and 5(b) present the total current and differen-
tial conductance as functions of the voltage in the resonant
(� = 2) antiadiabatic regime (�(0) = 0.1) for intermediate
EP coupling strength (εp = 2). Because the voltage is raised
symmetrically around the equilibrium chemical potential, the
dot occupation as well as the renormalized dot level η̃ = 0
remain constant. Both the variational calculation and the
γ = 1 case exhibit steps in the total current and pronounced
peaks in the differential conductance whenever the voltage
equals multiple integers of 2ω0. Here, resonant tunneling
through phononic sidebands becomes possible. At � ≈ 12, the
current saturates because now the so-called “Fermi window”
ω ∈ [−�/2, + �/2] encompasses all phonon side bands [see
Fig. 5(c)]. In the low-voltage region � < 4, the optimal
variational parameter differs considerably from one (γmin ≈
0.9), thereby increasing the overall weight of the relevant
few-phonon inelastic tunneling channels. As a consequence,
the low-voltage current is larger than in the γ = 1 case.
Nevertheless, the growth of γmin along a current plateau
dynamically shifts spectral weight from the corresponding
resonant inelastic channel to higher lying bands outside the
Fermi window. As can be seen from the inset of Fig. 5(b), the
differential conductance is negative, which is in accordance
with the polaron-induced NDC found by La Magna and
Deretzis.17 Only when an upward step (peak in d2J/d�2)
signals the opening of a nonresonant inelastic channel, the
differential conductance becomes positive again.

2. Intermediate dot-lead coupling regime

We now turn to the regime of equal electronic and phononic
time scales, setting �(0) = 1 and keeping T = 0.01 and εp =
2 fixed. First, we hold � = 2 at resonance, starting with
γmin = 0.5 and nd = 0.5 in equilibrium (cf. Fig. 2). Figure 6(a)
presents the corresponding current-voltage characteristics. We
compare the result of the variational calculation (black solid
lines) to the case with fixed γ = 1 (blue dashed lines) and to
an effective electron model (red dash-dotted lines). The latter
is obtained by setting g = 0 in Eqs. (66) and (71) and inserting
for �(0)

a the renormalized dot-lead coupling �̃(0) resulting from
the variational calculation. It is comparable to earlier works
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FIG. 5. (Color online) For model parameters T = 0.01, �(0) =
0.1, εp = 2, and � = 2. (a) Electron current as a function of
the voltage bias, compared to the result with fixed γ = 1. Inset:
renormalized dot-lead coupling. (b) Differential conductance as a
function of the voltage bias. Inset: zoom on the low-voltage region.
(c) Electronic spectral functions Ã and nonequilibrium electron
distribution functions f̃ for several voltages.

where the averaging over the phonon state leads to an effective
electron Hamiltonian.17,35

With growing voltage, the variational parameter steadily
increases and approaches one in the high-voltage limit � > 6.
The elastic transmission rate �̃(0) shown in the inset of Fig. 6(a)
decreases accordingly. It exhibits steps at integer multiples of
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FIG. 6. (Color online) �(0) = 1, � = 2, and εp = 2. (a) Electron
current as a function of the voltage for the variational calculation
(γmin), compared to the result with fixed γ = 1 as well as an effective
electron model using renormalized parameters �̃(0) and η̃ determined
by the variational calculation. (b) Differential conductance as a
function of the voltage bias. Inset: zoom on the low-voltage region.
(c) Electronic spectral functions Ã and nonequilibrium electron
distribution functions f̃ for several voltages.

2ω0, suggesting that the polaron formation is especially rapid
whenever a new resonant inelastic channel is accessible. The
electronic spectral functions in Fig. 6(c) show that spectral
weight is shifted from the zero-phonon peak to the overlapping
phonon side bands.
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current as a function of the voltage. (b) Variationally determined
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(c) Electronic spectral functions Ã and nonequilibrium electron
distribution functions f̃ for several voltages, e.g., slightly below
(� = 14−) and above (� = 14+) the jump in γmin.

The current-voltage characteristics of the interacting results
(γmin and γ = 1) contain signatures of both limiting cases
discussed in Sec. III C 1, as can be seen from the differential
conductance in Fig. 6(b). As before, at voltages corresponding

to integer multiples of 2ω0, steps in the current (peaks in the
conductance) signal the onset of resonant inelastic tunneling.
These steps are considerably broadened and overlap with the
onset of nonresonant inelastic tunneling. As a consequence,
the polaron-induced renormalization of the resonant channel
is compensated and, in contrast to the low-voltage antiadiabatic
regime, dJ/d� remains strictly positive.

The effective electron model overestimates the current in
the region ω0 < � < 2ω0. Since the spectrum contains no
phonon side bands, for � > 2ω0 the decrease of the elastic
tunneling rate ∝ �̃(0) is not compensated by resonant or
nonresonant inelastic transmission processes. Consequently,
we find a considerably lower maximum current and, in
accordance with the results of La Magna and Deretzis,17 NDC
in the intermediate-to-high-voltage region. We conclude that
the polaron-induced renormalization of the dot-lead coupling
is indeed a possible mechanism for NDC. Yet, the effective
electron calculation misses the spectral features that are
essential for electron transport at voltages exceeding ω0.
The interplay of several inelastic transmission channels may
heavily reduce or, for �(0) � ω0, even prevent the occurrence
of NDC.

Another interesting consequence of the dynamic polaron
formation can be observed in the high-voltage regime, where
a crossover from nonresonant to resonant transport takes place.
We keep the above system parameters, but start from the
nonresonant equilibrium situation with � = 8. The result is
presented in Fig. 7. As the voltage is raised, the variational
parameter as well as the effective dot level remain nearly
constant and transport takes place via nonresonant inelastic
tunneling. At � = 12.4, the chemical potential of one lead
resonates with η̃ = 6.2, causing a broad step in the total
current. When the voltage is raised further, the system
maximizes its kinetic energy by decreasing the polaronic shift
in such a way, that η̃ stays locked to the lead chemical potential
[see Fig. 7(b)]. As the spectral functions in Fig. 7(c) suggest,
this happens at the cost of the inelastic transmission channels.
As soon as γmin = 0 and resonance of the zero-phonon level
can no longer be maintained, the system reduces its potential
energy by forming a transient polaron. Here, γmin jumps to
one and the effective dot level is lowered by the full polaron
binding energy εp. The spectral functions in the vicinity of
this transition show that the spectral weight is redistributed to
inelastic channels within the Fermi window. Consequently, the
current shows no discontinuity or NDC at this point.

IV. SUMMARY

In this work, we investigate the steady-state transport
through a vibrating molecular quantum dot. Within the
Kadanoff-Baym formalism, the nonequilibrium dot self-
energy is calculated to second order in the interaction coef-
ficients. To describe the polaronic character of the quantum
dot state, we apply a variational Lang-Firsov transformation
and determine the degree of transformation self-consistently
by minimizing the thermodynamic potential.

In this framework, we are able to study the molecular
junction for all ratios of the dot-lead coupling to the energy
of the local phonon mode, i.e., from the adiabatic to the
antiadiabatic regime. Moreover, the EP interaction can be
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varied from weak to strong coupling. Tuning the electronic
dot level and the external voltage bias, we can finally consider
resonant and off-resonant transport in the equilibrium and
nonequilibrium situation.

In the adiabatic regime, we find important corrections to
the result of the SCBA when the EP coupling grows: in the
equilibrium off-resonant situation, the mean-field oscillator
shift is reduced and spectral weight is transferred from
elastic to inelastic channels. For finite voltages, we observe
a pronounced peak in the electron tunneling signal, followed
by several pronounced multiphonon features.

In the antiadiabatic regime, away from the very strong
coupling limit, the weight of the transient polaron state is
smaller than predicted by the complete Lang-Firsov trans-
formation. Accordingly, the equilibrium linear conductance
as well as the low-voltage resonant tunneling current in-
crease, because few-phonon emission processes are amplified.
As the voltage bias grows, the full Lang-Firsov polaron
forms. Here, due to a dynamical renormalization of the
dot-lead coupling, we find NDC along the resonant current
plateaus.

Most notably, our variational approach also allows the
investigation of the intermediate regime where the dot-lead
coupling and the phonon energy are of the same order. For
weak EP coupling, the linear conductance shows a single
resonance peak as a function of the electronic dot level. When
the coupling strength is increased, this peak narrows and shifts,
signaling the crossover from coherent tunneling to sequential
hopping via a long-living, transient polaron at the dot. For very
strong coupling, the polaron formation takes place discontin-
uously, as the system switches between various metastable
states. At finite temperatures, this transition becomes contin-
uous again. At the same time, the equilibrium linear conduc-
tance signal broadens and shows distinct phonon side peaks.
Thermally activated transport via phonon absorption induces
polaron formation far from resonance. In the low-temperature
nonequilibrium situation, the differential conductance remains
positive for all voltages: the polaron-induced renormalization
of the dot-lead coupling is compensated by the onset of off-
resonant inelastic transport. In the off-resonant high-voltage
regime, the polaron level follows the lead chemical potential
to enhance resonant transport and maximize the kinetic
energy.

Let us emphasize that we determine the current through the
dot by means of an approximation to the electronic spectral
function that contains inelastic features to all orders in the
EP coupling. We compare our results to an effective electron
model, which accounts for the electron-phonon interaction
only via a renormalized dot-lead coupling parameter (e.g.,
in analogy to Ref. 17). For this model negative differential
conductance is observed. This is because the effective elec-
tronic spectral function does not include inelastic features
that affect transport for voltages exceeding the phonon
frequency.

The present study may be extended in several directions:
(i) description of hysteretic behavior in the strong-coupling,
high-voltage regime, (ii) inclusion of the dynamics of the
phonon subsystem by means of nonequilibrium phonon Green
functions, and (iii) incorporation of Coulomb interaction at
the dot to produce even stronger nonlinear effects through the

competition of a population-dependent repulsive dot potential
with the polaronic level shift.
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APPENDIX: DERIVATION OF THE
CURRENT FORMULA

Deducing the current response in Sec. II G, the following
real-time Green functions (defined according to Mahan31) are
used

gt (t1,t2) = �(t1 − t2)g>(t1,t2) + �(t2 − t1)g<(t1,t2), (A1)

gt̄ (t1,t2) = �(t2 − t1)g>(t1,t2) + �(t1 − t2)g<(t1,t2), (A2)

where � is the Heaviside function. The relations of gt and gt̄

to the retarded and advanced Green functions read

gret = gt − g< = g> − gt̄ , (A3)

gadv = gt − g> = g< − gt̄ , (A4)

and Eq. (96) may be written as

−
√

N

t∗ka

g̃<
cd (k,a; t1,t2; U )

=
∫ ∞

−∞
dt̄1 g(0)t

cc (k,a; t1,t̄1; U )̃g<
dd (t̄1,t2; U )

−
∫ ∞

−∞
dt̄1 g(0)<

cc (k,a; t1,t̄1; U )̃gt̄
dd (t̄1,t2; U ). (A5)

As far as the steady-state is concerned, all averages in the
definitions of the Green functions above dependent only on
the differences of time variables. Consequently, the integrals
on the right-hand side of Eq. (A5) may be rewritten in the form
of a convolution and the Fourier transformation of Eq. (A5) is

g̃<
cd (k,a; ω; U ) = − t∗ka√

N

[
g(0)t

cc (k,a; ω; U )̃g<
dd (ω; U )

−g(0)<
cc (k,a; ω; U )̃gt̄

dd (ω; U )
]
. (A6)

Here, the Fourier transforms of the response functions are
defined in the usual convention, i.e., without the factors
±i introduced by Eqs. (35) and (36). In particular, the
conventional Fourier transforms fulfill

[g≶(ω)]∗ = −g≶(ω), (A7)

because the left-hand side of Eq. (35) is a real function. Taking
into account the general property that [gret(ω)]∗ = gadv(ω), the
relations (A3), (A4) and (A7) give

[gt (ω)]∗ = −gt̄ (ω). (A8)
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With the help of Eqs. (A7) and (A8), the complex conjugate
of g̃

≶
cd (k,a; ω; U ) in Eq. (92) is determined and the following

formula for the current Ja results:

Ja = − e

N

∑
k

|tka|2
∫ ∞

−∞

dω

2π

{[
g(0)t

cc (k,a; ω; U )

+g(0)t̄
cc (k,a; ω; U )

]
g̃<

dd (ω; U ) − g(0)<
cc (k,a; ω; U )

× [
g̃t

dd (ω; U ) + g̃t̄
dd (ω; U )

]}
. (A9)

Substituting the explicit forms of the free electron functions

g
(0)≶
cc and using the relation gt + gt̄ = g> + g< following

from Eqs. (A3) and (A4), we obtain

Ja = − e

N

∑
k

|tka|2
∫ ∞

−∞

dω

2π
2πδ(ω − ξka){−ig̃<

dd (ω; U )

+f (ξka + Ua)i [̃g<
dd (ω; U ) − g̃>

dd (ω; U )]}. (A10)

Going back to the definitions of the Fourier transforms
according to Eqs. (35) and (36), we arrive at Eq. (97) of
Sec. II G.
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Abstract
We consider the transport through a vibrating molecular quantum dot contacted to
macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regimes,
we study the formation of a polaron-like transient state at the quantum dot for all the ratios of
the dot–lead coupling to the energy of the local phonon mode. We show that the polaronic
renormalization of the dot–lead coupling is a possible mechanism for negative differential
conductance. Moreover, the effective dot level follows one of the lead chemical potentials to
enhance resonant transport, causing novel features in the inelastic tunneling signal. In the
linear response regime, we investigate the impact of the electron–phonon interaction on the
thermoelectrical properties of the quantum dot device.

PACS numbers: 72.10.−d, 71.38.−k, 73.21.La, 73.63.Kv

(Some figures may appear in color only in the online journal)

1. Introduction

Electronic devices featuring a single organic molecule as
the active element, the so-called molecular junctions, are
promising candidates in the search for further miniaturization
and novel functionality. Such systems can be described as
quantum dots: mesoscopic systems coupled to macroscopic
charge and heat reservoirs.

Molecular junctions are susceptible to structural changes
when being occupied by charge carriers. The local interaction
with optical phonons becomes apparent as vibrational
signatures in the current–voltage characteristics of the
device [1–3], resulting from the interference of elastic and
inelastic tunneling processes and the renormalization of the
effective dot level energy [4–8]. When the vibrational energy
and the electron–phonon (EP) interaction become sufficiently
large, nonlinear phenomena emerge, such as hysteresis,
switching and negative differential conductance (NDC). As is
well known from the Holstein molecular crystal model [9, 10],
strong EP interaction may heavily reduce the ‘mobility’ of
electrons through the formation of small polarons [11–14].
Thus, the formation of a local polaron is considered a possible

mechanism for the observed nonlinear transport properties of
molecular junctions [15].

Molecular junctions may also constitute efficient power
generators or heat pumps. Their highly energy-dependent
transmission together with the tunable level energy could be
used to optimize the thermoelectrical figure of merit. In the
weak dot–lead (DL) coupling limit, the theoretical efficiency
approaches the Carnot value [16]. However, long electron
residence times increase the effective EP coupling. Moreover,
some level broadening is needed to ensure useable power
output. That is why, for practical applications, the regime
of comparable electronic and phononic time scales becomes
interesting.

In this work, we calculate the steady-state charge and
energy transport through the quantum dot for small-to-large
DL coupling and weak-to-strong EP interaction. On the basis
of a variational Lang–Firsov transformation [15, 17–21],
we determine the nonequilibrium dot spectral function in
the formalism of Kadanoff–Baym [22] and calculate the
dot self-energy in a self-consistent way up to second order
in the renormalized interaction coefficients. The variational
parameter is determined numerically by minimizing the
thermodynamic potential.

0031-8949/12/014039+10$33.00 1 © 2012 The Royal Swedish Academy of Sciences Printed in the UK
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2. The model

We consider the standard Hamiltonian of the single-site
quantum dot. It is based on a modified Fano–Anderson model
with the static impurity being replaced by a single site coupled
to a local phonon mode (h̄ = 1):

H = (1 − µ)d†d − gω0d†d(b† + b) + ω0b†b

+
∑
k,a

(εka − µ)c†
kacka −

1
√

N

∑
k,a

(
tkad†cka + t∗

kac†
kad
)

.

(1)

The quantum dot is represented by the energy level 1, with
the fermionic operators d(†). It is coupled to a local phonon
mode b(†) of energy ω0, with the dimensionless EP coupling
strength g. The operators c(†)

ka (for k = 1, . . . , N ; a = L,R)
correspond to free electrons in the N states of the left and
right the lead, with the energies εka and the equilibrium
chemical potential µ. The last term in equation (1) allows for
DL particle transfer.

To account for the competition between polaron
localization and charge transport, we apply to model (1) an
incomplete Lang–Firsov transformation [21], introducing the
variational parameter γ ∈ [0, 1]. Then H̃ = S†

γ H Sγ , with

Sγ = exp{g(b†
− b)(γ d†d + (1 − γ )nd)}. (2)

For γ = 1, Sγ coincides with the shift-transformation of the
Lang–Firsov small-polaron theory [17], which eliminates the
EP coupling term in equation (1) and lowers the dot level
by the polaron binding energy εp = g2ω0. For γ < 1, Sγ

accounts for the quasi-static displacement of the equilibrium
position of the oscillator, which is proportional to the dot
mean occupation nd = 〈d†d〉. After the transformation the
Hamiltonian reads

H̃ = η̃ d†d − gω0(1 − γ )(b† + b)(d†d − nd)

+ ω0b†b + εp(1 − γ )2n2
d +
∑
k,a

(εka − µ)c†
kacka

−
1

√
N

∑
k,a

(
tka e−γ g(b†

−b)d†cka+ t∗

ka eγ g(b†
−b)c†

kad
)

.

(3)

In (3), the DL coupling is affected by the EP interaction.
Furthermore, the bare dot level is renormalized:

η̃ = 1 − µ − εpγ (2 − γ ) − 2εp(1 − γ )2nd. (4)

Note that now d and b are the operators of dressed electrons
(in analogy to polarons) and the shifted oscillator. The
original electron and oscillator operators now read d̃ =

exp{γ g(b†
− b)} d and b̃ = b + γ gd†d + (1 − γ )gnd.

The application of a potential difference between the
leads is described by adding to (3) the interaction with the
external fields Ua = −δµa and defining the voltage bias 8,
with e being the negative elementary charge:

Hint =

∑
a

Ua

∑
k

c†
kacka, 8 = (UL − UR)/e. (5)

3. Theoretical approach

3.1. The polaronic spectral function in the Kadanoff–Baym
formalism

For a finite voltage bias between the noninteracting
macroscopic leads, the response of the quantum dot is given
by the polaronic nonequilibrium real-time Green functions

g<
dd(t1, t2; U ) = i〈d†

U (t2)dU (t1)〉, (6)

g>
dd(t1, t2; U ) = −i〈dU (t1)d

†
U (t2)〉, (7)

where the time dependence of d(†)
U is determined by H̃ + Hint.

According to Kadanoff–Baym [22], the real-time response
functions may be deduced using the equations of motion for
the nonequilibrium Green functions G≷dd(t1, t2; U, t0) of the
complex time variables t = t0 − iτ , τ ∈ [0, β]. We base our
calculations on the Dyson equation of the polaronic Green
functions, which defines the polaronic self-energy 6dd =

G(0)−1
dd − G−1

dd . For a given ordering of t1, t2, the equations

of motion of the functions g≷dd follow through the limiting
procedure t0 → −∞. Limiting ourselves to the steady-state
regime, we suppose that all functions depend only on t =

t1 − t2. After a Fourier transformation by the method used
in [22], the following exact equations for the steady state are
obtained [21]:

g<
dd(ω; U )6>

dd(ω; U ) − g>
dd(ω; U )6<

dd(ω; U ) = 0, (8)

[
ω − η̃ − Re 6dd(ω; U )

]
A(ω; U )

= 0(ω; U ) Re gdd(ω; U ). (9)

Here we defined, in analogy to the equilibrium case,

A(ω; U ) = g>
dd(ω; U ) + g<

dd(ω; U ), (10)

gdd(z; U ) =

∫
dω

2π

A(ω; U )

z − ω
, (11)

0(ω; U ) = 6>
dd(ω; U ) + 6<

dd(ω; U ), (12)

6dd(z; U ) =

∫
dω

2π

0(ω; U )

z − ω
, (13)

where A(ω; U ) is the polaronic nonequilibrium spectral
function. According to equation (10), we can write

g<
dd(ω; U ) = A(ω; U ) f̄ (ω; U ), (14)

g>
dd(ω; U ) = A(ω; U )(1 − f̄ (ω; U )), (15)

introducing the nonequilibrium distribution f̄ , which follows
from equations (8) and (12) as

f̄ (ω; U ) =
6<

dd(ω; U )

0(ω; U )
. (16)
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For the Green function gdd in equation (11) we use the ansatz
gdd(z; U ) = 1/(z − η̃ − 6dd(z; U )) and find the following
formal solution to equation (9):

A(ω; U ) =
0(ω; U )(

ω − η̃ −P
∫

dω′

2π

0(ω′;U )

ω−ω′

)2
+
(

0(ω;U )

2

)2 . (17)

To deduce a functional differential equation for the
self-energy 6dd , we add to Hint in equation (5) the interaction
with fictitious external fields {V } (cf [19–23]). The equations
of motion of the polaronic Green functions are then expressed
by means of the functional derivatives of 6dd with respect
to {V }. The resulting equations for 6

≷
dd are solved iteratively

to second order in the renormalized EP and DL interaction
coefficients in (3), while the correlation functions of the
interaction coefficients are evaluated supposing independent
Einstein oscillators. We then let {V } → 0 and perform the
limit t0 → −∞. A subsequent Fourier transformation yields

6<
dd(ω; U ) = 6

(1)<
dd (ω; U ) + [(1 − γ )gω0]2

×

[
A(ω − ω0; U ) f̄ (ω − ω0; U )nB(ω0)

+ A(ω + ω0; U ) f̄ (ω + ω0; U )(nB(ω0) + 1)
]
,

(18)

6
(1)<
dd (ω; U ) =

∑
a

{
I0(κ)0̃(0)

a (ω + µ)nF(ω + Ua)

+
∑
s>1

Is(κ)2 sinh(sθ)
[
0̃(0)

a (ω − sω0 + µ)

× nB(sω0)nF(ω−sω0+Ua) + 0̃(0)
a (ω+sω0+µ)

× (nB(sω0) + 1)nF(ω + sω0 + Ua)
]}

, (19)

with nF(ω) = (eβω + 1)−1, nB(ω) = (eβω
− 1)−1 and

0̃(0)
a (ω) = e−γ 2 g2 coth θ0(0)

a (ω), (20)

0(0)
a (ω) = 2π |ta(ω)|2%a(ω), (21)

%a(ω) =
1

N

∑
k

δ(ω − εka), (22)

θ =
1

2
βω0, κ =

γ 2 g2

sinh θ
(23)

Is(κ) =

∞∑
m=0

1

m!(s + m)!

(κ

2

)s+2m
. (24)

The function 6<
dd(ω; U ) describes the in-scattering of

polaron-like quasiparticles at the dot [24]. It accounts for
multiple phonon emission/absorption processes at finite
temperature and with finite particle densities. 6>

dd(ω; U )

results from interchanging nB ↔ (nB + 1), nF ↔ (1 − nF) and
f̄ ↔ (1 − f̄ ) in equation (18). Then the spectral function
follows using equations (12) and (17). As we see from
equation (18), for any γ < 1 the functions A and f̄ have to
be determined self-consistently. Moreover, the renormalized

dot level (4) depends on the dot occupation nd, which also has
to fulfill a self-consistency condition:

nd =

∫
∞

−∞

dω

2π
f̄ (ω; U )A(ω; U ). (25)

To determine the variational parameter γ , we minimize
the thermodynamic potential �. We use a decoupling
approximation between the electron and oscillator degrees
of freedom and neglect the influence of the dot states on
the leads. We consider an ensemble given by (3), but with
the EP and DL interaction coefficients being multiplied by
λ ∈ [0, 1]. Then the thermodynamic potential follows from the
well-known general relations in [22, 25]:

� = −
1

β
ln(1 + e−βη̃) + εp(1 − γ )2n2

d

+ 2
∫ 1

0
dλ

1

λ

∫
dω

2π
(ω − η̃) Aλ(ω; U ) f̄ λ(ω; U ).

(26)

To make the integration in equation (26) feasible, we
determine Aλ from equation (17) with the self-energy
in the first iteration step, i.e. 0

(1)
λ = λ2(6

(1)>
dd + 6

(1)<
dd ).

Correspondingly, f̄ (1)
λ follows from equation (16) using 6

(1)<
dd

and 0(1). However, η̃ will be determined from the dot
occupation nd resulting from the complete self-energy. The
parameter γ that minimizes the thermodynamic potential
determines 6

≶
dd(ω; U ) and, consequently, the complete

functions f̄ (ω; U ) and A(ω; U ).

3.2. Electron current and linear response thermopower

The operator of the electron current from lead a to the dot
reads

Ĵa =
ie

√
N

∑
k

[
tka d̃†cka − t∗

kac†
ka d̃
]
, (27)

with the negative elementary charge e. We determine the
mean value Ja = 〈 Ĵa〉 using the connection of the required
expectation values to the real-time ‘mixed’ Green functions
gcd(k, a; t1, t2; U ), which are defined similar to equations (6)
and (7) [21]. In the following, we assume identical leads and
work in the wide-band approximation, i.e. we set 0(0)

a (ω) =

00 = const. Then the steady-state charge current through the
dot, J = (JL − JR)/2, reads as

J =
e00

2

∫
∞

−∞

dω

2π
Ã(ω; U ) [nF(ω + UL) − nF(ω + UR)] ,

(28)

with the electronic spectral function Ã(ω; U ). The latter
is obtained in terms of the polaronic spectral function as
follows [21]:

Ã(ω; U ) = e−γ 2 g2 coth θ

I0(κ)A(ω; U ) +
∑
s>1

Is(κ)2 sinh(sθ)

×

( [
nB(sω0) + f̄ (ω + sω0; U )

]
A(ω + sω0; U )

+
[
nB(sω0)+1− f̄ (ω−sω0; U )

]
A(ω−sω0; U )

) .

(29)

3
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Moreover, we define the differential conductance G of the
quantum dot system as

G =
dJ

d8
. (30)

In the linear response regime, we suppose the application
of an infinitesimal voltage bias 8 = δµ/e and temperature
difference δT between the leads. Then we can expand the
current to first order in δµ and δT as [26]

J = L
δµ

e
+ X

δT

T
, (31)

where L is the linear response conductance and X is the
thermoelectric coefficient. Both quantities follow from the
linearization of the Fermi functions in equation (28) around
the equilibrium chemical potential µ and the equilibrium
temperature T :

L = lim
δµ→0

{eJ/δµ}

∣∣∣
δT =0

=
e200

2
β

∫
∞

−∞

dω

2π
Ã(ω)nF(ω)(1 − nF(ω)), (32)

X = lim
δT →0

{T J/δT }

∣∣∣
δµ=0

=
e00

2
β

∫
∞

−∞

dω

2π
ω Ã(ω)nF(ω)(1 − nF(ω)). (33)

In (32) and (33), the electronic spectral function is calculated
in equilibrium. With the help of these transport coefficients
we define the linear response thermopower

S =
eX

T L
, (34)

which is a measure of the thermoelectric efficiency of the
quantum dot system.

3.3. The weak electron–phonon coupling limit

The current formula (28) and the expressions for the linear
response coefficients in equations (32) and (33) have a simple
structure, because all the effects of the EP interaction are
contained in the electronic spectral function Ã. However,
our approximation to the spectral function includes terms
of arbitrarily high order in the EP coupling strength g:
for γ > 0, this can be seen explicitly in the summations
over s in equations (19) and (29), which describe inelastic
(quasielastic) processes involving the emission and absorption
of an unequal (equal) number of phonons. As long as γ < 1,
high order terms will also result from the iterative calculation
of the self-consistent equation (18). Via the denominator
of the polaronic spectral function in equation (17), the
transport channels will be affected by a voltage-dependent
renormalization of the effective dot level and the real part of
the self-energy. Lastly, all these contributions are functions
of the optimal parameter γmin, which itself will be voltage
dependent. This will lead to complicated current–voltage
characteristics in the numerical evaluation of equation (28),
which are presented in the next section.

For a better understanding of the numerical results, we
want to gain more insight into the different EP coupling
effects and their dependence on the parameter γ . To this end,
we consider the limit of small EP coupling strengths g and
low voltages 8 < 2ω0. Then we can expand the self-energy
and the spectral function to second order in g around the
noninteracting (i.e. zeroth-order) results. In doing so, we
work in the wide-band approximation 0(0)

a (ω) = 00 = const
and consider low temperatures T � ω0, so that nB(ω0) ≈ 0.
First, we set g = 0 in equations (18) and (19) and obtain the
zeroth-order functions

0(0)(ω) = 200, (35)

A(0)(ω) =
200

(ω − 1 + µ)2 + 02
0

, (36)

f̄ (0)(ω; U ) =
1

2

(
nF(ω + UL) + nF(ω + UR)

)
, (37)

n(0)
d =

∫
∞

−∞

dω

2π
f̄ (0)(ω; U )A(0)(ω). (38)

Equations (35)–(38) are the exact solution for g = 0 and
describe a rigid quantum dot acting as a tunneling barrier
between the leads. Next, we substitute A(0) and f̄ (0) for A and
f̄ in equation (18), which corresponds to the first step in the
self-consistent calculation. Moreover, for T � ω0, we expand
the rhs of equation (19) to second order in g, whereby only the
terms with s = 0, 1 contribute. The resulting approximation of
the function 0 can be written as

0(ω; U ) ≈ 0(0)(ω) + 0(2)(ω; U ), (39)

with the second-order correction

0(2)(ω; U ) = − 2γ 2 g200 + 2γ 2 g200

×

(
f̄ (0)(ω + ω0; U ) + 1 − f̄ (0)(ω − ω0; U )

)
+ [(1 − γ )gω0]2

[
A(0)(ω + ω0) f̄ (0)(ω + ω0; U )

+ A(0)(ω − ω0)(1 − f̄ (0)(ω − ω0; U ))
]
. (40)

The second-order renormalization of the dot level results
from substituting n(0)

d for nd in equation (25). Then η̃ is
approximated as η̃ ≈ 1 − µ + η̃(2), with

η̃(2)
= −εpγ (2 − γ ) − 2εp(1 − γ )2n(0)

d . (41)

Consequently, we expand the polaronic spectral function in
equation (17) with respect to the second-order corrections 0(2)

and η̃(2) and obtain

A(ω) ≈ A(0)(ω) + A(2)(ω; U ), (42)

with

A(2)(ω; U ) =

(
A(0)(ω)

200

)2

×

{
400(ω − 1 + µ)

(
η̃(2) + Re6(2)

dd (ω; U )
)

+
(
(ω − 1 + µ)2

− 02
0

)
0(2)(ω; U )

}
(43)

4
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and

Re6(2)
dd (ω; U ) = P

∫
dω′

2π

0(2)(ω′
; U )

ω − ω′
. (44)

Now we replace the polaronic spectral functions on the rhs of
equation (29) with the approximation in equation (42), and
keep only terms up to second order in g. Then the small
coupling approximation to the electronic spectral function
follows as

Ã(ω; U ) ≈ A(0)(ω) − γ 2 g2 A(0)(ω) + A(2)(ω; U )

+ γ 2 g2
[

A(0)(ω + ω0) f̄ (0)(ω + ω0; U )

+ A(0)(ω − ω0)(1 − f̄ (0)(ω − ω0; U ))
]
. (45)

If we insert 0(2) from equation (40) into equation (43) and
substitute the resulting expression for A(2) in equation (45),
the electronic spectral function can be written as the sum of
five terms,

Ã(ω; U ) ≈ A(0)(ω) + Ã(2)
DL(ω) + Ã(2)

6 (ω; U )

+ Ã(2)
η (ω; U ) + Ã(2)

inel(ω; U ), (46)

whereby A(0) is given in equation (36) and we have defined

Ã(2)
DL(ω) = −

γ 2g2

00

(
A(0)(ω)

)2
(ω − 1 + µ)2, (47)

Ã(2)
η (ω; U ) =

1

00

(
A(0)(ω)

)2
(ω − 1 + µ) η̃(2), (48)

Ã(2)
6 (ω; U ) =

1

00

(
A(0)(ω)

)2
(ω − 1 + µ) Re6(2)

dd (ω; U ),

(49)

Ã(2)
inel(ω; U ) = γ 2 g2

[
A(0)(ω + ω0) f̄ (0)(ω + ω0; U )

+A(0)(ω − ω0)(1 − f̄ (0)(ω − ω0; U ))
]

+

(
A(0)(ω)

200

)2 (
(ω − 1 + µ)2

− 02
0

)
×

{
2γ 2g200

(
f̄ (0)(ω + ω0; U ) + 1 − f̄ (0)(ω − ω0; U )

)
+[(1 − γ )gω0]2

[
A(0)(ω + ω0) f̄ (0)(ω + ω0; U )

+A(0)(ω − ω0)(1 − f̄ (0)(ω − ω0; U ))
]}

. (50)

The function Ã(2)
DL(ω) results from the second term on the

rhs of equation (45) and the first term in equation (40). It
accounts (to second order) for the polaronic renormalization
of the DL coupling, which gives an overall reduction of
the electronic density of states, apart from the resonance at
ω = 1 − µ. The terms Ã(2)

η (ω; U ) and Ã(2)
6 (ω; U ) represent

the voltage-dependent renormalization of the energy levels
and contain γ implicitly. Finally, Ã(2)

inel(ω; U ) denotes the
inelastic contribution to the spectral function, which results
from tunneling processes that involve the emission of a
single phonon at the quantum dot. It includes all the terms
in the electronic spectral function (45) that contain the
functions f̄ (0)(ω + ω0; U ) and 1 − f̄ (0)(ω − ω0; U ) explicitly.

As a consequence, it is finite only for |ω| > ω0 and produces
phononic sidebands in the dot spectrum. However, via Re6(2)

dd
the inelastic channels also contribute to the renormalization
of the spectrum at |ω| < ω0. Most notably, for ω → ±ω0 +
Ua , Re6(2)

dd causes logarithmic divergences in the spectral
function. If we evaluate the function f̄ (0) for T → 0 in
equation (40), then Re6(2)

dd follows from equation (44) and
contains the logarithmic divergent term

(1 − γ )2 g2ω2
000

4π

{∑
a

ln
(
(ω − ω0 + Ua)

2
)

(ω − ω0 − 1 + µ)2 + 02
0

−

∑
a

ln
(
(ω + ω0 + Ua)

2
)

(ω + ω0 − 1 + µ)2 + 02
0

}
. (51)

This term corresponds to the result of Entin-Wohlman
et al [27], but is modified by the prefactor (1 − γ )2. Moreover,
there is a new contribution to Re6(2)

dd , namely the term

γ 2 g200

4π

∑
a

ln

(
(ω − ω0 + Ua)

2

(ω + ω0 + Ua)2

)
. (52)

For 8 = 0 the logarithmic divergence appearing in
Re6(2)

dd (ω; U ) for ω → ω0 has the overall prefactor

g200

4π

(
γ 2 +

(1 − γ )2ω2
0

(1 − µ)2 + 02
0

)
, (53)

so that in the adiabatic (antiadiabatic) limit ω0 � 00 (ω0 �

00), an increase in γ raises (lowers) the overall weight of the
divergences in the spectral function.

If we insert equations (47)–(50) into the current
formula (28), we obtain the respective second-order
corrections to the noninteracting current J (0) and the
differential conductance, i.e.

J ≈ J (0) + J (2)
DL + J (2)

η + J (2)
6 + J (2)

inel, (54)

G ≈ G(0) + G(2)
DL + G(2)

η + G(2)
6 + G(2)

inel. (55)

For example, for T → 0 the second-order inelastic tunneling
current reads

J (2)
inel =

e202
0 g2

4π
2(8 − ω0)

×

(∫
−UL−ω0

−UR

dω

{
γ 2 (ω − 1 + µ)2

− 02
0[

(ω − 1 + µ)2 + 02
0

]2

+ γ 2 1

(ω + ω0 − 1 + µ)2 + 02
0

+ (1 − γ )2ω2
0

×
(ω − 1 + µ)2

− 02
0[

(ω + ω0 − 1 + µ)2 + 02
0

] [
(ω − 1 + µ)2 + 02

0

]2

}

+
∫

−UL

−UR+ω0

dω

{
γ 2 (ω − 1 + µ)2

− 02
0[

(ω − 1 + µ)2 + 02
0

]2

+ γ 2 1

(ω − ω0 − 1 + µ)2 + 02
0

+ (1 − γ )2ω2
0

×
(ω−1+µ)2

−02
0[

(ω − ω0 − 1 + µ)2+02
0

] [
(ω−1+µ)2+02

0

]2

})
.

(56)
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It is finite only for 8> ω0, so that the onset of the inelastic
tunneling processes will cause a jump in the differential
conductance. In general, explicit analytical expressions for
the second-order contributions to the differential conductance
cannot be derived, since the optimal parameter γmin is an
unknown function of the voltage. However, if we suppose that
the derivative of γmin(8) is continuous, then for a symmetrical
voltage drop UR = −UL = e8/2, the jump in the differential
conductance follows from equation (56) as

G(2)
inel

∣∣∣
8=ω0

=
e202

0 g2

2π

(
γ 2 (ω0

2 − 1 + µ)2[
(ω0

2 − 1 + µ)2 + 02
0

]2

+ γ 2 (−ω0
2 − 1 + µ)2[

(−ω0
2 − 1 + µ)2 + 02

0

]2 + (1 − γ )2ω2
0

×
(ω0

2 −1+µ)2(−ω0
2 −1 + µ)2

−04
0[

(ω0
2 −1+µ)2+02

0

]2 [
(−ω0

2 −1+µ)2 + 02
0

]2

)
.

(57)

Again, for γ → 0 only the last term on the rhs of equation (57)
remains and coincides with the result of Entin-Wohlman
et al [27]. As has been discussed in [27], this term is negative
if the following condition is fulfilled:

02
0 >

∣∣∣ω2
0

4
− (1 − µ)2

∣∣∣. (58)

Then, at 8 = ω0, it may cause a downward step in the
differential conductance. However, the new terms ∝ γ 2 in
equation (57) are always positive. For large enough γ ,
they outweigh the negative contribution to (57), so that the
overall conductance jumps upwards even if the condition in
equation (58) is fulfilled.

4. Results and discussion

In the following numerical calculations, ω0 = 1 is fixed as
the unit of energy and we set µ = 0 and T = 0.01. We work
in the wide-band approximation, with the large bandwidth
of the leads W = 60 and 0(0)

a (ω) = 002(ω2
− (W/2)2). The

phononic time scale is fixed by 1/ω0, while the electronic
time scale is given by 1/00 and is used to determine which
subsystem is the faster one. We will analyze the adiabatic and
antiadiabatic limiting cases before considering comparable
phononic and electronic time scales. In doing so, we use the
ratio εp/00 as a measure of the EP interaction strength.

For small to large DL coupling, we calculate the
polaronic spectral function A and the dot occupation nd

self-consistently and determine the variational parameter γmin

by numerically minimizing the thermodynamical potential �

as a function of γ . From A, the electronic spectral function
Ã as well as the linear response coefficients L , X and the
particle current J follow. For finite voltages, the differential
conductance G is calculated numerically.

Depending on the bare dot level 1, we distinguish
between the off-resonant (1 6= εp) and the resonant (1 = εp)
configuration. In the latter case we find that nd = 0.5 is a root
of (25) and we see from equation (4) that the renormalized
dot level resonates with the equilibrium chemical potential,
i.e. η̃ = 0, for all γmin.
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γ=0
γmin=0.29
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γ=0
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0 1 2 3 40.28

0.32

0.36

γ m
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Figure 1. For model parameters T = 0.01, 00 = 10, εp = 2 and
1 = 8. (a) Electronic spectral functions at 8 = 0 for fixed γ = 0
and variationally determined parameter γmin = 0.29. (b) Differential
conductance as a function of the voltage bias for γ = 0 and γmin in
comparison with the noninteracting case εp = 0. Inset: γmin as a
function of the voltage bias.

4.1. Polaron-induced negative differential conductance

In their work, La Magna and Deretzis [15] suggested that the
variationally determined renormalization of the DL coupling
is a possible mechanism for the observed nonlinear behavior
of the differential conductance. We investigate whether this
remains true within our approximation, which, in contrast to
the effective electron model in [15], accounts for vibrational
features in the electronic spectral function to all orders in the
EP coupling.

First we consider the adiabatic regime for weak EP
coupling by setting 00 = 10 and εp = 2. We vary the voltage
bias 0 < 8 < 4 and determine the differential conductance G.
In doing so, we choose an off-resonant configuration with
1 = 8 fixed, so that the dot occupation is small and remains
nearly constant during our calculations: nd ≈ 0.3.

As a starting point, figure 1(a) displays the electronic
spectral function at 8 = 0 for the variationally determined
parameter γmin (black line) and compares it to the result
of a calculation where we kept γ = 0 fixed instead of
determining γmin variationally. In general, due to the large
DL coupling parameter 00, the electronic spectral function
consists of a single wide band. For finite EP coupling,
vibrational features arise at ω = ±ω0. These features can
be attributed to logarithmic divergences in Re6dd , as the
second-order approximation in equation (51) suggests. While
they are hardly noticeable for γ = 0, the weight of the
logarithmic divergences increases strongly in the variational
calculation, which yields the optimal parameter γmin = 0.29.
This observation agrees with our discussion in the previous
section: for the parameters used, equation (53) predicts an
increase in the weight of the logarithmic contributions by
a factor of about 15 with respect to the γ = 0 case. Note,
however, that any divergences in the spectrum will be smeared
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Figure 2. For the same parameters as in figure 1. The various
second-order contributions to the total differential conductance.

out in our results due to the low but finite temperature and
a numerical constraint: we evaluate the self-energy slightly
above the real ω-axis to prevent the unphysical loss of spectral
weight.

In figure 1(b), the black line presents our result for
the total differential conductance G as a function of the
voltage, with the inset showing the optimal parameter γmin.
We compare the variational calculation to the cases γ = 0 and
εp = 0. For a better understanding of the results of figure 1(b),
the four panels in figure 2 show the various second-order
contributions to the total differential conductance. From
figure 1(b), it follows that for finite EP coupling the overall
conductance grows with respect to the noninteracting case.
Since we are considering the off-resonant regime, this can be
attributed mainly to the lowering of the effective dot level.
Accordingly, for γ = 0, we see in figure 2 that the function
G(2)

η accounts for almost all the increase in the conductance.
For finite γmin the effective dot level is lowered even further,
but the positive contribution G(2)

η is nearly compensated
for by the polaronic renormalization of the DL coupling,
which is shown in the upper right panel of figure 2. With
growing voltage, the optimal parameter γmin increases. As
the renormalization of the DL coupling grows stronger, a
pronounced dip forms in the differential conductance. This
mechanism is crucial for the interpretation of our calculations,
as we will see below.

At 8 = 1, phonon emission by incident electrons
becomes possible and opens up an inelastic tunneling channel.
In the case of γ = 0, we find a small downward step in
the conductance signal, since with 00 = 10 and 1 = 8, the
condition in equation (58) is fulfilled. As we discussed in
the previous section, for finite γmin the first two terms on the
rhs of equation (57) can outweigh the third, negative term.
Accordingly, our numerics show a relatively large upward
step in the differential conductance (note the different scaling
factors in the lower right panel of figure 2).

Next we investigate the polaronic renormalization in
the antiadiabatic limit (00 = 0.1) with strong EP coupling
(εp = 2). We choose the resonant configuration 1 = εp. For
these parameters, we expect the formation of a polaron-like
transient state at the quantum dot. This is confirmed by the
electronic spectral function in figure 3(a), which features
several narrow phononic bands. In the low-voltage region we
find that γmin ≈ 0.9, i.e. the weight of the variational polaron

-6 -4
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0
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γmin=0.9
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0.005
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γ=1
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Figure 3. For model parameters T = 0.01, 00 = 0.1, εp = 2 and
1 = 2. (a) Electronic spectral function of the variational calculation
for 8 = 0 and γmin = 0.9. (b) Differential conductance as a function
of the voltage bias, compared to the result with fixed γ = 1.

state is smaller than predicted by the complete Lang–Firsov
transformation.

Figure 3(b) compares the differential conductance as
a function of the voltage bias for fixed γ = 1 and the
optimal γmin. Just as in the adiabatic regime considered
above, we note small steps in the conductance at 8 =

1, 3 and 5 that signal the onset of inelastic transport. In
addition, a second kind of vibrational feature can be found:
pronounced conductance peaks arise whenever the voltage
equals multiple integers of 2ω0. Here, resonant transport
takes place through the polaronic side bands in Ã. For
γ = 1 the differential conductance stays strictly positive,
but approaches zero between these well-separated peaks.
As seen for the adiabatic case, in the full calculation the
polaronic renormalization grows stronger with increasing
voltage bias. As a consequence, in the low-voltage region
the differential conductance becomes negative between the
resonance peaks. Note, however, that at 8 = 1 and 8 = 3
the positive nonresonant conductance steps, although carrying
little weight, render the differential conductance positive
again.

Thanks to our variational approach, we are able to
investigate the interesting regime of comparable electronic
and phononic energies. To this end, we set 00 = 1 and
consider intermediate EP coupling εp = 2. As before, we
examine the resonant, electron–hole-symmetric situation with
1 = 2. Figure 4(a) shows the electronic spectral function at
zero voltage, where the variational calculation yields γmin ≈

0.5. Due to comparable electronic and phononic time scales,
the width of the few phononic side bands is of the order of
their spacing.

In figure 4(b), we compare the conductance signal of
the variational calculation to both, the γ = 0 and γ = 1
cases. In the low-voltage regime, we have γmin & 0.5 and
the DL coupling is moderately renormalized. As the voltage
grows, the variational parameter steadily increases and, as
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Figure 4. For model parameters T = 0.01, 00 = 1, 1 = 2 and
εp = 2. (a) Electronic spectral function in the variational calculation
for 8 = 0 and γmin = 0.5. (b) Differential conductance as a function
of voltage for the variational calculation (γmin), compared to the
results with fixed γ = 0 and γ = 1. Inset: optimized variational
parameter as a function of the voltage.

can be seen in the inset of figure 4(b), the polaron effect
strengthens whenever a new resonant inelastic channel is
accessible. The vibrational features in the conductance signal
are heavily modulated by the voltage-dependent polaronic
renormalization: in contrast to the cases with fixed γ , there
is no clear distinction between resonant peaks at 8 = 2, 4 and
off-resonant steps at 8 = 1, 3 and 5, since the latter become
peaks, too. Due to the comparable phononic and electronic
time scales, both kinds of vibrational features have nearly the
same spectral weight. Moreover, the differential conductance
approaches zero between the broad conductance peaks, but no
NDC is observed.

To sum up, the polaron formation involves the
redistribution of spectral weight in the local density of
states and, most importantly, the renormalization of the
effective DL coupling. For strong EP interaction, it is
indeed a possible mechanism for NDC. However, for small
to intermediate coupling, the NDC is suppressed when
multi-phonon transport processes are taken into account.

4.2. Effective dot level

In the following, we present another interesting consequence
of the variational polaronic renormalization, which concerns
the effective dot level.

We choose a slightly off-resonant configuration with 1 =

0 and εp > 0, so that in contrast to the above calculations,
the effective dot level is not pinned to the equilibrium
chemical potential. We decrease the bare DL coupling slightly
(00 = 0.33) and consider weak to intermediate EP coupling
strengths. Figure 5(a) compares the differential conductance
for γ = 0 to the variational calculation. For weak EP coupling,
figure 5(b) shows the second-order approximations G(2)

6 and
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Figure 5. For T = 0.01, 00 = 0.33 and 1 = 0. (a) Differential
conductance as a function of voltage for the variational calculation
(γmin), compared to the results with fixed γ = 0. (b) Second-order
contributions to the differential conductance for εp = 0.11.
(c) Variationally determined parameter γmin and renormalized dot
level η̃ as functions of the voltage for εp = 0.33.

G(2)
inel. Figure 5(c) finally presents the optimal parameter γmin

and the effective dot level η̃ as functions of the voltage.
With εp = 0.11, the system parameters correspond to the

case of high zeroth-order transmission presented in figure 5(a)
in the work of Entin-Wohlman et al [27]. Our result for γ = 0
is in good agreement with [27]. The conductance maximum
lies near 8 = 0 and we find a small conductance dip at 8 = 1,
which is caused by the logarithmic divergence in Re6dd . In
the full calculation for εp = 0.11, we find that γmin = 0.75 at
8 = 1. Here the dip in the total conductance vanishes. The
second-order approximation in the left panel of figure 5(b)
suggests that this is mainly due to a reduction of the weight
of the logarithmic divergence in Re6dd . From figure 5(b) we
can also see that the jump in G(2)

inel is positive for both γ = 0
and γmin, since condition (58) is not fulfilled for the given
parameters. Moreover, in the variational calculation the height
of the conductance jump is reduced with respect to the γ = 0
result, which can be confirmed using equation (57).

If we increase the EP coupling to εp = 0.33, the dip in the
total conductance reappears. But most importantly, instead of
a broad conductance resonance, we find a peak-like feature

8

2 Thesis Articles

52



Phys. Scr. T151 (2012) 014039 T Koch et al

0 5 10 15 20
Φ

0

0.1

0.2

J
(a)

0 5 10 15 20
Φ

2
2.5

3
3.5

4

η~

0
0.2
0.4
0.6
0.8

1

γ m
in

(b)

Figure 6. For model parameters T = 0.01, 00 = 1, 1 = 10 and
εp = 8. (a) Electron current as a function of the voltage.
(b) Variationally determined parameter γmin and renormalized dot
level η̃ as functions of the voltage.

at 8 = 0.7. As we see from figure 5(c), with increasing
voltage η̃ shifts upwards until at 8 = 0.62 it approaches
the chemical potential of a lead. For 0.65 < 8 < 0.8, the
variational parameter decreases in such a way that η̃ stays in
resonance with the lead chemical potential. The decrease in
γmin reduces the renormalization of the DL coupling. Thereby,
the system maximizes the resonant tunneling current with
respect to the γ = 0 case and a new peak-like conductance
feature is observed in figure 5(a). This ‘sticking’ of the
effective dot level to the lead chemical potentials is the second
main result of our variational calculations.

Now we consider the off-resonant scenario 1 = 10 for
strong EP coupling εp = 8. The results are presented in
figure 6 (note that figure 6(a) shows the total current).
As expected, the effective dot level η̃ sinks notably with
growing voltage, until at 8 = 6.2 it begins to grow linearly,
following the upper lead chemical potential. Again, the
differential conductance grows considerably. In contrast to
the intermediate EP coupling case, γmin jumps from 0.4 to
0.6 when the system switches between two local minima in
the thermodynamic potential. The resulting discontinuities
in η̃ and 0̃0 cause a noticeable drop in the total current.
As the voltage grows further, γmin decreases again. Now the
first phonon side band at η̃ + ω0 sticks to the lead chemical
potential and the conductance grows once more. A similar
behavior, involving the second and third side bands, is found
at 8 ≈ 9 and 8 ≈ 10.5, respectively, until γmin = 1 in the
high-voltage limit. Moreover, due to the strong EP coupling,
the upward steps in the current are followed by regions
with NDC.
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Figure 7. For model parameters T = 0.01, 00 = 1, εp = 2 and
8 = 0. (a) Thermopower as a function of the bare dot level in the
noninteracting (εp = 0) and the interacting system. (b) Thermo-
electric response X and linear conductance L as functions of the
bare dot level. (c) Electronic spectral functions at 1 = 2.2 for
γ = 0, 1 and γmin = 0.5.

4.3. Thermopower

Finally, we investigate the thermoelectric response of the
molecular junction in the physically most interesting regime
of intermediate DL coupling. Setting 00 = 1, we consider
the equilibrium situation 8 = 0. For εp = 2, we compare the
variational calculation to the cases with fixed γ = 0, 1 and to
the noninteracting system εp = 0. Figure 7(a) shows the linear
response thermopower S as a function of the bare dot level,
while figure 7(b) presents the thermoelectric coefficient and
the linear response conductance.

In general, S features two resonances of opposite sign.
For εp = 2 they are located at 1 ≈ εp ± 0.2. In the small
polaron limit γ = 1, our calculation predicts a substantial
increase in the maximum thermopower with respect to all
the other cases. This can be explained with the help of the
respective electronic spectral functions plotted in figure 7(c)
for 1 = 2.2. In the case of γ = 0, the spectral function
features a broad band around the Fermi edge at ω = 0. The
states with high energies ω > 0 have only slightly more
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spectral weight than the states with low energies ω < 0.
Because the integrand on the rhs of equation (33) is weighted
by ω, the resulting thermoelectric response coefficient X
is small. Physically, this means that a small temperature
difference between the leads induces the flow of high-energy
particles through the quantum dot, which, in principle, can
result in a voltage drop across the junction. In the case of
γ = 0 however, the current is compensated for by a nearly
equal counterflow of low-energy carriers, so that the overall
thermoelectric effect is small. If 1 is lowered to 1.8, the
low-energy states have the larger spectral weight and the
thermoelectric response coefficient changes sign. For 1 =

εp = 2, the spectral function is symmetric around ω = 0
so that the net charge current induced by the temperature
difference vanishes and we have X = 0.

For γ = 1, the strong renormalization of the DL coupling
reduces the width of the bands in the spectral function in
figure 7(c). As a result, near the Fermi edge the relative
weight of the high-energy states increases, so that the dot
acts as a more effective energy filter. The unfavorable
counterflow of low-energy charge carriers is suppressed
and the thermoelectric response X grows considerably (see
figure 7(b)). As can also be seen in figure 7(b), the linear
response conductance L in equation (32) decreases when γ is
set from zero to one, since it depends only on the (shrinking)
spectral weight around the Fermi edge. This, too, boosts the
thermopower S.

At 1 = 2.2 the variational calculation yields γmin = 0.5,
so that the width of the zero-phonon band lies between the
other results. Consequently, this is also true for the maximum
value of X . Note, however, that our variational calculation
maximizes the linear response conductance L with respect
to both limiting cases, so that the maximum thermopower
is only slightly larger than for γ = 0. We conclude that the
local EP interaction can, in principle, enhance the maximum
thermopower of the quantum dot device. However, for
intermediate DL coupling strengths the small polaron picture
with γ = 1 greatly overestimates the effect.

5. Concluding remarks

To summarize, adopting a generalized variational
Lang–Firsov transformation, we calculate the interacting
spectral function of a molecular quantum dot for small-to-
large DL coupling and weak-to-strong EP interaction. We
investigate the impact of the formation of a polaronic dot
state on the steady-state current–voltage characteristics, as
well as on the linear response thermopower of the system.

In the case of strong EP interaction, the
voltage-dependent polaronic renormalization of the DL
coupling causes NDC. For comparable electronic and
phononic time scales, this effect is diminished by transport
through overlapping phonon side bands.

We find that in the off-resonant or ungated configuration,
the renormalized dot level follows the lead chemical
potentials. This process generates new peaks in the differential
conductance signal.

In the equilibrium situation, the EP coupling enhances the
thermopower of the quantum dot device, albeit by a smaller
factor than predicted in the small polaron limit.

This work may be extended in several directions. Most
notably, in the nonequilibrium regime, one should investigate

the impact of the observed NDC on the thermoelectric
properties of the molecular junction. The dynamics and
heating of the vibrational subsystem could be included
by means of nonequilibrium phonon Green functions [28].
Moreover, in the light of recent advances in nanotechnology
and experimental studies, new geometries have come into
focus, such as multi-terminal junctions or a molecule placed
on an Aharonov–Bohm ring [29].
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Thermoelectric effects in molecular quantum dots with contacts
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We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is
contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic
and phononic timescales, we investigate the impact of the formation of a local polaron on the thermoelectric
properties of the junction. We apply a variational Lang-Firsov transformation and solve the equations of motion
in the Kadanoff-Baym formalism up to second order in the dot-lead coupling parameter. We calculate the
thermoelectric current and voltage for finite temperature differences in the resonant and inelastic tunneling
regimes. For a near resonant dot level, the formation of a local polaron can boost the thermoelectric effect because
of the Franck-Condon blockade. The line shape of the thermoelectric voltage signal becomes asymmetrical due
to the varying polaronic character of the dot state and in the nonlinear transport regime, vibrational signatures
arise.

DOI: 10.1103/PhysRevB.89.155133 PACS number(s): 72.10.−d, 71.38.−k, 73.21.La, 73.63.Kv

I. INTRODUCTION

Molecular junctions are electronic devices that consist of
an organic quantum dot that is contacted by two macroscopic
leads. Modern nanotechnology allows for the reliable fabri-
cation of systems where the dots are single aromatic rings,
molecular wires [1], C60 fullerenes [2,3], or carbon nanotubes
[4]. They are a promising candidates in the search for further
miniaturization of electronic and thermoelectric devices [5].

Transport through such systems is determined by the dis-
crete levels of the dot, whose position relative to the Fermi en-
ergy can be tuned, e.g., with the help of a third (gate) electrode
[6]. The level broadening depends on the dot-lead coupling
strength, which can be manipulated via the lead distance
or through the choice of different metal-molecule anchoring
groups [7]. In addition to these two external parameters,
electron-phonon (EP) interaction influences transport through
molecular junctions: when it is occupied by charge carriers,
the molecule may undergo structural changes or vibrations
that correspond to the excitation of local optical phonons of
considerable energy. They show up as vibrational signatures
in the current-voltage characteristics of the device [2,8].

A temperature difference between the leads induces a cur-
rent of charge carriers across the junction. This thermoelectric
effect is measured by recording, for constant temperature
difference, the voltage bias necessary to cancel this current
[9]. The quotient of the temperature difference and the ther-
movoltage, the so-called thermopower, can be used to probe
the systems Fermi energy [10] and the vibronic structure of
the molecule’s state [11,12]. Most of the experimental findings
are well understood within a linear response formulation
of the thermopower [13]. However, the applied temperature
differences can be tens of degrees Kelvin, i.e., larger than
the dot-lead coupling energy. Some features of the measured
voltage histograms, such as side peaks and temperature
dependent widths [9], are not accounted for in the linear theory.
That is why, recently, the discussion of the thermopower
has been extended to the nonlinear regime [14,15]. Then the
question arises, how the thermoelectric coefficients can be
generalized. Our approach in the present work is motivated by
the experimental situation; for a given temperature bias, we

determine the thermovoltage numerically by minimizing the
thermally induced charge current.

We base our calculations on the Anderson-Holstein model.
Here, the organic molecule is represented by a single energy
level and a local optical mode, which is linearly coupled to
the electron on this level. The quantum dot is connected to
two macroscopic leads, while the local mode is coupled
to a phonon bath. The current between the leads is given
by the interacting dot density of states [16]. Based on such
models, different methods have been applied, such as the
numerical [17,18] and functional renormalization group [19],
rate equations [11,20], master equations [12,14,21], and
nonequilibrium Keldysh Green functions [22] to describe
transport through the dot for small-to-large dot-lead coupling
and weak-to-strong EP interaction.

In the antiadiabatic, strong EP coupling regime, typically, a
Lang-Firsov transformation [23] is applied, based on the exact
solution of the isolated dot. It predicts the formation of a local
polaron, which reduces the effective dot-lead coupling expo-
nentially. This could be beneficial for the thermoelectric re-
sponse of the system [14,24]. For practical applications, how-
ever, a moderate level broadening is needed to ensure usable
power output. Moreover, long electron residence times and
strong EP interaction may lead to the accumulation of energy
at the dot and, consequently, to its degradation [25]. Because
of this, the regime of comparable electronic and phononic time
scales and intermediate EP interaction becomes interesting.

To account for the polaronic character of the dot-state
away from the strong EP coupling, antiadiabatic limit, we
use an approach that is based on a variational form of the
Lang-Firsov transformation [26]. For the polaron problem,
the variational Lang-Firsov approach has been proven to
give reliable results in the whole electron-phonon coupling
and phonon frequency regime, even in the most physically
difficult polaron crossover region [27]. Here, the polaron
variational parameter is determined by minimizing the relevant
thermodynamical potential.

In previous work [28], we considered the steady-state
current response of the quantum dot to a finite voltage
difference between the leads. In doing so, we assumed that the
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temperatures of the leads and of the phonon bath are all equal.
The calculations in these papers were based on the Kadanoff-
Baym formalism [29], which relies on the relation between
the real-time response functions and the nonequilibrium Green
functions of the complex time variables.

The present work will focus on the thermoelectric effects
induced by a finite temperature difference between the leads.
Section II A introduces the model and the variational ansatz
we employ to describe a vibrating quantum dot that is coupled
to a phonon heat bath and two macroscopic leads at different
temperatures. Because for such a setup, the temperature is
not constant throughout the system, the reasonings of our
earlier approach [28] have to be modified. That is why in
Sec. II B we generalize the Kadanoff-Baym method such that
the steady-state equation of the response functions, as well as
their formal solution deduced in Ref. [28], are applicable to the
present case. In Sec. II C, we then derive an approximation for
the polaronic self-energy, and Sec. II D provides the relation
between the polaronic and electronic spectral functions, the
latter of which enters the current formula. In Sec. II E, we
derive the thermodynamic potential which will be used to
determine the variational parameter numerically. Section III
presents our numerical results. The main conclusions and
future prospects can be found in Sec. IV.

II. THEORY

A. Model and variational ansatz

We consider a molecular quantum dot in the three-terminal
configuration depicted in Fig. 1, which will be modelled by
the following Hamiltonian:

H = (� − μ)d†d − gω0d
†d(b† + b) + ω0b

†b

+
∑
k,a

(εka − μ)c†
kacka − 1√

N

∑
k,a

(tkad
†cka + t∗kac

†
kad).

(1)

Here, the quantum dot is represented by a single energy level
� with the fermionic operators d (†). It interacts with a local
optical phonon mode b(†) of energy ω0, where the EP coupling
strength is given by the so-called polaron binding energy,

εp = g2ω0. (2)

FIG. 1. (Color online) Sketch of the quantum dot model. The
electronic level � is coupled to two macroscopic leads, each in
its own thermal equilibrium with different temperatures TL,R and
chemical potentials μL,R . The dot electrons interact with an optical
phonon mode of energy ω0 that is coupled to a phonon bath at
temperature TP .

By the last term in Eq. (1), the dot is coupled to left
(a = L) and right (a = R) leads, each of which contains N

free electrons with the energies εka and the corresponding
fermionic operators c

(†)
ka , respectively. In equilibrium, the dot-

lead system is characterized by a common chemical potential
μ and a global temperature T .

In the nonequilibrium situation, a voltage difference be-
tween the leads is described by adding to (7) the term

Hint =
∑

a

Ua

∑
k

c
†
kacka (3)

with the voltage bias

� = (UL − UR)/e, (4)

where e < 0 is the electron charge. In addition, we consider
a temperature difference between the macroscopic leads,
whereby each lead is supposed to stay in its own thermal
equilibrium with the temperatures TL and TR , respectively. We
also suppose that the local oscillator is coupled to its own
heat bath, which has the temperature TP . In accordance with
Entin-Wohlman [30], we assume that the coupling to this heat
bath (indicated as tP in Fig. 1) far exceeds the EP-coupling
strength, so that the phonon population at the dot is given by
the Bose-Einstein distribution:

nB(ω) = (eβP ω − 1)−1 with βP = (kBTP )−1. (5)

In the following calculations, we suppose that TP = TR = T

and TL �= T in general. Moreover, all energies will be taken
with respect to the equilibrium chemical potential, i.e., μ = 0.
We raise the voltage bias symmetrically around μ, i.e., μL =
−e�/2 and μR = e�/2.

To account for the polaron localization at the dot, we
apply to the Hamiltonian (1) an incomplete Lang-Firsov trans-
formation Sγ [26,28], introducing the variational parameter
γ ∈ [0,1]:

H̃ = S†
γ HSγ , Sγ = exp[γg(b† − b)d†d]. (6)

The transformed Hamiltonian then reads

H̃ = �̃ d†d − Cdd
†d + ω0b

†b

+
∑
k,a

εkac
†
kacka −

∑
k,a

(Ckad
†cka + C

†
kac

†
kad), (7)

where the renormalization of the dot level and the interaction
coefficients depends on the parameter γ :

�̃ = � − εpγ (2 − γ ), g̃ = γg, (8)

Cka = tka√
N

e−g̃(b†−b), Cd = gω0(1 − γ )(b† + b). (9)

Now d and b are the operators of dressed electrons (in analogy
to polarons) and the shifted local oscillator. The original
electron and oscillator operators read d̃ = exp[γg(b† − b)] d

and b̃ = b + γgd†d, respectively.

B. Response functions and steady-state equations

In our previous works [28], we considered the electron
current response of a molecular quantum dot that was initially
in equilibrium with the leads as well as with the phononic bath
at a common, fixed temperature. Our calculations were based
on the Kadanoff-Baym theory [29]. At first, we summarize
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the aspects of this nonequilibrium response theory that are
essential for the present setting.

The relevant response functions are represented by the real-
time Green functions of the dot-operators d (†) and the lead
operators c

(†)
ka , e.g.,

gdd (t1,t2; U ) = −i〈T dU (t1)d†
U (t2)〉, (10)

g<
dd (t1,t2; U ) = i〈d†

U (t2)dU (t1)〉, (11)

g>
dd (t1,t2; U ) = −i〈dU (t1)d†

U (t2)〉. (12)

The functions gcd of the “mixed” operators c
(†)
ka and d (†) are

defined in an analogous way. In Eqs. (10)–(12), the time
dependence of d

(†)
U is determined by H̃ + Hint. The symbol T

means the standard time-ordering operator so that the function
gdd is equal to the functions g<

dd (t1,t2; U ) and g>
dd (t1,t2; U )

for t1 < t2 and t1 > t2, respectively. The statistical average
〈· · · 〉 corresponds to the equilibrium state at the temperature T

before the disturbance was turned on. Going to the interaction
representation, the Heisenberg operators dU are expressed as

dU (t) = V −1(t)d(t)V (t), (13)

V (t) = Tt exp

[
−i

∫ t

−∞
dt ′Hint(t

′)
]

. (14)

The real-time response functions may be deduced using the
equations of motion for the nonequilibrium Green functions of
the complex time variables t = t0 − iτ , τ ∈ [0,β], defined as

Gdd (t1,t2; U,t0) = − i

〈S〉 〈Tτ d(t1)d†(t2)S〉, (15)

S = Tτ exp

[
−i

∫ t0−iβ

t0

dt Hint(t)

]
. (16)

The time dependence of the operators in Eq. (15) is determined
by H̃ only, while the external disturbance is explicit in the
time-ordered exponential operator S. The operation Tτ orders
the operators by the imaginary parts of the times t1 and t2, so
that Gdd (t1,t2; U,t0) = G>

dd (t1,t2; U,t0) for i(t1 − t2) > 0 and
Gdd (t1,t2; U,t0) = G<

dd (t1,t2; U,t0) for i(t1 − t2) < 0. To find

the relation between the functions G
≶
dd and g

≶
dd , the function

Gdd is considered for i(t1 − t2) < 0:

G<
dd (t1,t2; U,t0) = i

〈U (t0,t0 − iβ)〉
× 〈U (t0,t0 − iβ)U−1(t0,t2)d†(t2)U (t0,t2)

×U−1(t0,t1)d(t1)U (t0,t1)〉, (17)

where

U (t0,t) = Tτ exp

[
−i

∫ t

t0

dt ′ Hint(t
′)
]

. (18)

The continuation of U (t0,t) and V (t) to analytic functions of
the time variables leads to the identification of U (t0,t) with
V (t) in the limit t0 → −∞. Consequently, the connection of
the analytic functions G

≶
dd and g

≶
dd is given by

lim
t0→−∞ G

≶
dd (t1,t2; U,t0) = g

≶
dd (t1,t2; U ), (19)

with similar relations for the functions G
≶
cd and g

≶
cd .

It is evident that the derivation of Eq. (19) outlined above
does not refer to some special properties of the statistical
ensemble, nor to the physical meaning of β. In this way, it
is possible to generalize the definition (15) for Gdd assuming
the mean value 〈· · · 〉 to be unspecified and the complex-time
variable to be defined in the interval t ∈ [t0,t0 − iσ ], where the
time-ordering parameter σ has no specific physical meaning.
We assume that before the disturbance (3) was turned on, the
system was in a steady state with the temperatures TL, TR

of the left and right leads, and TP of the phonon bath. The
function Gdd defined in this way does not have the properties
of the temperature (β) dependent Green function in Eq. (15),
it rather represents a functional of the ordered operators which
we use to determine the real-time response functions gdd .

To do this, we define, in analogy to the self-energy, the
function 
dd (t1,t2; U,t0) by the equation[
G

(0)−1
dd (t1,t̄) − 
dd (t1,t̄ ; U,t0)

] • Gdd (t̄ ,t2; U,t0) = δ(t1 − t2),

(20)

with the inverse zeroth-order function

G
(0)−1
dd (t1,t2) =

(
i

∂

∂t1
− �̃

)
δ(t1 − t2). (21)

In Eq. (20), the matrix multiplication “•” is defined by the
integration

∫ t0−iσ
t0

dt̄ · · · containing the time-ordering param-
eter σ . The δ function of complex arguments is understood
with respect to this integration. The inverse function to Gdd

is given as G−1
dd (t1,t2; U,t0) = G

(0)−1
dd (t1,t2) − 
dd (t1,t2; U,t0).

The deduction of the steady-state equations for the real-
time functions g<(t1,t2; U ) and g>(t1,t2; U ) by the limiting
procedure t0 → −∞ is analogous to that given in Ref. [28].
Defining the Fourier transformations according to Kadanoff-
Baym [29],

g
≶
dd (ω; U ) = ∓i

∫ ∞

−∞
dt g

≶
dd (t ; U )eiωt , (22)

and, similarly for 
≶(ω; U ), the solution of the steady-state
equations may be written as follows:

A(ω; U ) = g>
dd (ω; U ) + g<

dd (ω; U ), (23)

g<
dd (ω; U ) = A(ω; U )f̄ (ω; U ), (24)

f̄ (ω; U ) = 
<
dd (ω; U )


(ω; U )
, (25)


(ω; U ) = 
>
dd (ω; U ) + 
<

dd (ω; U ), (26)

with the nonequilibrium polaronic spectral function

A(ω; U ) = 
(ω; U )[
ω − �̃ − P

∫
dω′
2π


(ω′;U )
ω−ω′

]2 + [

(ω;U )

2

]2 . (27)

C. Self-energy

According to the preceeding section, the concrete form of
the steady-state solution for the special choice of interactions is
determined by the functions 


≶
dd . To find an explicit expression

for 

≶
dd , we start with the equations of motion for Gdd and Gcd ,

which are given by the commutators of the operators d (†) and
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c
(†)
ka with H̃ . As a purely formal device, we add to Hint in Eq. (3)

the interaction with fictitious external fields {V }. The equations
of motion of Gdd and Gcd are then expressed by means of the
functional derivatives of 
dd with respect to these fields. The
resulting equations for 


≶
dd are solved iteratively. We then let

{V } → 0 and perform the limit t0 → −∞. In the following
calculations, we will use the self-energy function after the first
iteration step [28]:



(1)≶
dd (t1,t2; U ) =

∑
k,a

|〈Cka〉|2 g(0)≶
cc (k,a; t1,t2; U )

×
(

I0(κ) +
∑
s�1

Is(κ)2 sinh(sθ )

×{[nB(sω0) + 1]e±isω0(t1−t2)

+ nB (sω0)e∓isω0(t1−t2)}
)

, (28)

where we have defined

θ = 1

2
ω0βP , κ = g̃2

sinh θ
, (29)

Is(κ) =
∞∑

m=0

1

m!(s + m)!

(
κ

2

)s+2m

. (30)

The Bose function nB in (28) contains the phonon-bath
temperature TP according to Eq. (5), while the zeroth-order
functions of the leads depend on the different temperatures TR

and TL:

g(0)<
cc (k,a; t1,t2; U ) = ie−iεka tfa(εka + Ua), (31)

g(0)>
cc (k,a; t1,t2; U ) = −ie−iεka t [1 − fa(εka + Ua)], (32)

with the lead Fermi-functions

fa(ω) = (eβaω + 1)−1, βa = (kBTa)−1. (33)

The Fourier transformation of Eq. (28) leads to



(1)<
dd (ω; U ) =

∑
a

(
I0(κ)
̃(0)

a (ω)fa(ω + Ua) +
∑
s�1

Is(κ)2 sinh(sθ )

×{

̃(0)

a (ω − sω0)nB(sω0)fa(ω − sω0 + Ua) + 
̃(0)
a (ω + sω0)[nB(sω0) + 1]fa(ω + sω0 + Ua)

})
, (34)

with the renormalized dot-lead coupling function


̃(0)
a (ω) = e−g̃2 coth θ
(0)

a (ω), (35)

which depends on the lead density of states:


(0)
a (ω) = 2π |ta(ω)|2 1

N

∑
k

δ(ω − εka). (36)

From Eq. (34), 

(1)>
dd (ω; U ) results by interchanging nB ↔ (nB + 1) and fa ↔ (1 − fa). Note that Eq. (34) is similar to our

result for the self-energy in Ref. [28], but now f is replaced by the individual lead Fermi-functions fa that were defined in (33).
If we insert the approximation (34) into Eq. (26), we find


(1)(ω; U ) = 

(1)
L (ω; U ) + 


(1)
R (ω; U ), (37)


(1)
a (ω; U ) = I0(κ)
̃(0)

a (ω) +
∑
s�1

Is(κ)2 sinh(sθ )
{

̃(0)

a (ω − sω0)[nB(sω0) + 1 − fa(ω + Ua − sω0)]

+ 
̃(0)
a (ω + sω0)[nB(sω0) + fa(ω + Ua + sω0)]

}
. (38)

From the functions 
(1)(ω; U ) and 

(1)<
dd (ω; U ), the first-

order spectral function A(1)(ω; U ), the distribution function
f̄ (1)(ω; U ) and the response functions g

(1)≷
dd (ω; U ) follow

according to Eqs. (27), (25), and (24), respectively.

D. Electron current

The operator of the particle current from lead a to the dot
reads

Ĵa = i√
N

∑
k

(tkad̃
†cka − t∗kac

†
kad̃). (39)

Its mean value Ja = 〈Ĵa〉 is given by the real-time response
functions g̃cd of the electron operators, which are defined in
analogy to Eqs. (11) and (12), e.g.,

i〈d̃†cka〉 = g̃<
cd (k,a; t1,t1; U ). (40)

We determine g̃cd based on the equation of motion of the
corresponding function G̃cd (k,a; t1,t2; U,t0) of complex-time
variables:

G̃cd (k,a; t1,t2; U,t0) = − t∗ka√
N

G(0)
cc (k,a; t1,t̄ ; U )

•G̃dd (t̄ ,t2; U,t0). (41)
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The current Ja results as

Ja =
∫ ∞

−∞

dω

2π

(0)

a (ω)
[
fa(ω + Ua)Ã(1)(ω; U ) − g̃

(1)<
dd (ω; U )

]
,

(42)

where Ã(1) and g̃
(1)<
dd are the electronic dot spectral function

and response function. In the steady-state regime, our approx-
imation conserves the particle current: JL + JR = 0. In the
following, identical leads are assumed and we work in the
wide-band limit where 


(0)
L (ω) = 


(0)
R (ω) ≡ 
0. Then the total

particle current through the dot, J = (JL − JR)/2, is given by

J = 
0

2

∫ ∞

−∞

dω

2π
Ã(1)(ω; U )[fL(ω + UL) − fR(ω + UR)].

(43)

Based on Eq. (43), we determine the electron current through
the quantum dot numerically. We note that in the present
work we are only interested in the current response to finite
voltage biases and temperature differences between the leads.
The generation of an electronic response merely by the
interaction with a hot phonon bath would require different,
energy-dependent densities of states in the leads, as was shown
in Ref. [30]. In our calculations however, we consider identical

lead densities of states. That is why J = 0 for all TP , as long
as TL = TR and � = 0.

To find a relation between the polaronic and electronic
functions, we decouple the fermionic and bosonic degrees of
freedom in the electronic response function as is customary
[31,32],

g̃<
dd (t1,t2; U ) ≈ g<

dd (t1,t2; U ) 〈e−g̃(b†−b)t2eg̃(b†−b)t1〉, (44)

As stated in Sec. II A, the local oscillator is supposed to be
strongly coupled to the heat bath. Accordingly, we neglect the
influence of the EP interaction on the dynamics of the phonon
subsystem and evaluate the bosonic correlation function in (44)
using Eq. (5). The first-order electronic response functions then
read

g̃
(1)≶
dd (ω; U )

= e−g̃2 coth θ

(
I0(κ)g(1)≶

dd (ω; U ) +
∑
s�1

Is(κ)2 sinh(sθ )

×{
[1 + nB(sω0)]g(1)≶

dd (ω ± sω0; U )

+nB(sω0)g(1)≶
dd (ω ∓ sω0; U )

})
. (45)

The corresponding electronic spectral function Ã(1)(ω; U )
follows according to the steady-state equation (23) as

Ã(1)(ω; U ) = g̃
(1)<
dd (ω; U ) + g̃

(1)>
dd (ω; U ) = e−g̃2 coth θ

(
I0(κ)A(1)(ω; U ) +

∑
s�1

Is(κ)2 sinh(sθ )

×{[nB(sω0) + f̄ (1)(ω + sω0; U )]A(1)(ω + sω0; U ) + [nB(sω0) + 1 − f̄ (1)(ω − sω0; U )]

×A(1)(ω − sω0; U )}
)

. (46)

E. Variational procedure

To determine the optimal variational parameter γmin, we
have to minimize the relevant thermodynamic potential. This
poses a problem, since for finite �T , the effective temperature
determining the statistics of the dot electron is not known. It
will be given by the constitution of the steady state due to the
coupling of the dot with the surroundings. In the present paper,
we suppose γ to be mainly determined by the EP interaction
terms contained in Eq. (1), since the variational parameter was
introduced to characterize the polaronlike quasilocalization
of the dot electron. Therefore we assume the equilibrium
thermodynamic potential of the system, before the temperature
and voltage differences were turned on, to be a reasonable
first approximation for the variational function. The use of the
well-known “λ trick” to take the interaction terms from H̃ into
account results in [29]:

� = − 1

β
ln(1 + e−�̃β)

+2
∫ 1

0

1

λ

∫
dω

2π
(ω − �̃)A(1)

λ (ω)f (ω). (47)

The function A
(1)
λ represents the first-order equilibrium spectral

function if the interaction coefficients in Eq. (7) are multiplied
by the factor λ. If we write A

(1)
λ in terms of 


(1)
λ = λ2
(1), we

can carry out the λ integration and find

� = −
∫ ∞

−∞

dω

π
f (ω)

{
π

2

+ arctan

[
ω − �̃ − P

∫
dω′
2π


(1)(ω′)
ω−ω′


(1)(ω)/2

]}
. (48)

Via �̃ and 
(1), the thermodynamic potential � is a function
of γ . For given parameters εp, 
0, ω0, �, and T , the optimal
variational parameter γmin will be determined in equilibrium,
i.e., for �T = 0 and � = 0, by minimizing �. We then
keep γmin fixed and calculate the self-energy, the spectral
function and the resulting particle current for finite voltages or
temperature differences between the leads.

III. NUMERICAL RESULTS

Depending on the type of molecular junction, the energies
of the characteristic vibrational modes range from the order
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of 10 meV in small molecules [33] to several 100 meV
in C60 molecules [2]. In the following calculations, the
corresponding model parameter ω0 will be used as the unit of
energy, i.e., we keep ω0 = 1 fixed and set � = 1, |e| = 1, and
kB = 1. We assume identical leads and work in the wide band
approximation, so that the dot-lead coupling is determined
by a single parameter: 


(0)
L (ω) = 


(0)
R (ω) ≡ 
0. Furthermore,

we consider low equilibrium temperatures, T/ω0 � 1. Then,
according to Eq. (35), the renormalized dot-lead coupling
parameter is approximately given as


̃0 ≈ 
0 e−γ 2εp/ω0 . (49)

Usually, the ratio of the bare dot-lead coupling parameter

0 to the phonon energy ω0 is used to determine whether
the system is in the adiabatic (
0 � ω0) or anitadiabatic
(
0 � ω0) regime. Recently, Eidelstein et al. [18] argued that
for strong EP interaction, i.e., εp/ω0 > 1, the antiadiabatic
regime can be extended to 
0 � ω0 as long the exponential
renormalization of the dot-lead coupling parameter in (49) is
so strong that 
̃0 � ω0. In this case, the “mobility” of passing
charge carriers is reduced, so far, that the local oscillator is still
fast enough to adjust to them individually. Because then the
physics is essentially those of the antiadiabatic regime, it can
be called the “extended antiadiabatic regime” [18]. Only when

̃0 approaches ω0 the system crosses over to the adiabatic
regime.

To investigate the latter situation, in the present work, we
consider comparable electronic and phononic timescales 
0 �
ω0 and moderate EP coupling εp � ω0. Since in our approach,
the polaronic renormalization in Eq. (49) also depends on the
value of the variational parameter γ ∈ [0,1], we can interpolate
between the extended adiabatic regime and the aforementioned
crossover regime.

A. Dot state in the crossover regime

To understand the thermoelectric response of the dot,
we first investigate the dots electronic spectral function in
equilibrium. Thereby we keep the parameters ω0 = 1, T =
0.01, � = 0, �T = 0, and εp = 2 fixed and consider two
parameter sets for 
0 and �.

The first set is 
0 = 1 and � = 2, which means that
the electronic and phononic subsystems react on a similar
timescale and the dot level acts as a tunneling barrier between
the leads. For these parameters, our variational calculation
yields an optimal γmin = 0.59. As a consequence, the effective
dot level given in Eq. (8) is lowered to near resonance, �̃ =
0.33. Moreover, the effective dot-lead coupling is reduced
by about half, 
̃0 ≈ 0.5, and we are in the aforementioned
crossover regime [18].

For the second parameter set, we reduced the dot-lead
coupling to 
0 = 0.5 (meaning the phononic subsystem is
the faster one) and raised the bare dot level to � = 2.5. This
results in γmin = 0.54, 
̃0 = 0.28, and �̃ = 0.91, so that the
renormalized dot level is still far from resonance.

The electronic spectral functions for the first and second
parameter set are presented as the black curves in Figs. 2(a)
and 2(b), respectively. We compare them to two limiting cases:
the red dashed curves represent the small polaron limit, where
we set γ = 1 instead of the optimal γmin. Then Sγ in Eq. (6)

0
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(ω
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FIG. 2. (Color online) For ω0 = 1, T = 0.01, and εp = 2. (a)
Electronic equilibrium spectral function for 
0 = 1, � = 2, γmin =
0.59, �̃ = 0.33, and 
̃0 = 0.5. The variational calculation (black
lines) is compared to the small polaron limit γ = 1 (red dashed lines)
and to the result for εp = 0 (blue dot-dashed lines). In the latter two
cases, we set � in such a way that �̃ is the same as in the variational
calculation. (b) Same as (a), but for 
0 = 0.5, � = 2.5, γmin = 0.54,
�̃ = 0.91, and 
̃0 = 0.28. (c) and (d) For the same parameters as in (a)
and (b), thermally induced current J as a function of the temperature
difference �T between the leads.

corresponds to the complete Lang-Firsov transformation. In
this case, we have 
̃0 = 0.14 and 0.07, respectively, and the
system is described as being in the extended antiadiabatic
regime. The blue dot-dashed curves follow from setting εp =
0, which represents a rigid quantum dot without EP interaction.
In both limiting cases, we set � in such a way, that �̃ is the
same as in the respective variational calculation.

In general, for εp = 0, the electronic spectral function
features a single broad band centered at ω = �. From
setting g = 0 in Eqs. (37) and (27), we see that it has a
Lorentzian shape and its width is given by the bare dot-lead
coupling parameter 
0. For finite EP interaction and γ = 1,
the polaronic character of the dot state is signalled by the
appearance of several narrow side bands, which are given by
the terms with s � 1 in Eq. (46). These side bands represent
the emission and absorption of optical phonons by the incident
electrons. Their width is determined mainly by the small
parameter 
̃0 and their maxima are located multiple integers
of ω0 away from the central (zero-phonon) peak.

Note, however, that the phonon peak corresponding to
ω = �̃ − ω0 is suppressed in Figs. 2(a) and 2(b), and only a
small shoulder at ω = −ω0 remains. This is a consequence of
Pauli blocking and can be understood from Eqs. (34) and (38);
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for small �T , we have nB(sω0) ≈ 0 and the Fermi functions
of both leads are nearly steplike. Then, on the right hand sides
of Eqs. (34) and (38), only the terms proportional to I0(κ)
contribute in the region ω ∈ [−ω0 + |�|/2, + ω0 − |�|/2].
From Eq. (25), we see that f̄ = (fL + fR)/2 in this region
and, consequently, only the term proportional to I0(κ) on the
right hand side of Eq. (46) contributes to the spectral function.
This “floating” of the phonon bands has been discussed for
linear electric transport through molecular quantum dots [34].
As we will see, it is also the reason why the low-temperature
thermoelectric response is determined by the shape and
position of the zero-phonon peak alone.

The variational dot state, due to the moderate renormaliza-
tion, features broad, overlapping side bands. Still, we find a
considerable shift of spectral weight to higher energies and a
suppression of the zero-phonon peak. The resulting reduction
of the low-energy tunneling rate is a main consequence of
the polaron formation and is known as the Franck-Condon
blockade [17].

B. Thermally-induced current

In the following, we calculate the particle current through
the junction that results from a finite temperature difference
�T between the leads. Let us again consider the two sets
of parameters used in Sec. III A. Keeping the respective
variational parameters γmin fixed, we increase the temperature
difference �T , whereby TL = T + �T and TP = TR = T .
This induces a net particle current through the junction, which
is depicted as a function of �T in Figs. 2(c) and 2(d). For the
first parameter set, we find that the EP interaction enhances the
thermally induced current for small temperature differences.
However, it reduces the current throughout the temperature
range for the second parameter set.

This can be understood from Eq. (43): the net current
through the dot depends on the electronic nonequilibrium
spectral function and the difference of the Fermi distribution
functions of the left and right lead. For zero voltage bias
and small temperature differences, the term fL(ω) − fR(ω)
in Eq. (43) differs from zero only in the narrow region
ω ∈ [−�T, + �T ] and changes sign at ω = 0. Physically,
this means that the temperature difference between the leads
induces a flow of hot charge carriers from the left to the right
lead, since fL(ω) − fR(ω) is positive for ω > 0. This current,
however, is compensated by a counterflow of cold carriers
at ω < 0, where fL(ω) − fR(ω) is negative. Since �̃ > 0 in
our calculations, dot states above the Fermi energy have more
spectral weight than the states below the Fermi energy. The net
particle current is positive, i.e., it goes from the left to the right
lead. The magnitude of the current is determined by the relative
weight of the two flows, i.e., by the slope of the dot spectral
function around the Fermi energy.

That is why the effect of the polaron formation on the
thermally induced current crucially depends on the specific
values of �̃ and 
̃0. For the first parameter set, the dot level
�̃ = 0.33 lies near the Fermi surface. In this situation, the
polaronic renormalization of the effective dot-lead coupling
increases the slope of Ã(ω) at ω = 0, as can be seen in Fig. 2(a).
Consequently, in Fig. 2(c) the low-temperature thermoelectric
current grows with respect to the noninteracting case. For

the second parameter set (corresponding to the nonresonant
situation), the effect is reversed: the slope of Ã(ω) decreases
and the thermoelectric response of the vibrating molecule is
smaller than that of the rigid quantum dot.

For both parameter sets, we find that, as �T → ∞, the
maximum thermo-current is largest in the case of zero EP in-
teraction. This can also be understood from Eq. (43). For large
�T , the region ω ∈ [−�T, + �T ] grows and fL(ω) − fR(ω)
is finite far from the Fermi surface. Now the thermoelectric
current is given not by the slope of Ã(ω) at ω = 0 but by the
ratio of the integrated spectral weight below and above the
Fermi surface. Because TP is low, the phonon bands in Ã are
weighted according to a Poisson distribution with the param-
eter g̃2 = γ 2εp/ω0. As γ grows, a considerable portion of the
total spectral weight is shifted to the phonon bands at ω > 1.
Even for large temperature differences, their contribution to the
thermocurrent will be exponentially small, and the maximum
current decreases with respect to the rigid quantum dot.

C. Thermovoltage

We have seen how, in general, a temperature difference
�T between the leads will induce a particle current through
the dot. In a typical experiment, this thermoelectric effect is
measured by applying a voltage difference � in such a way that
the thermally induced current is compensated: J (�T,�) =
0 for finite �T and �. The determination of the so-called
thermovoltage, �0, and its dependence on the EP coupling
will be the subject of the following numerical calculations.
Thereby, we use the second parameter set from Sec. III A, i.e.,
ω0 = 1, T = 0.01, εp = 2, � = 2.5, and 
0 = 0.5, resulting
in γmin = 0.54, 
̃0 = 0.28, and �̃ = 0.91.

To understand the mechanism, we first consider a finite
but fixed temperature difference �T = 0.25. For � = 0,
the corresponding electronic spectral function is shown
as the black curve in Fig. 3(a), where it is again compared
to the noninteracting case and the small polaron limit. We
calculate the total current J as a function of the voltage bias �,
whereby μL = �/2 and μR = −�/2. The results are depicted
in Fig. 3(b).

For negative voltages, the current signal is in qualitative
agreement with the results of previous works [28]. In a nutshell,
the formation of a polaronlike state at the dot reduces the
zero-bias conductance due to the Franck-Condon blockade,
but for growing voltage, we find steps in the current signal
whenever �/2 = −�̃ − nω0, with n ∈ [0,1,2, . . . ]. Here, the
chemical potential of the right lead crosses the phonon side
bands in Ã and resonant transport of electrons takes place via
the emission and subsequent absorption of an equal number
of phonons. The right lead is the cold one and has a steplike
Fermi function. Because of this, the width of the current steps
is mainly determined by the width of the phonon bands in the
spectral function, i.e., by 
̃0. In the variational calculation, the
bands overlap considerably [see Fig. 3(a)] and the resonant
steps in the current-voltage signal are smeared out.

For positive voltage bias, we find no current steps even in the
small polaron limit. Now it is the chemical potential of the hot
left lead that crosses the renormalized dot level and the phonon
bands. The width of the resonant tunneling steps in J (�) does
not depend on 
̃0 alone but also on the width of the soft
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FIG. 3. (Color online) For the same parameters as in Figs. 2(b)
and 2(d), i.e., ω0 = 1, T = 0.01, εp = 2, 
0 = 0.5, � = 2.5, γmin =
0.54, �̃ = 0.91, and 
̃0 = 0.28. (a) Electronic spectral functions for
fixed �T = 0.25 and � = 0. We compare the variational calculation
(black line) to the small polaron limit γ = 1 (red dashed line) and to
the result for εp = 0 (blue dot-dashed line). (b) Current J as a function
of the voltage difference � between the leads for fixed �T = 0.25.
(c) Thermovoltage �0 as a function of �T .

Fermi-surface. Since �T = 0.25 is of the order of ω0, the cur-
rent steps are smeared out and therefore no longer discernible.

Based on the current-voltage signal we now determine
the thermovoltage �0 as a function of �T numerically
and show the result in Fig. 3(c). We find that for small
temperature differences, the absolute value of �0 grows
strongest for γ = 1. This is a consequence of the reduced
electrical conductance of the quantum dot in the small polaron
picture; for a given �T , relatively large voltages are necessary
to compensate the corresponding thermocurrent. For large
temperature differences, we find a maximum value �0 =
−1.5 for all three data sets given in Fig. 3(c). This voltage
corresponds to the postition of the zero-phonon step in J (�)
in Fig. 3(b). Here, the systems conductance grows considerably
and any thermally induced current can easily be compensated
by a slight growth in �.

D. Varying the dot level

In the previous sections, we chose the bare dot level �

in such a way, that the renormalized level �̃ was equal in

the scenarios with and without EP interaction. In this way,
we concentrated on the influence of the renormalized dot-lead
coupling on the thermovoltage. However, in an experimental
situation, the dot level may be manipulated, e.g., by applying
a gate voltage through a third electrode, in order to optimize
the thermoelectric effect. To investigate this situation, we now
consider � as our free parameter. For each �, we temporarily
set � = 0 and �T = 0 to determine the optimal parameter
γmin. We then keep γmin fixed, set �T to a finite value and
calculate the thermovoltage �0. The remaining parameters are
the same as in Sec. III C, i.e., ω0 = 1, T = 0.01, εp = 2, and

0 = 0.5.

First, we consider a small temperature difference �T =
0.1. Our result for the thermovoltage as a function of the bare
dot level is presented in Fig. 4(a). In general, �0(�) features
two resonances of opposite sign and goes to zero when the
renormalized dot level crosses the Fermi surface, i.e., when
�̃ = � − εpγ (2 − γ ) = 0. At this point, the spectral function
is symmetrical around ω = 0, and the thermoelectric flow and
counterflow between the leads cancel exactly. As |�̃| grows,
the net thermocurrent and, consequently, the thermovoltage
increases. In accordance with our results in Sec. III C, the
maximum thermovoltage is largest in the small polaron picture
due to the strong renormalization of the dot-lead coupling.
When |�̃| grows further and the zero phonon peak shifts away
from the Fermi surface, the dot density of states near ω = 0
decreases, and the thermoelectric effect vanishes again.

In Fig. 4(a), the small polaron result is shifted from the
εp = 0 curve by the value of the polaron binding energy εp,
which can be understood from setting γ = 1 in Eq. (8). In
both cases, the thermovoltage signal runs linearly through
zero. We note that for growing T (not shown here) its slope
reduces, while the position of the positive (negative) resonance
shifts to lower (higher) �. In this regard, our result resembles
the sawtoothlike thermopower signal that was predicted in
Ref. [20] and experimentally measured in Ref. [6]. There, the
periodicity of the thermopower oscillations was determined
by the difference in the ground-state energies for different
numbers of electrons on the dot. In our model however, we only
account for a single dot electron. That is why we only observe
a single “tooth,” i.e., only two thermovoltage resonances in
Fig. 4(a).

Moreover, we find no side peaks in the thermoelectric signal
that could be attributed to the phonon side bands in Ã. This
is a consequence of the floating effect discussed in Sec. III A;
since the thermovoltages in Fig. 4(a) are small, the expression
fL(ω + UL) − fR(ω + UR) in Eq. (43) differs from zero only
within the region ω ∈ [−ω0 + |�0|/2, + ω0 − |�0|/2]. In this
region, the phonon side bands in Ã(ω) are suppressed and do
not contribute to the thermoelectric transport. That is why the
resonance signal in Fig. 4(a) is given by the varying position
of the zero-phonon peak only.

Consequently, in Fig. 4(a) the variational calculation with
its moderate renormalization of the dot-lead coupling predicts
a weaker resonance signal than the small polaron picture,
which is also shifted from the result for the rigid dot by less
than εp. We find that in contrast to the two limiting cases,
the strength of the resonance now depends on the sign of �0.
This can be understood from Fig. 4(b), where we show the
optimal variational parameter as a function of the dot level.
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FIG. 4. (Color online) For ω0 = 1, T = 0.01, εp = 2, 
0 = 0.5,
as in Fig. 3. (a) Thermovoltage �0 as a function of the bare dot
level � for �T = 0.1. We compare the variational calculation (black
line) to the small polaron limit γ = 1 (red dashed line) and the case
with zero EP coupling (blue dash-dot line). (b) Optimal variational
parameter γmin as a function of the bare dot level. (c) Same as (a)
but with �T = 0.25. (d) Electronic spectral functions for � = 0.8,
γmin = 0.95 and several temperature differences.

For �̃ > 0, we have γmin ≈ 0.5 like in the previous sections.
When the renormalized dot level crosses the Fermi surface,
γmin approaches 1 and a small transient polaron forms at the
dot. Then the thermoelectric effect increases.

Figure 4(c) shows the thermovoltage signals after having
raised the temperature difference to �T = 0.25. As expected,
for all three cases, the heights and widths of the resonances
grow with respect to Fig. 4(a). More importantly, for finite EP
coupling, the curves now feature side bands at a distance of ω0

from their maximum resonances. This becomes possible be-
cause for large temperature differences the floating condition
for the phonon bands is relaxed; since �T � ω0, the Fermi
surface of the hot left lead softens considerably. Now, the

terms with s � 1 on the right hand side of Eq. (46) contribute
to the spectral function even for ω ∈ [−ω0 + |�0|/2, + ω0 −
|�0|/2]. For example, Fig. 4(d) shows the electronic spectral
function in the variational calculation for � = 0.8 and several
temperature differences. Since γmin � 1, we have �̃ ≈ −1.1.
For growing �T , a small peak appears near the Fermi-surface
that is related to the polaronic state with one phonon at ω =
�̃ + ω0 ≈ 0. When, for varying �, this peak crosses the Fermi
surface, the side peak in the thermovoltage signal in Fig. 4(c)
appears. Note, however, that the floating condition still holds
for the cold right lead, as can be seen from the shoulder
appearing near ω = 1 in Fig. 4(d). As the thermovoltage grows,
the window ω ∈ [−ω0 + |�0|/2, + ω0 − |�0|/2] closes and
the shoulder shifts towards ω = 0.

IV. SUMMARY AND OUTLOOK

In this work, we investigated the steady-state thermoelectric
transport through a vibrating molecular quantum dot in the
crossover regime far from the antiadiabatic limit. Within a
Kadanoff-Baym formalism that is generalized to account for
different lead temperatures, the nonequilibrium dot self-energy
was calculated to second order in the dot-lead interaction
coefficient. In order to account for the polaronic character
of the dot state, we applied a variational small-polaron
transformation and determined the degree of transformation
by minimizing the relevant thermodynamic potential.

In essence, we calculated the current induced by a finite
temperature difference between the leads. For small tem-
perature differences, the influence of the electron-phonon
(EP) interaction strongly depends on the specific system
parameters; for a near-resonant dot level, the interacting
quantum dot acts as a more efficient energy filter and the
thermo-current increases. In the tunneling regime, however, we
found a reduction of the thermo-current due to the decreasing
density of states near the Fermi surface.

In order to relate our results to experiment, we determined
the thermovoltage required to compensate the thermally
induced particle current at a given temperature difference. We
found that in principle the Franck-Condon blockade boosts the
thermovoltage through the reduction of the systems electrical
conductance. For intermediate EP coupling, the small polaron
picture overestimates this effect.

Finally, we determined the thermovoltage as a function of
the dots energy level. Because of Pauli blocking, we found no
phonon features in the low-temperature thermoelectric signal.
However, our variational calculation predicts an asymmetrical
line shape due to the formation of a small polaron as the dot
level drops beneath the equilibrium Fermi energy. For large
temperature differences of the order of the phonon energy,
Pauli blocking is relaxed and the thermovoltage signal features
multiple resonances that can be attributed to resonant transport
through vibrational dot states.

The present study should be considered a first step in
applying our variational ansatz to the thermoelectric transport
through molecular junctions. Although it captures the essential
physics, it must be extended in several directions. Most
importantly, we have yet to consider energy transport through
the junction. The efficiency of energy deposition by the
excitation of local phonons will strongly depend on the
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effective EP interaction, i.e., on the polaronic character of
the dot state. To investigate the subsequent heating or cooling
of the molecule, the effective temperature of the dot electrons
has to be determined numerically, for which several methods
have been proposed [22]. This should have some influence on
the variational parameter γ as well. In our previous works, a
voltage-dependent variational parameter was responsible for
the junctions negative differential conductance. Therefore it
would be highly desirable to carry this nonlinear behavior
over to the discussion of thermoelectric transport.

Another worthwhile extension of our work concerns
Coulomb interaction effects. Recently, Andergassen et al. [35]
argued for the negative-U Anderson model (which neglects the
coupling to the phonon degrees of freedom however) that the
resulting charge Kondo effect leads to a large enhancement of
the linear response thermopower due to the highly asymmetric
dot spectral function. This effect was shown to be tunable
applying a gate voltage. It would be interesting to reexamine

this problem for a model with additional EP interaction, using
our variational scheme, since—as we have demonstrated in
Sec. III D—the effective EP interaction (described by the
variational parameter) is strongly influenced by the gate
voltage. In this connection, we like to stress that for a combined
Holstein-Hubbard quantum dot model it has been shown that
strong EP coupling may result in a net attractive Coulomb
interaction [36]. Then, depending on the energy of the dot
level, a variational ansatz might be able to interpolate between
the positive-U Holstein-Hubbard dot model and the effective
anisotropic Kondo model regime investigated in Ref. [35].

ACKNOWLEDGMENTS

This work was supported by Deutsche Forschungsgemein-
schaft through SFB 652 B5. T.K. and H.F. acknowledge the
hospitality at the Institute of Physics ASCR.

[1] J. A. Malen, P. Doak, K. Baheti, T. D. Tilley, R. A. Segalman,
and A. Majumdar, Nano Lett. 9, 1164 (2009).

[2] K. J. Franke and J. I. Pascual, J. Phys. Condens. Matter 24,
394002 (2012).

[3] C. Evangeli, K. Gillemot, E. Leary, M. T. González, G. Rubio-
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Interacting multicomponent exciton gases in a potential trap:
Phase separation and Bose-Einstein condensation
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The system under consideration is a multicomponent gas of interacting paraexcitons and orthoexcitons
confined in a three-dimensional potential trap. We calculate the spatially resolved optical emission spectrum
due to interband transitions involving weak direct and phonon-mediated exciton-photon interactions. For each
component, the occurrence of a Bose-Einstein condensate changes the spectrum in a characteristic way so that
it directly reflects the constant chemical potential of the excitons and the renormalization of the quasiparticle
excitation spectrum. Moreover, the interaction between the components leads, in dependence on temperature
and particle number, to modifications of the spectra indicating phase separation of the subsystems. Typical
examples of density profiles and luminescence spectra of ground-state paraexcitons and orthoexcitons in Cu2O
are given.

DOI: 10.1103/PhysRevB.82.064505 PACS number�s�: 78.20.�e, 78.30.�j, 71.35.Lk

I. INTRODUCTION

Excitons in semiconductors have been promising candi-
dates for the observation of Bose-Einstein condensation for
several decades. At present, cuprous oxide �Cu2O� is in the
focus of experimental efforts due to the large binding energy
and long lifetime of the exciton states. In order to obtain
sufficiently high densities, entrapment by an external poten-
tial is an approved method.

The theoretical description of excitons in potential traps
has been carried out so far mostly in the frame of a model of
ideal bosons. Concepts for the inclusion of the interaction are
well known from the theory of atomic condensates1–4 and
first applications to excitons exist, too.5 Recent investigations
in the framework of a mean-field formalism in local-density
approximation �LDA� have shown distinct signatures of a
condensate in the decay luminescence spectrum of the non-
condensed excitons.6 It is the aim of the present paper to
introduce a generalization of this theory to a multicomponent
gas of interacting paraexcitons and orthoexcitons, where the
consequences of the interaction on the condensation process
are of particular interest. We show results for the densities of
the individual components and their spatially resolved lumi-
nescence spectra for several parameter regimes and highlight
experimentally relevant cases.

II. THERMODYNAMICS OF EXCITONS
IN A POTENTIAL TRAP

The thermodynamics of a one-component Bose gas has
been investigated in detail, see, e.g., Refs. 1–4. First appli-
cations of these concepts to excitons have been presented in
Ref. 5 and, looking at spectral signatures of a condensate, in
Ref. 6. In analogy to generalizations for multicomponent
atomic gases, e.g., Refs. 7–12 and spinor polaritons, e.g.,
Refs. 13 and 14, in the following, we generalize this ap-
proach to the case of multiple species of excitons, i.e.,

paraexcitons and orthoexcitons, adopting a mean-field cou-
pling scheme between the components.15

The multicomponent exciton gas is considered in second
quantization. We start from the Hamiltonian for a
K-component system in the grand-canonical ensemble,

H = �
i=1

K � dr�i
†�r,t��−

�2�2

2Mi
+ Vi�r� − �i��i�r,t�

+
1

2 �
i,j=1

K � drhij�i
†�r,t�� j

†�r,t�� j�r,t��i�r,t� �1�

with respective external potentials Vi and chemical potentials
�i for each species. We assume a contact potential for the
exciton-exciton interaction with the matrix hij containing the
intraspecies and interspecies interaction strengths. Its compo-
nents are given by the s-wave scattering lengths aij

s ,

hij = 2��2� 1

Mi
+

1

Mj
�aij

s . �2�

The Bose field operator �i obeys the Heisenberg equation of
motion

i�
��i�r,t�

�t
= �−

�2�2

2Mi
+ Vi�r� − �i��i�r,t�

+ �
j=1

K

hij� j
†�r,t�� j�r,t��i�r,t� . �3�

We decompose the field operators �i in the usual fashion,

�i�r,t� = �i�r� + �̃i�r,t� , �4�

where �i is the �scalar� condensate wave function with

�i�r�= 	�i�r , t�
= 	�i�r�
 and �̃i is the operator of the thermal
excitons. Inserting the decomposition Eq. �4� into Eq. �3� and
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following the steps of Ref. 1, we obtain �arguments dropped
for the sake of brevity�

0 = �−
�2�2

2Mi
+ Vi − �i + hii�nii + ñii� + �

j�i

hijnjj��i

+ hiim̃ii�i
� + �

j�i

hij�ñji� j + m̃ji� j
�� �5�

and

i�
��̃i

�t
= �−

�2�2

2Mi
+ Vi − �i + 2hiinii + �

j�i

hijnjj��̃i + hiimii�̃i
†

+ �
j�i

hij�nij�̃ j + mij�̃ j
†� �6�

with nij �� j
��i+ ñij, mij �� j�i+ m̃ij, and the normal and

anomalous averages ñij = 	�̃i
†�̃ j
 and m̃ij = 	�̃i�̃ j
, respectively.

Equation �5� generalizes the familiar Gross-Pitaevskii equa-
tion by including �i� the coupling to the thermal excitons and
�ii� the coupling of multiple components.

In a first approximation, we neglect all nondiagonal aver-
ages, i.e., m̃ij = ñij =mij =nij =0 ∀ i� j, reducing Eqs. �5� and
�6� to effective one-species equations with an additional
mean-field contribution from the other species,

0 = �−
�2�2

2Mi
+ Vi − �i + hii�nii + ñii� + �

j�i

hijnjj��i

+ hiim̃ii�i
�, �7�

i�
��̃i

�t
= �−

�2�2

2Mi
+ Vi − �i + 2hiinii + �

j�i

hijnjj��̃i + hiimii�̃i
†.

�8�

Thanks to this simplification, Eq. �8� can be formally solved
by a Bogoliubov transformation,

�̃i = �
�

�ui���ai���e−iEi���t/� + vi
����ai

†���eiEi���t/�
 , �9�

where � enumerates the quasiparticle states. Thereby the
Bogoliubov amplitudes ui and vi satisfy the relation
���ui���2−vi���2
=1. The excitation spectrum Ei��� is
given by the solution of the eigenvalue problem,

� Li hiimii

− hiimii
� − Li

��ui���
vi��� � = Ei����ui���

vi��� � �10�

with

Li = −
�2�2

2Mi
+ Vi − �i + 2hiinii + �

j�i

hijnjj . �11�

Equations �7� and �10� are the multicomponent generali-
zations of the Hartree-Fock-Bogoliubov equations. They rep-
resent a system of 3K equations which are coupled via the
interaction matrix elements hij.

To guarantee gapless spectra, we next apply the Popov
approximation, i.e., we neglect the anomalous averages m̃ii in
Eqs. �7� and �10� and find

0 = �−
�2�2

2Mi
+ Vi − �i + hii�nii + ñii� + �

j�i

hijnjj��i

�12�

and

� Li hii�i
2

− hii�i
�2 − Li

��ui���
vi��� � = Ei����ui���

vi��� � . �13�

Since the extension of the potential trap is large compared
to the typical length scale of the system �e.g., the thermal de
Broglie wavelength of the excitons�, we can use the LDA.
Then the excitons are treated as a locally homogeneous sys-
tem and the spatial dependence enters only via the trap po-
tential. In that case, the Bogoliubov equations are readily
solved, yielding the density ni

T� ñii of thermally excited ex-
citons as

ni
T�r� =� d3k

8�3�Li�k,r�
Ei�k,r��nB�Ei�k,r�
 +

1

2
� −

1

2
�

� 	�Ei�k,r�2
 �14�

with nB�E�= �exp�E /kBT�−1
−1 being the usual Bose func-
tion. The excitation spectrum Ei is explicitly given by

Ei�k,r� = �Li�k,r�2 − �hiini
c�r�
2, �15�

Li�k,r� =
�2k2

2Mi
+ Vi�r� − �i + 2hiini�r� + �

j�i

hijnj�r�

�16�

with ni
c���i�2 and ni�nii=ni

T+ni
c. In consistence with the

LDA, we apply the Thomas-Fermi approximation to the
Gross-Pitaevskii equation, neglecting the kinetic-energy term
in Eq. �12�. Then we obtain finally for the densities of the
condensates

ni
c�r� =

1

hii
��i − Vi�r� − 2hiini

T�r� − �
j�i

hijnj�r��
�	��i − Vi�r� − 2hiini

T�r� − �
j�i

hijnj�r�� . �17�

Expressions �14�–�17� have to be solved self-consistently.
Although they look very similar to the one-component case,
a coupling between the components appears via Li and ni

c.
In what follows we calculate the densities of excitons in

Cu2O in a strain induced potential trap.16 In addition to the
paraexcitons �labeled “p”�, two spin projections of orthoex-
citons are captured by the trap, denoted by “+” and “−,”
while the zero component is expelled and plays no role.
Thus, the number of components K=3. In addition to the
usual symmetry of the interaction matrix, hij =hji with
i , j= p ,+ ,−, in our case it holds that h++=h−− and hp+=hp−,
leaving four independent parameters hpp, h++, hp+, and h+−.
As extensive works on two-component systems7–9,12 have
shown, one of the most interesting aspects of multicompo-
nent systems—the occurrence of phase separation—is
closely tied to the proportions of interspecies and intraspe-
cies interaction strengths.
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According to Eq. �2�, the interaction strengths are given
by the s-wave scattering lengths of the corresponding chan-
nels, which can be obtained by the solution of the four-
particle scattering problem. The case of positronium-
positronium scattering some time ago received much
attention17–19 and quite reliable values of the scattering
length for both the singlet and the triplet channel have been
obtained. In contrast, the description of exciton-exciton
interaction is a long-standing problem and so far no
satisfying solution for the general case has been obtained.
Especially for Cu2O, we expect a strong effect of the nonpa-
rabolicity of the valence band20 and of the rather large
electron-hole exchange interaction21 on the scattering
lengths. Therefore, the values we deduced from the scatter-
ing lengths of the positronium problem given in Ref. 17
�h++=0.71 hpp, hp+=0.33 hpp, and h+−=1.77 hpp with
hpp=7.5�10−4 �eV �m3�, should be considered as repre-
sentative, only. Nevertheless, they allow to show the general
behavior of the multicomponent exciton system. In the cal-
culation we also neglect the difference in the paraexciton and
orthoexciton mass due to the k-dependent exchange
interaction.22

III. LUMINESCENCE SPECTRUM

Excitons decay by emitting photons. This takes place ei-
ther directly, whereby momentum conservation requires that
only excitons with the same momentum as the emitted pho-
tons are involved, or with assistance of momentum supplying
phonons such that all exciton states can participate in the
optical emission. Because the optical wavelength of the
emission is much smaller than the trapped exciton cloud, we
apply a local approximation to the emission spectrum,
which, for the homogeneous case, is determined by the ex-
citonic spectral function A�k ,
�,23,24

Ii�r,
� � 2��Si�k = 0��2���
� − �i�ni
c�r�

+ �
k�0

�Si�k��2nB��
� − �i�Ai�r,k,�
� − �i�

�18�

with Si�k� representing the exciton-photon coupling. The
spectral function is given by the Bogoliubov amplitudes ui
and vi and the quasiparticle spectrum in Eq. �15�,

Ai�r,k,
� = 2���ui
2�k,r����
 − Ei�k,r�


− vi
2�k,r����
 + Ei�k,r�
� . �19�

In order to account for a finite spectral resolution being im-
portant for comparison with measured spectra, we convolute
the spectral intensity, Eq. �18�, with a slit function of the
shape exp�−�
 /
�4
. Here, 
 is a measure for the spectral
resolution. Furthermore, in a typical experimental situation,
one images a small stripe of width 2
x elongated along the z
direction onto the entrance slit of a spectrograph. Integrating
over the y direction perpendicular to z we obtain the spatially
resolved spectrum of the thermal excitons �in the following,
the direct condensate contribution is not considered�,

Ii�
,z� � �
−
x


x

dx�
−�

�

dy� dk�Si�k��2ui
2�k,r�

�nB�Ei�k,r�
exp�− �−
4�
�,k,r�


− �
−
x


x

dx�
−�

�

dy� dk�Si�k��2vi
2�k,r�

�nB�− Ei�k,r�
exp�− �+
4�
�,k,r�
 �20�

with ���
� ,k ,r����
�−��E�k ,r�
 /
.
In the case of phonon-assisted transitions �being relevant

for the orthoexcitons�, we have 
�=
−EgX /�−
phonon with
EgX being the excitonic band gap of the semiconductor. We
assume S�k� to be a constant. Then the first term in Eq. �18�
gives rise to a �-shaped luminescence line at the position of
the chemical potential with a strength determined by the con-
densate density.

For trapped paraexcitons, the zero-phonon decay is
relevant and can be treated by setting 
�=
−EgX /� and
S�k�=S0��k−k0�. Here k0 is the wave vector of the intersec-
tion of photon and exciton dispersion. Its modulus is given
by k0=EgXn /�c, where n is the refraction index and c is the
vacuum velocity of light. Due to the form of S�k�, the con-
densate itself does not contribute to the direct luminescence
process.

However, as discussed for the one-component exciton gas
in Ref. 6, in case of a potential trap there will be indirect
signatures of the condensate in the spatially resolved lumi-
nescence spectrum. The spectral line shape follows the den-
sity distribution in the trap, which in turn is bordered by the
minimal excitation energy E�k=0,r�. For a noncondensed
gas the latter quantity is roughly parabolic due to the trap-
ping potential while it is zero in the presence of a conden-
sate. Thus with increasing particle number �or decreasing
temperature� the flat bottom of the spectrum of thermal ex-
citons may be a footprint of Bose-Einstein condensation.

IV. RESULTS

We evaluate the density distributions of the trapped exci-
tons in an iterative way. In each step, we keep the distribu-
tions of two of the components fixed. Under the constraint of
fixed particle number, we iterate the subset of Eqs. �14�–�17�
belonging to the third component to self-consistency. We
cycle through the components until self-consistency of the
whole system, Eqs. �14�–�17�, is achieved.

Depending on the temperature and particle numbers in the
trap, there may occur six distinct situations, featuring a con-
densate of �i� none of the species, �ii� only the paraexcitons,
�iii� only one species of orthoexcitons, �iv� both species of
orthoexcitons, �v� paraexcitons and one species of orthoex-
citons, and �vi� all species. To analyze these cases, we set the
particle numbers of each component to one of two values:
Ni=5�109 or Ni=5�108 for i= p ,+ ,−, respectively. We get
a rough estimate of the corresponding critical temperatures
by applying a harmonic approximation to the Hertzian po-
tentials. Then, a simple Thomas-Fermi calculation for the
single-component case25 yields Tc

0�2 K for N=5�109 and
Tc

0�1 K for N=5�108.
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For our calculations, we use values of 
=41 �eV for the
spectral resolution and 
x=25 �m for the entrance slit of
the spectrograph being typical for a triple high-resolution
spectrograph used in the current experiments which are
underway.26 In the following figures we show the
respective trap potentials Vi, minimal excitation energies
Ei�k=0,z ,�=0�, and density distributions of paraexcitons
and orthoexcitons versus the z coordinate. We compare the
results to the case without intercomponent interaction �la-
beled “id”�.

We first investigate case �i� by setting Np=5�109,
N�=5�108, and a temperature T=2.2 K well above both of
the estimated critical values. As Fig. 1 shows, in the absence
of any condensate, the line shapes Ei�k=0,z ,�=0� roughly
follow the external potentials and the presence of multiple

components causes only a weak additional renormalization.
Both paraexciton and orthoexciton densities—the latter be-
ing equal for + and − species—concentrate in the centers of
their traps. A noticeable redistribution of the orthoexcitons
with respect to the one-component case results from the large
number of paraexcitons as well as from the ortho-ortho in-
teraction. The corresponding luminescence spectra of ther-
mal excitons are shown in Fig. 1, lower row. Because the
modulus of the photon vector �k0��30 �m−1 is rather small,
the integrated zero-phonon spectrum of the paraexcitons al-
most directly resembles the minimal excitation energy
Ep�k=0,z ,�=0�. In the case of orthoexcitons, every k vec-
tor contributes and we find a broad energy distribution above
E��k=0,z ,�=0�.

Keeping the particle numbers constant, we lower the tem-
perature to T=1.2 K and show case �ii� in Fig. 2. Now the
renormalized potential of the paraexcitons �Fig. 2, upper left
panel� is cut at the chemical potential causing an almost flat
bottom of the luminescence spectrum �Fig. 2, lower left
panel�. Again the densities of thermal and condensed paraex-
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FIG. 1. �Color online� Potentials and density profiles in z
direction at �x ,y�= �0,0�, and luminescence spectra for paraexcitons
�left column� and ortho�−�excitons �right column� for a tempera-
ture of T=2.2 K and particle numbers of Np=5�109 and
N−=N+=5�108 in the trap. The corresponding chemical potentials
are �p=−2260 �eV and �−=�+=−5920 �eV. Upper row: exter-
nal trap potential Vi, quasiparticle energy at k=0 shifted by � �i.e.,
renormalized potential� E�0,z ,0�, and the same quantity without
interspecies interaction Eid�0,z ,0�. Middle row: densities of ther-
mal excitons with �nT� and without interspecies interaction �nid

T �.
Lower row: luminescence spectra.
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FIG. 2. �Color online� Same presentation as in Fig. 1 but for a
temperature of T=1.2 K and particle numbers of Np=5�109 and
N−=N+=5�108 in the trap. The chemical potentials are
�p=−2140 �eV and �−=�+=−5610 �eV. In the middle row, ad-
ditionally the densities of condensed excitons with �nc� and without
interspecies interaction �nid

c � appear.
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citons show no significant deviation from the single compo-
nent case �Fig. 2, middle left panel�. In contrast, while iso-
lated orthoexcitons would have been condensed, there is no
orthocondensate in the fully interacting case, which shows
that the presence of multiple repulsive components lowers
the critical temperature. Due to the even higher concentration
of paraexcitons and the different minimum positions of the
external potentials �zp=174 �m and z�=164 �m�, the ther-
mal orthoexcitons are slightly pushed aside �Fig. 2, middle
right panel�. Their spectrum �Fig. 2, lower right panel� is
qualitatively nearly unchanged with respect to case �i�. How-
ever, due to the lower temperature, the spectrum is less wide-
spread. Furthermore, the chemical potential nearly touches
the renormalized potential causing already a smoother curva-
ture of the spectral shape.

If we exchange the particle numbers of paraexcitons
and one species of orthoexcitons, i.e., N+=5�109,
Np=N−=5�108, we realize case �iii�, which is presented in
Fig. 3. While in this case the density distributions of thermal
and condensed ortho�+�excitons deviate only weakly from
the one-component case, the displacement of the thermal

paraexcitons is expressed in a heavily distorted zero-phonon
spectrum.

Increasing also the particle number of the remaining
orthospecies by an order of magnitude, we generate case �iv�,
depicted in Fig. 4. As Shi et al.9 showed, even for finite
temperature the condition for phase separation of mutually
interacting trapped condensates coincides with the T=0 re-
sult of Ho and Shenoy:7 h+−

2 �h++h−−. Due to their strong
repulsion, the two orthocondensates fulfill this condition and
separate into a ball-and-shell structure with finite overlap, as
seen in Refs. 7 and 8. Yet, as found in Ref. 12, at T�0 no
pure + or − phases exist and the respective thermal particles
are not entirely expelled. References 8 and 27 pointed out
that in general the component with the weaker self-
interaction forms the outer shell. In the case of orthoexcitons,
this criterion does not apply and the labels + and − can be
interchanged in all the results presented here. In principle,
there should exist an unstable solution with equal distribu-
tions of the orthocondensates. The breaking of this symmetry
is a consequence of our iterative numerical method. Because
of the symmetry of the interaction, the paraexcitons react to
the combined density of the orthoexciton species. That is

130 160 190 220

−0.4

−0.2

0.0

0.2

0.4

z [µm]

ε−
µ p

[m
eV

]

V(z,0)−µ
E(0,z,0)
E

id
(0,z,0)

130 160 190 220

−0.4

−0.2

0.0

0.2

0.4

0.6

z [µm]
ε−

µ −
[m

eV
]

130 160 190 220
0

0.5

1.0

1.5

z [µm]

n
[1

04
µm

−
3 ]

n
p
T

n
p
c

n
id
T

n
id
c

130 160 190 220
0

1.0

2.0

3.0

4.0

z [µm]

n
[1

05
µm

−
3 ]

n
−
T

n
−
c

n
id
T

n
id
c

z [µm]

ε−
µ −

[m
eV

]

130 160 190 220
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z [µm]

ε−
µ p

[m
eV

]

130 160 190 220
−0.2

0.0

0.2

0.4

0.6

FIG. 3. �Color online� Same presentation as in Fig. 1 but for a
temperature of T=1.2 K and particle numbers of Np=N+=5�108

and N−=5�109 in the trap. The chemical potentials are
�p=−2310 �eV, �+=−5550 �eV, and �−=−5490 �eV.
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FIG. 4. �Color online� Same presentation as in Fig. 1 but for a
temperature of T=1.2 K and particle numbers of Np=5�108 and
N−=N+=5�109 in the trap. The chemical potentials are
�p=−2300 �eV, �−=−5420 �eV, and �+=−5470 �eV.

INTERACTING MULTICOMPONENT EXCITON GASES IN A… PHYSICAL REVIEW B 82, 064505 �2010�

064505-5

Article IV

71



why the distortion of the paraspectrum is strongest in the
area of overlapping orthocondensates.

Let us switch back to the parameters of case �ii�, i.e.,
Np=5�109 and N+=N−=5�108, and lower the temperature
to T=1.05 K. As Fig. 5 shows, besides condensed paraexci-
tons we now find a small condensate of only one species of
orthoexcitons �case �v�
. While in the single-component case,
for N+=N−, both orthospecies have the same critical tem-
perature, now the mutual repulsion prevents the simulta-
neous condensation of the second species. We have to lower
the temperature to T=0.8 K, to get condensates of all the
components �case �vi�, Fig. 6
. While the orthospecies again
form a ball-and-shell structure, orthocondensate and para-
condensate do not separate because of their weak interaction
�hp+

2 �hpph++�.

V. CONCLUSION AND OUTLOOK

We have presented a theoretical approach for the descrip-
tion of multicomponent interacting excitonic gases in poten-
tial traps. The resulting system of equations has been subject

to a number of approximations to make it numerically fea-
sible. Finally, coupled multicomponent equations for the
densities of thermal excitons in Hartree-Fock-Bogoliubov-
Popov approximation and the condensate densities following
from the Gross-Pitaevskii equation in Thomas-Fermi ap-
proximation have been obtained and numerically solved.
Compared to previous calculations,6 an experimentally real-
istic, anharmonic trap potential has been used. Six “typical”
�but not necessarily experimentally realizable� situations
leading to Bose-Einstein condensate in one or more of the
species have been compared. The spatially resolved decay
luminescence spectra of thermal paraexcitons and orthoexci-
tons exhibit clear signatures of a condensate. On the one
hand, there is a flat bottom at the chemical potential known
from the single-component case.6 On the other hand, the in-
terspecies interaction causes additional modifications of the
spectra: if there is a condensate in one of the species, the
spectrum of the respective other component is clearly dis-
torted.
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FIG. 5. �Color online� Same presentation as in Fig. 1 but for a
temperature of T=1.05 K and particle numbers of Np=5�109 and
N−=N+=5�108 in the trap. The chemical potentials are
�p=−2140 �eV, �−=−5585 �eV, and �+=−5580 �eV.
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FIG. 6. �Color online� Upper and lower row: same presentation
as in Fig. 1, middle row: density profiles and potentials for paraex-
citons �left column� and both orthospecies �right column� for a tem-
perature of T=0.8 K and particle numbers of Np=5�109 and
N−=N+=5�108 in the trap. The chemical potentials are
�p=−2140 �eV, �−=−5560 �eV, and �+=−5570 �eV.
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In a typical experiment in the bulk or involving rather
shallow potential traps, orthoexcitons are produced by laser
excitation, but are converted fast into paraexcitons at a rate
of 0.3 ns−1.28,29 Therefore, under quasiequilibrium condi-
tions, the particle number ratio orthoexciton/paraexciton is
small which corresponds to the cases �i�, �ii�, �v�, and �vi�.
By increasing the stress, however, the conversion rate de-
creases by more than an order of magnitude.29 By continuous
excitation of orthoexcitons, therefore, it should be possible to
obtain higher orthoexciton/paraexciton ratios like in cases
�iii� and �iv�. For an exciton number of 5�109, the density
in the center of the trap is about 1017 cm−3 which is experi-
mentally achievable. The same holds for the considered tem-
peratures of T=0.8. . .2.2 K.26

Table I summarizes the essential information obtained
from the cases �i�–�vi� discussed above. Obviously, three
conclusions can be drawn: first, if the temperature is low
enough �below the respective critical temperature�, every
species can form a condensate. Its primary signature is a flat
bottom of the respective spectrum. Second, a spatial separa-
tion occurs only between the condensates of the two
orthospecies, because of their strong repulsion. It shows up
only in the densities, not in the combined spectrum. There-

fore, it is important for future experiments to measure also
the spectrally integrated density profile. Third, at occurrence
of any orthocondensate but no paracondensate, the paraspec-
trum is distorted in a characteristic way indicating a conden-
sate in at least one of the other species.

The presented theory is obviously only a first step toward
a deeper understanding of the physics of trapped excitons. To
go beyond that includes the solution of the Gross-Pitaevskii
equation �without the Thomas-Fermi approximation� and the
inclusion of anomalous densities already on the single-
component level. Moreover, a general multicomponent
theory requires the consideration of mixed averages which
overcomes the effective single-component picture but com-
plicates the Bogoliubov transformation remarkably.
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For the observation of Bose–Einstein condensation, ex-
citons in cuprous oxide are regarded as promising can-
didates due to their large binding energy and long life-
time. High particle densities may be achieved by entrap-
ment in a stress induced potential. We consider a multi-
component gas of interacting para- and orthoexcitons in

cuprous oxide confined in a three-dimensional potential
trap. Based on the Hartree–Fock–Bogoliubov theory, we
calculate density profiles as well as decay luminescence
spectra which exhibit signatures of the separation of the
Bose-condensed phases.

1 Introduction The theoretical framework for trapped
dilute interacting bosonic gases is well known from the
theory of atomic condensates [1–4]. First applications to
excitonic systems exist, as well [5]. Recent investigations
in the framework of a mean-field formalism in local density
approximation suggest distinct signatures of a condensate
in the decay luminescence spectrum of the thermal exci-
tons [6–8]. Works on two-component systems [9–12] have
shown that the occurrence of phase separation is closely
tied to the proportions of inter- and intra-species interac-
tion strengths. Yet, the description of exciton–exciton in-
teraction is a long-standing problem. Experimental results
and theoretical predictions for the interaction strengths
vary within an order of magnitude [13,5,14]. As an exam-
ple, we present numerical results for the densities and the
spatially resolved luminescence spectra of the three com-
ponent system of excitons in cuprous oxide (Cu2O), i.e.,
para-, ortho(+)-, and ortho(−)excitons, trapped in a strain
induced potential [15]. We show how spectral features
may reveal phase separation, thereby yielding a minimum
estimate of the relative strength of the mutual interactions.

2 Multicomponent exciton systems

2.1 Thermodynamics We consider a K-component
exciton gas in second quantization, starting from the

Hamiltonian in the grand canonical ensemble:

H =

K∑

i=1

∫
d3r ψ†

i (r, t)

(
− h̄2∇2

2Mi
+ Vi(r) − μi

)
ψi(r, t)

+
1

2

K∑

i,j=1

∫
d3r hijψ

†
i (r, t)ψ

†
j (r, t)ψj(r, t)ψi(r, t) ,(1)

where Vi represents the external (trap) potentials and μi

the chemical potentials. We assume a contact potential for
the exciton–exciton interaction, with the intra- and inter-
species interaction strengths hij = 2πh̄2(M−1

i +M−1
j )asij

given by the respective s-wave scattering lengths asij .
The Bose field operatorsψi(r, t) are decomposed in the

usual fashion, ψi(r, t) = Φi(r)+ψ̃i(r, t), with the conden-
sate wave functions Φi(r) = 〈ψi(r, t)〉 = 〈ψi(r)〉 and the
operators of the thermal excitons ψ̃i(r, t). The Heisenberg
equations of motion ih̄∂tψi = [ψi,H] result in 2K cou-
pled equations (arguments dropped for brevity): the Gross-
Pitaevskii equations (GPE) for the condensates,

0=

(
− h̄2∇2

2Mi
+ Vi − μi + hii (nii + ñii) +

∑

j �=i

hijnjj

)
Φi

+hiim̃iiΦ
∗
i +

∑

j �=i

hij

(
ñjiΦj + m̃jiΦ

∗
j

)
, (2)
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and the equations of motion for the thermal excitons,

ih̄
∂ψ̃i

∂t
=

(
− h̄2∇2

2Mi
+ Vi − μi + 2hiinii +

∑

j �=i

hijnjj

)
ψ̃i

+hiimiiψ̃
†
i +

∑

j �=i

hij

(
nijψ̃j +mijψ̃

†
j

)
. (3)

Here nij ≡ Φ∗
jΦi+ ñij , mij ≡ ΦjΦi+ m̃ij , with the aver-

ages ñij = 〈ψ̃†
i ψ̃j〉 and m̃ij = 〈ψ̃iψ̃j〉. For simplicity, we

neglect all non-diagonal averages, i.e., the last terms on the
r.h.s of (2) and (3) and subsequently obtain effective one-
component equations with mean field contributions from
the respective other components. Because the extension
of the potential trap is large compared to the thermal de-
Broglie wavelength of the excitons, we apply a local den-
sity approximation to (3), setting ∇2 → −|k|2 with a wave
vector k. For the same reason, we apply the Thomas-Fermi
approximation to the GPE, thus neglecting the kinetic en-
ergy term in (2). With the above simplifications, Eq. (3) is
solved by a Bogoliubov transformation

ψ̃i =
∑

k

[
ui(k)ai(k)e

−iEi(k)t/h̄ + v∗i (k)a
†
i (k)e

iEi(k)t/h̄
]
.

(4)
The densities nTi ≡ ñii of thermally excited excitons are
given by

nTi (r) =

∫
d3k

8π3

[
Li(k, r)

Ei(k, r)

(
nB(Ei(k, r)) +

1

2

)
− 1

2

]

×Θ
(
Ei(k, r)

2
)

(5)

with nB(E) = [exp(E/kBT ) − 1]
−1. To guarantee gap-

less excitation spectra Ei, we neglect all anomalous aver-
ages m̃ii (Popov approximation) and obtain

Ei(k, r)=
√
Li(k, r)2 − (hiinci (r))

2 , (6)

Li(k, r)=
h̄2k2

2Mi
+ Vi(r) − μi + 2hiini(r) +

∑

j �=i

hijnj(r) ,

(7)

with nci ≡ |Φi|2 and ni ≡ nii = nT
i + nc

i .
From the simplified GPEs, the condensate densities fol-

low as

nci (r) =
1

hii

(
μi − Vi(r) − 2hiin

T
i (r) −

∑

j �=i

hijnj(r)
)
, (8)

if this expression is non-negative, and nci (r) = 0 oth-
erwise. Equations (5) to (8) have to be solved self-
consistently. Although they look similar to the one-
component case, the coupling between the components
appears in Li and nc

i .
2.2 Luminescence spectrum Excitons decay by

emitting photons. We apply a local approximation to the

emission spectrum, which is determined by the excitonic
spectral function A(k, ω) [16,17]:

Ii(r, ω) ∝ 2π|Si(k = 0)|2δ(h̄ω′ − μi)n
c
i (r) (9)

+
∑

k�=0

|Si(k)|2nB(h̄ω′ − μi)Ai(r,k, h̄ω
′ − μi) ,

with the exciton-photon coupling Si(k). The spectral func-
tion is given by the Bogoliubov amplitudes ui and vi, and
by the quasiparticle spectrum in (6):

Ai(r,k, ω) = 2πh̄

[
u2i (k, r)δ(h̄ω − Ei(k, r)) (10)

− v2i (k, r)δ(h̄ω + Ei(k, r))

]
.

In Cu2O, the decay of orthoexcitons takes place via mo-
mentum supplying phonons, such that all exciton states k
participate and ω′ = ω−EgX/h̄−ωphonon , with EgX be-
ing the excitonic band gap. The paraexcitons decay with-
out phonons, i.e., ω′ = ω − EgX/h̄. Here, energy and
momentum conservation only allow for processes, where
the wave vectors of excitons and photons are equal, so that
S(k) = S0δ(k − k0), with |k0| = EgXn/h̄c. Therefore,
the condensate does not contribute to the zero-phonon pro-
cess. Despite this, there are indirect signatures of the con-
densate in the spatially resolved luminescence spectrum of
the non-condensed excitons [6].

In a typical experiment, one images a small stripe of
width 2Δx elongated along the z-direction onto the en-
trance slit of a spectrograph. Thus, by integrating (9) over
the x- and y-directions perpendicular to z, we obtain the
spatially resolved spectrum. Moreover, we account for the
finite spectral resolution Δ by convoluting the spectral in-
tensity with a slit function of the shape exp{−(ω/Δ)2}.
For our calculations, we use values of Δ = 25 μeV for
the spectral resolution and Δx = 25 μm for the entrance
slit of the spectrograph being typical for a triple high-
resolution spectrograph used in the current experiments
which are underway [18].

3 Results We calculated the density distributions
and the luminescence spectra of the trapped excitons for
three different choices of the interaction strength between
ortho(+)- and ortho(−)excitons (h+−). The interaction
strengths are calculated from the scattering lengths given
in [13] (h++ = h−− = 0.71hpp, hp+ = hp− = 0.33hpp,
and h+− = 1.77hpp with hpp = 5.4 × 10−4 μeVμm3).
Taking the value for h+− given by Shumway and Ceper-
ley [13] as hSC we chose: (i) h+− = hSC/5; (ii)
h+− = hSC/3; and (iii) h+− = hSC while keeping
the others fixed. The used trap potentials Vi are fitted to
experimental data taken from [18]. The minimum of the
paraexciton trap is −1981 μeV and the minimum of the
orthoexciton trap is −8158 μeV. Note that we neglect the
difference in paraexciton and orthoexciton mass due to the
k-dependent exchange interaction [19].
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Figure 1 Three different subsets of exciton densities and luminescence spectra for para-, ortho(+)- and ortho(−)excitons for
T = 0.7 K and a total particle number of Np = 1010 paraexcitons and N− = N+ = 1010 orthoexcitons in the trap. Each
subset contains 5 images with the exciton densities in the first row (from left to right para-, ortho(+)- and ortho(−)excitons)
and the spectra for the para- (left) and orthoexcitons (right) in the second row. Taking h+− given by Shumway and Ceperley
[13] as hSC the subsets represent from top to bottom: (i) h+− = hSC/5; (ii) h+− = hSC/3; and (iii) h+− = hSC while
taking all other interaction strengths as given in [13].
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The results of the numerical calculations are shown in
Fig. 1. The densities are visualized as contour plots includ-
ing thermal and condensed excitons using cylindrical coor-
dinates (ρ,z). The densities are independent of ϕ due to the
trap geometry. The thermal excitons form the darker rim
of the bright condensate spots. The second rows show the
luminescence spectrum of the paraexcitons and the com-
bined spectrum of the orthoexcitons. The latter contains
the condensate signals, i.e., the first term on the r.h.s of (9),
assuming S(k) is a k-independent constant.

At a temperature of T = 0.7 K, all three exciton
species show Bose–Einstein condensation. The condition
for phase separation of the orthoexcitons is approximately
h2+− > h++h−− [9] and becomes in the considered sys-
tem h+− > h++ since h++ = h−−. In case (i) where h+−
is considerably smaller than h++ the ortho-condensates are
nearly completely mixed. Due to the different minimum
positions of the respective external potentials, the thermal
paraexcitons are pushed aside by the combined orthoexci-
ton densities. The spectrum of the orthoexcitons is domi-
nated by two condensate peaks at the chemical potentials
μ− = −8013 μeV and μ+ = −7990 μeV. In case of
the paraexcitons, only the zero-phonon spectral line con-
tributes. It reveals the existence of a condensate via the flat
bottom at ε− μp = 0 [6–8].

Increasing h+− to hSC/3 yields the results shown in
case (ii). Here h+− is slightly smaller than h++ and the
condensates are still mixed in a wide area. However, a
starting of the separation can be observed. Nevertheless,
the spectra for the para- and orthoexcitons as well as the
paraexciton density are not changed qualitatively with re-
spect to case (i).

In case (iii) the condition for phase separation, h+− >
h++, is fulfilled and the ortho-condensates form a ball-
and-shell structure with finite overlap. Incidentally, the dif-
ference in their chemical potentials is smaller than the
spectral resolution so that the combined ortho-spectrum
gives no evidence of the phase separation. However, in the
region of overlapping ortho-condensates we find a notice-
able depletion of paraexcitons, which results in a W-shaped
distortion of the para-spectrum when compared to case (i)
or (ii).

When the interaction strength h+− is further increased,
no qualitative changes with respect to case (iii) are found.
For T > 0 there are no pure (+) or (−) phases [12] and the
spectral features described in case (iii) remain.

4 Conclusion and outlook Our simulations for
the experimentally relevant example cuprous oxide have
shown that at finite temperatures a possible phase sepa-
ration of excitonic condensates may not be reflected in
their combined luminescence spectrum. However, in the
case of cuprous oxide, the single spectral line of the di-
rect paraexciton decay may consitute a rather sensitive
probe for the spatial structure of the orthoexciton density
distribution. Specific distortions in the paraexciton spec-

trum would provide an experimental footprint of a phase
separation of orthoexciton condensates. If detected, the in-
teraction strength of the (+) and (−) species would satisfy
the relation h+− > h++.

Omitting the Thomas–Fermi approximation or one
of the other approximations used, might lead to results
that quantitatively differ from the ones presented here.
However, the above conclusions are mainly based on the
existence of a finite overlap of separated condensates
and should remain valid even if the spectra and densi-
ties are calculated beyond the used approximations. Also
the calculations for the luminescence spectrum could be
enhanced using more advanced approaches [20]. Further
research is required to address these issues.
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Abstract. We present experiments on the luminescence of excitons confined
in a potential trap at milli-Kelvin bath temperatures under continuous-wave (cw)
excitation. They reveal several distinct features like a kink in the dependence
of the total integrated luminescence intensity on excitation laser power and
a bimodal distribution of the spatially resolved luminescence. Furthermore,
we discuss the present state of the theoretical description of Bose–Einstein
condensation of excitons with respect to signatures of a condensate in the
luminescence. The comparison of the experimental data with theoretical results
with respect to the spatially resolved as well as the integrated luminescence
intensity shows the necessity of taking into account a Bose–Einstein condensed
excitonic phase in order to understand the behaviour of the trapped excitons.
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1. Introduction

Almost 50 years ago, excitons [1, 2] were identified as particularly interesting candidates for
Bose–Einstein condensation (BEC), as they consist of an electron and a hole in a semiconductor,
both fermions bound to form a bosonic excitation and thus resembling most closely neutral
atoms of usual matter. Due to their rather small mass comparable to the free electron mass,
it was speculated that for exciton densities of the order of 1018 cm−3—easily achievable by
absorption of photons—critical temperatures of some 10 K may be reached.

Due to their unique properties, the excitons of the so-called yellow series in the
semiconductor cuprous oxide (Cu2O) are still considered the most promising candidates for
excitonic BEC [3–5]. This is related to the large binding energy of 150 meV, which shifts
the Mott density to 3 × 1018 cm−3 at cryogenic temperatures [6, 7]. Made up from doubly
degenerate valence and conduction bands, the ground state of this series splits into the triply
degenerate orthoexciton and the non-degenerate paraexciton, which is the energetically lowest
exciton state, lying 1= 12.1 meV below the orthoexciton states. Due to the positive parity
of the bands, the orthoexciton is only weakly optically allowed (quadrupole transition with
oscillator strength 3 × 10−9 [8]), while the paraexciton as a pure triplet state with respect to the
electron and hole spins [9] is optically forbidden in all orders. Its decay is only possible via an
odd parity optical phonon resulting in a long lifetime in the microsecond range during which
thermodynamic quasi-equilibrium may be reached.

As in all physical systems for which BEC has been demonstrated up to now, excitons
should be confined in a potential trap. This has the advantage that (i) the diffusion process,
which reduces the exciton density, is suppressed and (ii) the critical number of particles required
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for the phase transition decreases much faster with temperature than in free space. The critical
particle number is given by

Ncrit = ζ(3)

(
kBT

h̄�0

)3

, (1)

where�0 is the average oscillator frequency of the trapping potential and ζ denotes the Riemann
Zeta function [10].

Despite the promising properties mentioned above, all previous studies to create a dense
gas of excitons in Cu2O either in a bulk crystal or in a potential trap did not demonstrate
conclusively excitonic BEC [4, 11–15]. The main reason for this failure turned out to be the
existence of a very efficient exciton–exciton annihilation process that sets in at high exciton
densities and whose rate scales with the square of the exciton density n

dn

dt
= −an2. (2)

Due to the rather large value of a of the order of 10−16 cm3 ns−1, this process was believed to
prevent the formation of a BEC of paraexcitons.

However, in recent experiments using pulsed excitation, we have found in agreement with
earlier studies [16] that this process can be damped in shallow potential traps by almost two
orders of magnitude [17]. While this allowed the accumulation of large exciton numbers, the
temperatures in these experiments were still too high to undercut the critical temperature for
BEC, which was predicted to require a bath temperature as low as 100 mK at experimental
conditions. Furthermore, the high pulse energies needed to create sufficient exciton numbers
resulted in a substantial heating of the exciton gas during the laser pulse. Our strategy to
overcome these problems was twofold: firstly, we reduced the temperature of the He bath as
much as possible by preventing thermal radiation from the surroundings to reach the sample.
In this way we reached a minimum temperature of 35 mK for zero incident laser power, which
increases at laser powers of about 1 mW to 250 mK within 1 h. Secondly, we switched over
to cw-excitation, for which the possibility of creating large paraexciton numbers has been
demonstrated recently [18]. By reducing the thermal load, we were able to get to effective
exciton temperatures as low as 200 mK at low excitation power. The main advantage of cw-
excitation, however, is the possibility of achieving a quasi-equilibrium situation in which the
decay rate of excitons is cancelled by the formation and relaxation rate of the species in the
trap. This allows us to drive the system through the various possibly existing phases by simply
changing the excitation power of the driving laser, as was exemplified by the condensation
experiments of exciton polaritons in semiconductor microcavities (for a review, see [19]). In
contrast to polariton systems, the lifetime broadening for paraexcitons is extremely small due to
their long lifetime of the order of µs. Therefore, we can neglect any damping effects due to the
excitonic decay in the spectra [20, 21].

The paper is organized as follows. In section 2, we briefly sketch the experimental setup and
present a typical set of experimental results which reflect a variety of experimental conditions
obtained by changing the bath temperature and the excitation conditions. We concentrate in
particular on the spatial profiles of the luminescence intensity and on the totally integrated
intensity dependent on the excitation power. These results are analysed theoretically in section 3
by calculating the excitonic luminescence of an interacting Bose gas on a mean field level.
Thereby, we start with the usual assumption of global equilibrium and then extend the theory
to the case of excitons in local thermodynamic equilibrium. Finally, we compare the theoretical
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Figure 1. Main features of the experimental setup. Excitons are created by a dye
laser propagating along the x-direction normal to the strain axis (z-direction).
The laser was focused either directly into the trap or onto a spot close to the
trap. In the latter case the excitons diffuse towards the trap due to the gradient
force initiated by the potential trap. The emission out of the trap is monitored
by spatially resolving along the y- and z-directions, while integrating along the
x-direction.

results with the measurements and show that there is excellent qualitative agreement if we take
into account the occurrence of a Bose–Einstein condensate of excitons. Section 4 gives our
conclusions and an outlook to further experiments.

2. Experiment

2.1. Experimental setup

For the studies at subkelvin temperatures, we used the same experimental setup as reported
previously [17], but implemented a narrow-band tunable dye laser (Coherent CR599, laser dye
Rhodamin 6G) pumped by a 5 W green solid state laser (Verdi 5), see figure 1. The laser
power was stabilized by a closed feedback loop to within 1%, the laser frequency and line
width (<0.5 GHz) were measured with a wavemeter (High Finesse WS7, resolution 60 MHz). In
order to enhance both the spectral and spatial resolutions, we employed a fourfold magnification
optical imaging system between the spectrometer exit slit and the detector.

For the experiments we used natural cuprous oxide crystals originally found in Namibia in
the form of millimetre sized cubic specimens with well defined facets (see [18] for details).
The quality of these samples was checked according to a low defect density, leading to
long paraexciton lifetimes up to 1µs. For such samples, previous high resolution absorption
measurements in a magnetic field revealed a paraexciton line width as narrow as 80 neV,
demonstrating their extreme high quality [22].

The potential trap for the confinement of the exciton gas was made by the well-known
Hertzian stress technique [11, 14, 23, 24], where a spherical stressor made of glass (radius
7.75 mm) is pressed with a force F against a flat surface of the crystal along a direction
which we denote as the z-direction (figure 1). As a result, a confining potential is generated in
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Table 1. Parameters for the trapping potential and rate model.

Parameter Value

Potential curvature α‖ 0.1334µeVµm−2

Potential curvature α⊥ 0.0733µeVµm−2

Lifetime of paraexcitons 650 ns
Ortho–para conversion rate 0.2 ns−1a

Two-body decay rate APP 2 × 10−18 cm3 ns−1b

Two-body decay rate AOO 4.9 × 10−17 cm3 ns−1

Relaxation rate 0rel 6 × 107 s−1

Potential trap minimum V0 1.35 meV

a Taken from [16].
b Due to the lower strain, the two-body decay rate APP is reduced by a factor of two compared
to [17].

which the energies of ortho- and paraexcitons are lowered compared to the bulk. This potential
Vext(x, y, z) can be calculated from the known strain parameters of the yellow exciton states
(for a recent calculation with refined parameters see [18]). To achieve agreement between the
calculated potential profiles and the experimentally measured low energy border lines of the
spatio-spectral images, we had to use a stressor radius 50% larger than the nominal one [17].
For a simple description, we decompose the potential trap and give in table 1 the parameters of
the harmonic oscillator potential along z, V (z)= α‖(z − z0)

2
− V0, and of the two-dimensional

harmonic oscillator normal to z in the xy plane, V (x, y)= α⊥(x2 + y2).
As the resonant creation process of the excitons we used the indirect absorption process

involving an odd parity optical 0−

3 -phonon into the orthoexcitons in the trap (see inset in
figure 2). These orthoexcitons quickly transformed into paraexcitons. The laser beam was
positioned about 100µm away from the trap centre in the positive z-direction, i.e. away from
the stressor lens. In order to confine the primarily created orthoexcitons in the trap and to avoid
any excitation outside the trap, which may lead to losses of the excitons, we tuned the energy of
the laser photons to slightly (≈0.5 meV) below the onset of the phonon sideband in the bulk (at
2048.56 meV). Through this process, about half of the incoming photons are transformed into
excitons.

To detect the primarily excited orthoexcitons for the calibration of the number of excited
excitons, we have chosen the k-vector of the excitation beam along the direction of observation.

In the experimental setup (figure 1), the emitted light was imaged onto the entrance slit of a
high resolution triple spectrograph (T64000, Jobin Yvon) usable either in subtractive or additive
mode with a diffraction-limited spatial resolution of the order of 10µm. The astigmatism of the
spectrograph was corrected by a cylindrical lens (focal length F = −1000 mm/F = 1000 mm
for subtractive and additive dispersions, respectively) in front of the entrance slit [18]. To obtain
a z-resolved spectrum I (z, ω), along the direction of the applied strain, the luminescence from
a small strip of width 21y centred in the trap was integrated along the x-direction perpendicular
to z (see figure 1). Detection was done either by an intensified charge-coupled device (CCD)
camera (Andor iStar) which could be gated with a minimum temporal resolution of 5 ns or with
a nitrogen cooled CCD camera with high quantum efficiency (Andor Newton), which allowed
long integration times.
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Figure 2. Numbers of para- and orthoexcitons and unbound electron–hole pairs
and effective exciton temperature (dotted red line) as a function of excitation
laser power as expected from the rate model. The inset schematically shows
the laser excitation process to create the orthoexcitons, their conversion into
paraexcitons and the luminescence processes to detect the excitons.

2.2. Application of the rate model to cw-excitation

With some adaptions, the rate model developed in [17] can also be applied to describe the cw
experiments. These concern the following:

• Even under resonant excitation of excitons, a considerable density of unbound electron–
hole pairs is generated [25]. This implies that the formation of an exciton from the hot
electron–hole pair generated in the two-body decay (Auger-like process) takes a finite
time comparable with other exciton relaxation times, e.g. the ones related to phonon
scattering. In a fast initial relaxation stage with a duration of several picoseconds [26],
the carriers thermalize by longitudinal optical (LO) and longitudinal acoustic (LA) phonon
scattering. For a strained crystal with an exciton potential trap, these electron–hole pairs
will then undergo different relaxation scenarios depending on whether the strain also
causes a trapping potential for the unbound electron–hole pairs or not. In the latter case,
the electrons and holes will diffuse from the place of generation (the potential trap) into
the whole crystal and form excitons which themselves will drift again into the trap.
In the former case, the electron–hole pairs will stay inside their trap and form a stable
electron–hole plasma cloud with a density which is three orders of magnitude smaller than
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the exciton concentration according to the results in [25]. As derived in appendix A, strain
leads to a trapping potential for unbound electron–hole pairs which is similar to that for the
paraexcitons. To take this effect into account, we included in the rate model the unbound
electron–hole pairs with a total number of Nehp. They are generated via the two-body decay
of the ortho- and paraexcitons and recombine with a rate 0rc N 2

ehp. The recombination rate
should depend on temperature in the same way as the two-body decay of the excitons
(∝ T −3/2).

Due to heating and incomplete relaxation, the excitons may not cool down to bath
temperature. We can describe this effect by assuming an effective exciton temperature Teff,
a cooling time of 200 ns [17] and heating processes due to the energy release by ortho–para
conversion CO = 10 meV per exciton, Auger-like two-body decay with CXX = 2 eV per
exciton pair, and a non-radiative decay of paraexcitons (guessed release CP = 0.25 eV per
exciton). The temperature rise due to this heating is characterized by a constant Cheat which
was adjusted to Cheat = 7 × 109 K J−1.

We thus obtain the following set of rate equations for the numbers of primarily excited
orthoexcitons (Oexc), trapped ortho- and paraexcitons (OT and PT, respectively), and unbound
electron–hole pairs Nehp, and the effective exciton temperature Teff:

dOexc

dt
= N0G(t)−0relOexc −0OPOexc −0OOexc, (3)

dOT

dt
= 0relOexc −0OPOT − 2AOOO2

T − AOPOT PT −0OOT +
1

2
0rc N 2

ehp, (4)

dPT

dt
= 0OPOT +0OPOexc − 2APP P2

T −0P PT − AOPOT PT +
1

4
0rc N 2

ehp, (5)

dNehp

dt
= APP P2

T + AOOO2
T + AOPOT PT −0rc N 2

ehp −0ehp Nehp, (6)

dTeff

dt
= Cheat[CXX(APP P2

T + AOOO2
T + AOPOT PT)

+ CO0OP(OT + Oexc)+ CP0P PT] −0cool(Teff − Tfin) . (7)

Here, Tfin denotes the final temperature to which the exciton gas would relax without additional
heating. In an equilibrium situation, this would correspond to the bath temperature.

To simulate the cw-excitation, we solved the system of rate equations by assuming for G(t)
a rectangular shaped excitation pulse of width 1TL = 25µs and a unit pulse area. The number
of initially excited excitons N0 is given by

N0 =
APL

h̄ωL
1TL, (8)

with the conversion factor from incident laser photons into primarily excited excitons A = 0.45.
All other parameters are taken from [17]. Since we used the same sample under similar
conditions, the calculation allows us to obtain the number of para- and orthoexcitons in the
trap dependent on laser power, whereby we approximate the accuracy to ±50%. In figure 2 we
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Figure 3. Spectra and spatial luminescence profiles at low excitation power
PL with PL = 1.5µW (upper row), PL = 3µW (middle row) and PL = 5µW
(lower row). Ts denotes the temperature extracted from the high-energy tail of
the spectra.

show a set of typical results. The final temperature Tfin = 0.35 K was chosen to reproduce the
experimentally observed temperature dependence in figure 5B. The results at high power levels
do change somewhat due to the temperature dependence of the Auger process, but not by more
than 20% by varying Tfin from 0.2 to 0.5 K.

The number of paraexcitons in the trap at low laser powers turns out to be determined
by two parameters, the paraexciton lifetime 1/0P and the fraction of absorbed photons A.
From figure 2 one can estimate the number of paraexcitons in the trap to be about 8 × 106

for a laser power of 10µW. The number of unbound electron–hole pairs would be around
3 × 105. At power levels of 1 mW, which was the maximum laser power used in the mK
experiments, paraexciton numbers of 2 × 108 can be realized and the number of electron–hole
pairs increases to 107. Assuming thermal equilibrium, this would correspond to densities of
about nP = 2 × 1016 cm−3 and nehp = 1014 cm−3.

2.3. Experimental results

2.3.1. Low excitation power. The first experimental results we want to show were obtained at
rather low laser excitation powers between 1 and 5µW with high spectral resolution (figure 3).
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Figure 4. Left panel: spatial image of the exciton cloud at a low excitation
power of PL = 30µW. Right panel: marginal intensity distributions along z (blue
circles) and y (red circles) with fits to Gaussians according to equation (9).

Excitation was performed via the phonon-assisted absorption of the orthoexcitons with an
energy slightly below the bulk exciton gap as described in section 2.1. Orthoexcitons were
converted rapidly into paraexcitons and relaxed down to the bottom of the trap.

From the z-resolved spectra (A panels) we obtained the z-integrated spectra (B panels) and
the z-profiles (C panels). As already can be seen in the z-resolved spectra, there is no change
in both the spectral and spatial distributions, only an increase in the overall intensity which is
almost proportional to the laser power. This demonstrates that we are in the linear excitation
regime and that bimolecular decay processes are not important. The high-energy tail of the
spectra can be fitted quite well by a Boltzmann distribution with an effective exciton temperature
of about 0.4 K. A two-dimensional spatial image of the exciton cloud was obtained by using the
spectrometer in the subtractive mode, the output stage at zero wavelength and by setting the
intermediate slit of the subtractive stage to just let past the emission from the paraexcitons in
the trap. A typical example is shown in figure 4. The spatial profiles are described by simple
Gaussian distributions

I (y, z)= n0 exp
(
−y2
/σ 2

⊥

)
exp

(
−z2
/σ 2

‖

)
(9)

with width parameters σ⊥ and σ‖ of about 20µm.
According to the theoretical predictions in thermal equilibrium (see section 3), the width

parameters are related to the curvature of the trap α and temperature T by

σ⊥,‖ =

√
kBT

α⊥,‖

. (10)

However, the ratio of the resulting width parameters does not fit the ratio of the potential
curvatures as obtained from the strain calculation. It comes out about 30% larger. As the origin
of this broadening we identified a small vibrational motion of the sample in the y-direction of
the order of 10µm which could be directly observed by imaging a submicron sized needle. For
a quantitative theoretical model of the light emission of the excitons, this effect has to be taken
into account.

Using the curvature parallel to the z-direction from table 1, and subtracting the spatial
blurring due to the diffraction of our optical imaging setup (7µm), we obtain from the spatial
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Figure 5. Panel A: series of spectra taken at increasing laser powers PL from
5µW to 3 mW in a logarithmic intensity scale. The spectral position is given in
CCD-pixels, 1 pixel corresponds to 2.5µeV. Panel B: spectral temperature Ts

as obtained from a Boltzmann fit of the high-energy tail of the spectra shown
in panel A (left ordinate) and the temperature of the mixing chamber THe (right
ordinate).

profiles temperatures of about 0.45 K, in good agreement with those from the spectra. At first
sight, we would conclude that the excitons are in a state of quasi-thermal equilibrium, albeit
with a temperature which is more than an order of magnitude larger than the bath temperature,
which in these experiments was around 38 mK. There are two possible explanations for this
difference:

(i) The heating of the exciton cloud due to the excess kinetic energy of about 8 meV
in the ortho–para conversion process or due to the exciton–exciton annihilation process.
The excess electronic energy is in both cases converted into phonons and finally increases
the temperature of the lattice which, however, is unknown in the present experiment. This
heat has to be transferred into the surrounding He bath, where it would lead to an increase
in the temperature of the mixing chamber, which could be measured during the experiment.

Indeed we observe this heating effect at higher laser powers. As shown in figure 5,
the effective exciton temperature and the temperature of the mixing chamber rise from
their initial values very steeply to above PL = 1000µW. Presuming a well-defined relation
between the lattice temperature of the crystal and that of the mixing chamber, we have to
conclude from these data that, at low laser powers, the heating effect is not present and the
lattice temperature should be close to that of the He bath at very low laser powers. This
conclusion is also in agreement with the results of the rate model presented in the foregoing
section. There the heating of the exciton cloud starts at laser powers well above 100µW
and is not present at low powers.

(ii) The discrepancy of the lattice temperature Tlatt and that of the exciton cloud may result
because the excitons do not reach global thermodynamic equilibrium during their finite
lifetime. This standard point of view means that, due to elastic exciton–exciton scattering,
a quasi-thermal equilibrium state is established very fast with a temperature above that of
the lattice. Hereafter, the exciton gas cools down to the lattice temperature by the emission
of acoustic phonons. The time-scale of this process increases with decreasing lattice
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temperature. In an external potential provided by the trap, the excitons are additionally
driven by force and drift terms into the potential minimum, as described by the Boltzmann
equation [27]. The detailed balance of these processes is determined by the interplay
between the various exciton relaxation mechanisms.

In a recent paper, we published a detailed numerical simulation by solving the
Boltzmann transport equation for excitons in a potential trap under pulsed optical
excitation considering phonon relaxation and exciton–exciton annihilation [28]. The
simulation indeed showed a strong non-equilibrium situation. While the local exciton
energy distribution was reached within the exciton lifetime of several 100 ns and with an
equilibrium with the lattice down to temperatures above 300 mK, the spatial distribution,
which is governed by the force and drift terms, remained much broader than when
in thermal equilibrium. For the case of still lower lattice temperatures, which was not
considered in [28], we obtain local thermodynamic quasi-equilibrium also at temperatures
down to 50 mK by including elastic exciton–exciton scattering as is shown in detail in
appendix B. Albeit in this range the exciton temperature does not come down to the lattice
temperature within the exciton lifetime, it is much lower than the observed values of Ts.
According to these results, in our experiments we should expect a non-equilibrium situation
in which the excitons are in a local quasi-thermal equilibrium with a temperature TX, which
we assume to be the same at all points in the trap. Globally, the exciton distribution will
be quite different, but still can be described approximately by a Gaussian dependence on
position.

Considering the effect of such a situation on the experimentally measured luminescence
spectra, we recall that only excitons near k0 participate in light emission, where k0 is the
wave vector of the intersection of the photon and exciton dispersions. Its modulus is given by
k0 = EgXn/h̄c, with EgX being the excitonic band gap, n the refraction index and c the vacuum
velocity of light. This means, we observe the exciton distribution function feq(k, r) only at one
point in local k-space. Furthermore, due to energy conservation, at a certain spectral position
h̄ω we only observe those excitons which are at that spatial position in the trap where the trap
potential Vext(r)= h̄ω− E0 − ε0. Here, E0 is the energy of the trap bottom and ε0 is the kinetic
energy of the excitons at k0. If we have a spatial distribution

n(r)∝ exp(−r 2/σ 2), (11)

this yields a spectral distribution of the form

I (h̄ω)∝ exp(−(h̄ω− E0 − ε0)/(ασ
2)), (12)

which suggests a Boltzmann distribution with an effective temperature Ts = ασ 2/kB. Then the
spectral distribution of luminescence intensity in reality describes the spatial distribution and
vice versa. Therefore, it has to result in the same effective exciton temperature, which is also
a consistency check for the trap potential. Consequently, we will designate this temperature
as the spatial temperature Ts of the exciton cloud. Obviously, Ts corresponds to Teff of the
rate model, cf equation (7). On the other hand, it is not possible to extract the local effective
exciton temperature TX from the intensity of the zero-phonon transition. This would require a
spectroscopic technique which is sensitive to the local exciton distribution like the transitions
between 1S and 2P exciton states (see [29, 30]). Hence, at the present stage of measurements,
all we can state is that TX may differ considerably from both the lattice temperature, which will
set a minimum value, and the spatial temperature, which will set a maximum value, as in the
latter case we would have global equilibrium.
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Figure 6. Time profiles of laser power (blue bars), the temperature of the mixing
chamber (red diamonds) and the spatial temperature (black diamonds) for the
measurements shown in figure 7. The red line is a guide for the eye.

2.3.2. Power-dependent experiments. In the following section we will present a series of
measurements under controlled conditions of excitation and cooling times such that we are
able to influence the thermodynamic state of the system in order to optimize any possible phase
transition. The laser power ranged from below 1µW to about 700µW. For each measurement
we noted the temperature of the mixing chamber (He bath temperature Tbath) at the beginning
and at the end. Between the measurements, the laser beam was blocked, so that the crystal could
cool down (see figure 6).

In order to obtain the best signal-to-noise ratio, the ICCD camera was operated in the
photon counting mode. Here, the CCD-chip is read out after a short exposure time (T1) and the
positions of the single photon peaks are determined and stored. A single photon is identified if
the signal falls between a lower and an upper discriminator level (which was adjusted so that
only single photon signals fall in this range). For a number Nacc of accumulations, the data
are summed in the memory. Advantages of this method are that signals due to cosmic rays are
easily detected and eliminated and that one can estimate the error of the intensity signal due to
the Poissonian statistics as the square root of the number of photons collected at each pixel. Due
to the Poissonian statistics, the probability of detecting n photons is given by

Pn =
λn

n!
exp(−λ), (13)

where λ is the average photon number for each exposure. As we detect only single photons and
throw away all higher photon number events, λ should be much smaller than one. However, for
moderate values, we can obtain the true number of detected photons, λNacc from the measured
number Ndet by applying the correction formula

λNacc = − ln

(
1 −

Ndet

Nacc

)
. (14)
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For the measurements of the z-resolved luminescence spectra shown in figure 7 we have
T1 = 0.5 s and Nacc = 400. In order to keep the maximum number of detected photons well
below Nacc, we inserted neutral density filters before the entrance slit of the monochromator.
Their transmission factors have been determined by direct intensity calibration as D1 = 0.314
and D2 = 0.0333.

In figure 7, each measurement is numbered according to its position in time given in
figure 6. For each image we specify the laser power, the maximum number of counted photons
(which allows us to judge the signal-to-noise ratio) and the totally integrated intensity. At first
sight, all the images look very much the same, despite the three orders of magnitude increase
in laser power. In particular, we observe neither the sharp spatial and spectral peak at the
bottom of the trap, which is expected as a signature for BEC in case of an ideal Bose gas,
nor the predicted flattening of the emission along the z-direction in case of an interacting Bose
gas [31]. In this respect, the measurements shown are similar to those reported in all earlier work
[11, 15]. A closer look, however, reveals subtle changes of the shape of the spectra depending
on the laser power. For power levels below 30µW, the z-resolved spectrum of the exciton cloud
shows no significant changes—here note especially measurements 9 and 21, which were taken
under very different He bath temperatures (see figure 6). For power levels above 30µW, the
images change gradually by showing a spectral narrowing and a slight blue shift. These changes
suddenly come to a stop between measurements 17 and 18, with the images from now on both
spatially and spectrally much broader and resembling those taken at low powers. The latter
data have been taken at almost the same laser power of 300µW, but the He bath temperature
was significantly different. Measurement 17 started at Tbath = 42 mK. During the measurement,
the laser power resulted in a heating up to Tbath = 49 mK. In contrast, measurement 18 already
started at Tbath = 45 mK and stopped at Tbath = 50 mK. This temperature variation of the mixing
chamber should directly reflect the actual lattice temperature Tlatt of the Cu2O crystal. At the
beginning of measurement 17, Tlatt must have been quite close to that of the bath while at the start
of measurement 18, Tlatt has only cooled down to midway between start and end of measurement
17. This difference in lattice temperature is reflected in a concomitant difference in the spectral
temperature which is Ts = 0.62 K for measurement 17 and Ts = 0.72 K for measurement 18.
The totally integrated intensities of both measurements are expected to be similar due to the
same laser power, however, that of measurement 18 is about 30% larger.

We can resolve this puzzle by assuming that the difference between both measurements
comes from the existence of a Bose–Einstein condensate of excitons in measurement 17,
while measurement 18 describes a normal exciton cloud at temperatures above the critical
temperatures for BEC for the actual number of excitons in the trap, which is the same in both
measurements. Then the lower intensity in 17 would be the result of the decreased number
of thermalized excitons, since according to [31] and anticipating the discussion in section 3,
excitons in the condensate are in the ground state (k = 0), and, therefore, could not emit light
with wave vector k0 at all (as in a homogeneous system), or is strongly suppressed (as would be
the case in the trap).

Thus, we propose the following scenario for measurement 17: in the beginning, we have
a system with a large fraction of the excitons in a condensate, with a reduced luminescence
intensity. As time increases, the crystal heats up and the condensate fraction is reduced.
When the lattice temperature reaches the critical temperature, we have a situation just like in
measurement 18. Therefore, after being integrated over the exposure time T1, the z-resolved
spectra should look the same. In a first approximation, the image of 17 is a superposition of
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Figure 7. Series of z-resolved luminescence spectra for different excitation
powers PL and bath temperatures (see figure 6). Cmax denotes the peak value
and Itot the totally integrated intensity. The numbers in parentheses denote the
measurement numbers, cf figure 6.
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Figure 8. Comparison of the z-profiles of measurements 17 and 18 (left panel)
and 9 and 21 (right panel). Each pair was taken at the same laser power, but at
different bath temperatures. For details see text.

that of measurement 18 reduced by a factor γ and that of a system with a condensate. To
demonstrate that this is indeed the case, we compare in figure 8 in the left panel the z-profiles
for both measurements. By assuming γ = 0.6, the wings of both profiles do coincide exactly,
which is clearly visible in the difference profile. The difference around the trap centre, however,
has a characteristic, non-Gaussian line shape resembling that of a condensate (compare figure 9).
A similar comparison of measurements 9 and 21, both taken at a laser power of 25µW (right
panel of figure 8) shows no difference in the z-profiles within the statistical errors.

While such a comparison of different measurements seems to be intuitively correct, there
are several objections against this procedure. First, the measurements we compare have quite
different values for the spatial temperature and thus different spatial extensions in the trap.
Second, we cannot exclude a priori that, e.g. measurement 18 also has a condensate. To
overcome these difficulties, we have to look for a way to analyse each measurement for itself.
Theoretical studies of the thermodynamics of an interacting Bose gas of excitons [31] have
shown that even in the case of a BEC both the density of excitons and the spectrally integrated
luminescence intensity outside the condensate region closely follow a Gaussian distribution
reflecting the temperature of the exciton gas. Therefore, by fitting a Gaussian only to the wings
at larger z of the intensity profile, we should have access to the distribution of thermal excitons
only. If there is no condensate present, this Gaussian should also describe the intensity profile in
the centre of the trap. On the other hand, any deviation of the measured profile from this curve
is a clear indication of an additional luminescing component in the trap. If the line shape of this
component is non-Gaussian, this would clearly indicate the existence of a condensate.

For the measurements shown in figure 7, the results of such a fitting procedure are shown
in figure 9. The red and blue diamonds are the experimental points, whereby the blue diamonds
mark those intensity points that have been used in the fitting. The blue line gives the shape of
the Gaussian. In order to reproduce the obviously different line shapes for positive and negative
z values due to the Morse-type potential of the trap in the z-direction, we used for the fit an
asymmetric Gaussian function of the form

S(z)∝ exp

(
−

(z − z0)
2

(2(z0 − z)σ− +2(z − z0)σ+)2

)
. (15)
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Figure 9. Comparison of z-profiles with fits by a Gaussian. Red and blue
diamonds: total measured profiles, solid blue lines: Gaussian fit of the total
profiles, blue diamonds: data points used for the fit, green triangles: the
difference between total profile and fit. The numbers in parentheses denote the
measurement numbers, cf figure 6.
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Figure 10. Power dependence of the ratio between integrated intensities of
the condensate and of the total band. Filled red triangles: measurements 1–3
and 10–17, open red triangles: measurements 4–9, blue squares: measurements
18–21. Between measurements 3 and 4, and between measurements 9 and 10,
there was a change of the neutral density filter, cf figure 6. The shaded band
denotes an area where the contribution is too small for a significant proof of a
condensate.

For all measurements, the ratio of σ+/σ− is obtained as 1.5, in consistence with the shape of
the potential. The number of data points for the fitting was chosen for each set of data such
that the average error per point becomes minimal. If we choose less points, the statistical
error due to noise will increase; if we choose more points, the systematic error increases if
the profiles contain an additional contribution. The green triangles show the difference between
the experimental points and the Gaussian fits. In total, the results of the procedure substantiate
our previous analysis. The measurements at very low power (1) and at high bath temperature
(20, 21), where we expect no condensate, indeed can be fitted completely by a single Gaussian.
Measurements 15 and 17 show clearly a bimodal distribution and thus a strong condensate
component. However, in measurement 18 a small additional contribution remains. To show
systematically the results of the fit, we have plotted in figure 10 the ratio of the green component
to that of the overall intensity. Looking more closely at the results shown in figure 10, we can
identify at least four sets of data with a strong condensate contribution, while most of the other
measurements show a contribution below 0.05, which we will consider as not significant. The
occurrence of a condensate in the power range between 60 and 300 µW is understandable in
view of the rather high number of paraexcitons in the trap which, according to the rate model
(figure 2) is about 4 × 107 at 100µW. The appearance of a condensate at the low power of 5µW
is rather surprising and requires further consideration. Indeed, the theory presented in the next
section will show that, under the conditions of our experiments (a bath temperature of 38 mK
and no heating of the sample), condensation will take place at exciton numbers as low as 4 × 106

(see figure 19).
Here we stress that the luminescence fraction ηlum shown in figure 10 is different from the

fraction of particles in the condensate ηc = Nc/Ntot. If flum denotes the ratio of the luminescence
efficiency of excitons in the condensate to that of excitons in the thermal cloud (see section 3.2),
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Figure 11. Dependence of the totally integrated intensity (squares) and spatial
temperature (triangles) on the laser power. The blue points mark measurements
18–21. The dashed line gives a power dependence according to Pb

L with b = 1.1
which describes the low power regime quite accurately.

the relation is given by

ηlum =
flumηc

1 − ηc + flumηc
. (16)

At present, flum is neither known experimentally nor theoretically (see section 3.2), however, it
must be smaller than one because otherwise we would not observe a kink in the luminescence
dependence on laser power (see figures 11 and 12) so that ηc > ηlum.

Our interpretation is further substantiated by the dependence of the totally integrated
intensity on the excitation laser power which is shown in figure 11.

At low power, the dependence is almost linear, indicating that decay processes by
exciton–exciton collisions are not important. Actually, the dependence is even slightly
superlinear which might be due to the effect of increasing homogeneous broadening at higher
exciton numbers. At power levels of about 60µW, we clearly observe a kink resulting in a
weaker slope at higher power levels. This is just the behaviour predicted by the theory in
section 3.3.3. The critical power at the kink is in full agreement with the conclusion drawn
from figure 10, where we observed the onset of condensation at powers above 60µW. This
dependence is abruptly changed for the measurements 18–21 in agreement with the vanishing
of the condensate. At high exciton numbers (under these conditions, we expect N ' 1 × 108

according to figure 2) we have a substantial effect of the two-body decay resulting in sublinear
behaviour, see the data marked by blue symbols.

We note that the theory presented in the next section attributes such a kink in the power
dependence of the total intensity of an exciton gas in a trap to the occurrence of condensation.
Actually, in all of our measurements using different potential traps and under different excitation
conditions such a kink shows up, provided that the He bath temperature is below 400 mK.
Exemplarily this is shown in figures 12 and 13 for three different sets of data. In figure 12
we compare two measurements which have the same dependence of the He bath temperature
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Figure 12. Dependence of the totally integrated intensity (squares), spatial
temperature (triangles) and start and final bath temperature during the
measurement (black bars) on the laser power for two different sets of data.

Figure 13. Dependence of the totally integrated intensity (squares), spatial
temperature (triangles), and start and final bath temperature during the
measurement (black bars) on the laser power.

but differ in their spatial temperatures. While at low powers both curves coincide, the curve
corresponding to lower spatial temperature shows the kink at lower powers. In figure 13 we
display the power dependence for the case where both the He bath temperature and the spatial
temperature are much higher and the kink occurs at powers one order of magnitude larger
than in the measurements of figure 12. This dependence of the onset of BEC on both the bath
temperature and the spatial temperature will be explained by the theory presented in the next
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section. The data in figure 13 furthermore demonstrate that the origin of the kink cannot be
the Auger like decay of excitons at high densities, as one might suspect. This deviation from
linearity in the power dependence already shows up below the kink.

3. Theory

After presenting the experimental results, in this section we will provide the theoretical
description, attempting to explain the main effects found in the luminescence spectra.

So far, excitons in potential traps have been described mostly by theoretical models
of non-interacting bosons. Concepts, to include e.g. interaction effects, have been worked
out for atomic condensates. Along this line, the thermodynamics of a one-component Bose
gas has been investigated extensively, see, e.g., [32–35]. First applications of excitons exist
too [36]. Recently, distinct signatures of a condensate in the decay luminescence spectrum of
the non-condensed excitons have been predicted using a mean-field formalism in local density
approximation [31]. In analogy to generalizations for multi-component atomic gases [37–41]
and spinor polaritons [42, 43], a generalization to a multi-component gas of interacting
paraexcitons and orthoexcitons has been given in [44].

Here, we focus on the thermodynamics of weakly interacting excitons in a trap and assume
the whole exciton gas to be in thermodynamic equilibrium. This allows us to apply the theory
developed in [31, 44].

3.1. Thermodynamics of trapped excitons

In order to write down the Hamiltonian of the exciton system, the interaction potential
between excitons has to be modelled. The description of exciton–exciton interaction is a
long-standing problem (see, e.g., [45–50]), and so far no satisfying solution for the general
case has been obtained. For our calculations, we assume a contact potential interaction
V (r − r′)= U0δ(r − r′), where the interaction strength U0 is given by the s-wave scattering
length as via U0 = 4πas/M . M is the exciton mass M = 2.6me in units of the free electron
mass me [22]. This leads to the Hamiltonian in second quantization for the grand canonical
ensemble:

H=

∫
d3rψ†(r, t)

(
−

h̄2
∇

2

2M
+ Vext(r)−µ

)
ψ(r, t)+

1

2

∫
d3r U0ψ

†(r, t)ψ†(r, t)ψ(r, t)ψ(r, t),

(17)

with the trap potential Vext(r) and the chemical potential µ. Decomposing the field operators
in the usual fashion ψ(r, t)=8(r)+ ψ̃(r, t), with the condensate wave function 8(r)=

〈ψ(r, t)〉 = 〈ψ(r)〉 and the operator of the thermal excitons ψ̃(r, t), one arrives at the
Gross–Pitaevskii equation (GPE)

0 =

(
−

h̄2
∇

2

2M
+ Vext(r)−µ+ U0

[
n(r)+ nT(r)

])
8(r)+ U0m̃(r)8∗(r), (18)

and the equations of motion for the thermal excitons

i h̄
∂ψ̃(r, t)

∂t
=

(
−

h̄2
∇

2

2M
+ Vext(r)−µ+ 2U0n(r)

)
ψ̃(r, t)+ U0

[
82(r)+ m̃(r)

]
ψ̃†(r, t), (19)
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with the normal and anormal averages nT
= 〈ψ̃†ψ̃〉 and m̃ = 〈ψ̃ψ̃〉, the condensate density

nc
= |8|

2 and the total density n = nc + nT.
Since the spatial extension of the potential trap is large compared to the typical length scales

of the interacting exciton gas (in particular with respect to the thermal deBroglie wavelength of
the excitons), we can use the local density approximation, thus treating the excitons as a locally
homogeneous system. The equation of motion (19) is solved by a Bogoliubov transformation. In
the so-called Hartree–Fock–Bogoliubov–Popov limit ( m̃ → 0), the quasiparticle energy reads

E(k, r)=
√
L(k, r)2 − (U0nc(r))2, (20)

with

L(k, r)= h̄2k2/2M + Vext(r)−µ+ 2U0n(r). (21)

Within these approximations, the non-condensate density nT is given by

nT(r)=

∫
d3k
(2π)3

[
L(k, r)
E(k, r)

(
nB(E(k, r))+

1

2

)
−

1

2

]
2

(
E2(k, r)

)
. (22)

Applying the Thomas–Fermi approximation to the GPE (18), i.e. neglecting the kinetic energy
term, yields the condensate density as

nc(r)=
1

U0

[
µ− Vext(r)− 2U0nT(r)

]
2

(
µ− Vext(r)− 2U0nT(r)

)
. (23)

Evaluating equations (22) and (23), nT and nc have to be determined self-consistently.

3.2. Theory of decay luminescence

Since the optical wavelength of the emission is much smaller than the trapped exciton cloud,
we apply a local approximation to the emission spectrum [51, 52] as well, which is determined
by the excitonic spectral function A(r,k, ω),

I (r, ω)∝ 2π h̄|S(k = 0)|2δ(h̄ω′
−µ)nc(r)+

∑
k6=0

|S(k)|2nB(h̄ω
′
−µ)A(r,k, h̄ω′

−µ), (24)

with S(k) representing the exciton–photon coupling. The spectral function is given by the
quasiparticle spectrum in (20):

A(r,k, ω)= 2π h̄
[
u2(k, r)δ(h̄ω− E(k, r))− v2(k, r)δ(h̄ω + E(k, r))

]
, (25)

where u(k, r) and v(k, r) are the Bogoliubov amplitudes,

u(k, r)2 =
1

2
(L(k, r)/E(k, r)+ 1),

v(k, r)2 =
1

2
(L(k, r)/E(k, r)− 1). (26)

In Cu2O, the decay of ground-state paraexcitons in the yellow series is optically forbidden.
However, due to the applied strain, a mixing with the green series takes place and the
decay becomes weakly allowed [53]. The paraexcitons decay directly, whereby momentum
conservation requires that only excitons with the same momentum as the emitted photons are
involved. This zero-phonon decay can be treated by setting ω′

= ω− EgX/h̄ with the excitonic
band gap EgX and |S(k)|2 = S2

0δ(k − k0) with k0 being the wave vector of the intersection of
the photon and exciton dispersions.
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Due to the form of S(k), a condensate of paraexcitons in Cu2O (energetically in the ground
state, i.e. k = 0) should not contribute to the luminescence spectrum. However, this statement
holds rigorous only for homogeneous, infinitely extended systems. Due to the finite size of the
condensate, it is spread out in k-space, and a weak contribution to the luminescence should
be expected. Taking the condensate as a classical coherent emitter, the radiation follows from
classical Maxwell equations as the Fourier transform of the polarization [54] at the wave vector
of the emitted photon k0. Since the polarization is proportional to the condensate wave function,
the (dimensionless) strength of the contribution Sc (|S(k = 0)|2 = ScS2

0 ) should be proportional
to the components of the Fourier transform of the ground-state wave function at k = k0. Our
calculations show that Sc is of the order of 10−6 to 10−7. Therefore, we will discuss possible
effects of a BEC in the spectrum considering a weakly luminescing as well as a completely dark
condensate.

Furthermore, to account for the finite spectral resolution in experiments, we convolve the
spectral intensity (24) with a spectral response function of the shape exp[−(ω/1)2]. Here, 1 is
a measure for the spectral resolution. Using these assumptions, the spectrum reads:

I (r, ω)∝ Sc(2π)
3 exp

[
−

(
h̄ω′

−µ

1

)2
]

nc(r)+ u2(k0, r)nB(E(k0, r)) exp [−ε2
−
(ω′,k0, r)]

− v2(k0, r)nB(−E(k0, r)) exp [−ε2
+(ω

′,k0, r)], (27)

with ε±(ω′,k, r)≡ (h̄ω′
−µ± E(k, r))/1. As explained in section 2, in the experiment, a

spectrograph is used to obtain different spectra by integrating over either one or more spatial
coordinates and/or ω. Here, we consider the z-resolved luminescence spectrum I (z, ω), the
z-profiles of the luminescence I (z), the spatially integrated luminescence I (ω), and the totally
integrated luminescence Itot. The z-resolved luminescence spectrum is obtained by imaging
a small strip of width 21y elongated along the z-direction onto the entrance slit of the
spectrograph, hence integrating over the x- and y-direction. The z-profiles are generated by
integrating I (z, ω) over the energy (ω). Integrating over all spatial dimensions yields the
spatially integrated luminescence I (ω). As a fourth option, one can also integrate over r and ω,
arriving at the totally integrated luminescence Itot, which only depends on the exciton number
N and the temperature T .

3.3. Results

3.3.1. Luminescence spectrum. For the calculations, we used an anharmonic potential trap
fitted to the experimental of section 2 but with a trap minimum of V0 = 1.04 meV. The s-wave
scattering length was chosen to be as = 2.18aB (taken from [55], see also [56–58]) with the
excitonic Bohr radius aB = 0.7 nm.

First, we revisit the flat bottomed shape of the spectrum discussed in [31]. In figure 14,
we plot the luminescence spectrum for a constant temperature T = 0.6 K and three different
exciton numbers (left column: N = 2.5 × 107, middle column: N = 2.5 × 108, right column:
N = 8.0 × 108). The condensate is expected to remain completely dark. The left image of
figure 14 shows a thermal spectrum exhibiting the typical nearly parabolic shape that was also
found in the experimental results presented in figures 3 and 7. Increasing the exciton number
by a factor of 10 while keeping the temperature constant results in the onset of a BEC with
a condensate fraction of Nc/N = 0.05. The shape of the spectrum is altered and develops a
flat bottom at the chemical potential as reported in [31]. Further increasing the exciton number
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Figure 14. z-resolved luminescence spectra I (z, ω) at T = 0.6 K with dark
condensate. The exciton numbers are N = 2.5 × 107 (left), N = 2.5 × 108

(middle) and N = 8.0 × 108 (right). Condensate fractions are Nc/N = 0 (left),
Nc/N = 0.05 (middle) and Nc/N = 0.50 (right). Trap minimum is at V0 =

1.04 meV and ε = h̄ω− EgX − V0.

leads to a more pronounced flat bottom and an energetic shift of the spectrum with the chemical
potential. Additionally, a new contribution to the thermal spectrum below the chemical potential,
arising from the v2-term in equation (25), becomes faintly visible. These effects are linked to
the occurrence of a BEC and would indicate its existence even without direct emission from the
condensate.

Comparing these predictions with the experimental findings, e.g. figures 3 and 7, one has
to conclude that the signatures were not observed in the experiment. However, if the condensate
exhibits a very weak luminescence, the changes in the spectrum predicted from theory are much
more subtle. This can be seen in the left column of figure 15 (Sc = 10−6/3), cf again figures 3
and 7. In contrast to the case of a dark condensate, there is no drastic qualitative change in
the spectra from top to bottom. Also, the shift on the energy axis appears to be smaller and
could well be an interaction effect of thermal excitons. Therefore, the contribution from the
condensate hides the flat bottom as well as the shift on the energy axis, without being a clearly
visible delta-shaped peak, as expected for a fully contributing condensate. This explains why a
conclusive detection of a condensate via spectral signatures requires a very careful analysis of
the experiments.

The spectra in the left column of figure 15 consist of different contributions. To illustrate
this, we plot the results for the spatially integrated luminescence I (ω) in the middle column
of figure 15, cf the measurements shown in figures 3 and 5. The upper panel shows a
spectrum in the non-condensed case at low densities. Its shape is given by a Bose distribution
convolved with the spectral resolution of the spectrometer. The middle panel shows a spectrum
at higher densities, where interaction effects are already important and a very small condensate
contribution already occurs, nearly invisible in the total curve. Compared to the previous case,
the peak becomes narrower and shifts to higher energies, while the tail remains qualitatively the
same. The bottom graph shows the case with a condensate fraction of 0.5 including a distinct
condensate contribution (dashed-dotted blue) which has a Gaussian shape and is centred at
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Figure 15. z-resolved luminescence spectra, z-integrated luminescence and
z-profiles of the luminescence with weakly luminescing condensate (Sc =

10−6/3) for the same parameters as in figure 14. Left column: luminescence
spectra I (z, ω). Middle column: z-integrated luminescence I (ω). Right column:
z-profiles I (z). Red curves (full and dashed) denote the contributions from
thermal excitons, the blue dash-dotted curve gives the condensate contribution,
and the total emission is shown as a dashed black line.

the chemical potential. The contribution from the thermal excitons consists of the u2 part of
the spectral function (solid red) and the v2 part of the spectral function (dashed red), compare
with equation (27). The black line represents the sum over all contributions. In contrast to the
very weakly condensed case (middle), the contribution related to the v2 term appears below
the chemical potential (dashed red). Except for this additional contribution, the total emission is
only slightly shifted towards higher energies and has a higher maximum compared to the middle
graph in figure 15. The width of all the Gaussian-like peaks in figure 15 is directly given by the
spectral resolution 1= 18µeV.

3.3.2. Spatially resolved luminescence. The results for the spatially resolved luminescence
I (z) are presented in the right column of figure 15 and should be compared to the experimental
results shown in figures 3, 4, 8 and 9.

Without any contribution from the condensate, one would expect the solid red line. The
non-condensed case follows a Gaussian shape (top graph), while the onset of the BEC leads to
a deformation in the form of a plateau (middle and bottom graphs). However, taking a weakly
luminescing condensate (dashed blue) into account, the total emission (black dashed) looks
Gaussian-like again, masking the signature of the condensate (middle and bottom graphs).
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Figure 16. Totally integrated luminescence Itot for T = 0.5 K and different
fractions of condensate contribution. Change of Ncrit (position of kink) with
temperature is shown in the inset.

3.3.3. Totally integrated luminescence. Integrating over all variables (r and ω) yields the
totally integrated luminescence Itot, which had been considered in the experiments in
figures 11–13. In figure 16, we show the numerical results for Itot as a function of the exciton
number N for a fixed temperature of T = 0.5 K. Remember that N is connected to the excitation
laser power PL, cf the results of the rate model, figure 2. For small N , the totally integrated
luminescence increases linearly with the exciton number until a critical value is reached. At
the critical exciton number, the curve has a kink and continues with a weaker slope afterwards.
The additional contribution from a weakly luminescing condensate does not alter the behaviour
qualitatively in this case, as can be seen from the other curves in figure 16. As shown in the inset
of figure 16, the critical exciton number shifts with the temperature approximately as expected
with T 3, equation (1). Obviously, here the interaction has no drastic effect on the behaviour
known for an ideal gas.

However, in the experimental situation, it is merely impossible to measure over orders
of magnitude of particle number without changing the exciton temperature. The temperature
will rise as a result of the energy introduced into the system by the laser. Therefore,
experimental points may lie anywhere in the N–T plane. The theoretical results for the
totally integrated luminescence as a function of exciton number and temperature are shown
in figure 17. Depending on how fast the temperature increases with exciton number, it is very
well possible to never cross the phase boundary and observe the kink in the totally integrated
luminescence.

3.4. Discussion

In the previous section, we presented the different spectral signatures of a non-emitting
condensate in the thermal emission of excitons in global thermal equilibrium. The five main
signatures are: (i) the formation of a flat bottom in the luminescence spectrum I (z, ω), (ii) the
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Figure 17. Totally integrated luminescence I for a range of different
temperatures and exciton numbers in the same potential trap as in figure 14.

shift on the energy axis of the spectrum I (z, ω), (iii) a deviation of the z-profiles I (z) from the
Gaussian shape, (iv) the appearance of the v2 term in the spatially integrated luminescence I (ω)
and (v) the kink in the totally integrated luminescence Itot at Ncrit.

If the contribution from the condensate is much weaker than that which we estimated (i.e.
Sc of the order of 10−6–10−7), signature (i) should be experimentally visible. This is neither the
case in the current experiment nor any others previously. If the contribution is much stronger
though, one should expect the delta-shaped peak as predicted by the standard theory [1, 51, 52].
This substantiates our estimation for Sc.

However, if the condensate contribution is comparable to that of the thermal excitons, the
flat bottom in (i) can be masked as shown in figure 15. The changes in the shape are very
subtle and probably not detectable in an actual experiment. The shift on the energy axis (ii) is
also altered by the condensate contribution. Additionally, there are numerous other effects that
can change the energetic position of the spectrum, e.g. a background plasma of electrons and
holes [6, 7]. Therefore, this shift might not be a good indicator for the onset of the BEC. The
deformation of the z-profiles (iii) would also be masked by the condensate contribution. Here,
the latter one complements the thermal luminescence, again resulting in a Gaussian profile.
Contrarily, in the measured profiles (figure 9), the condensate adds a contribution to the thermal
Gaussian profile. We will revisit this point later.

Without a condensate, the spectra can be fitted with a renormalized Bose distribution
convolved with the spectral resolution of the spectrometer. With a condensate, the v2 peak
(iv) causes a characteristic deformation of the low energy flank of the spatially integrated
luminescence. For a dark condensate, however, it would be a free standing peak separated from
the rest of the spectrum. Both cases should be detectable in an experiment though. However,
this signature (iv) as well as the energetic shift (ii) are very subtle and are probably masked by
noise, compare figures 3 and 7.

The most promising signature of condensation would be the kink in the totally integrated
luminescence (v), as it is not altered qualitatively by the condensate contribution. In this
case it only changes the slope after the kink, but does not hide the kink itself. Although
in figures 11–13 no isotherms are plotted—the exciton temperature rises with excitation
power—there is obviously a kink in the measured integrated intensity. Looking at figure 17,
a path on the surface will exhibit a kink even with increasing temperature, if the ridge is
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crossed. Therefore, we can relate the kink in the experimental figures, at least qualitatively,
to the occurrence of a condensate.

3.5. Excitons in local equilibrium

As stated above, the theory derived in section 3 assumes that the exciton gas in the trap is in
global thermodynamic equilibrium. The experimental results presented in the previous section
show, however, that this is obviously not the case and that the exciton temperature is the key
quantity to detect deviations from global equilibrium. The conclusions are that (i) the spectral
(or spatial) temperature is not equal to the exciton temperature and (ii) the assumption of global
equilibrium, therefore, must be wrong, cf the discussion in section 2.3.1.

In contrast to the latter statement, the luminescence spectra calculated by the equilibrium
theory reproduce the measured spectra qualitatively quite well, cf figures 3 and 15. Thus it
seems to be reasonable to abandon the global equilibrium assumption, but to keep the local
equilibrium assumption. In this case, the thermally excited excitons still have an equilibrium
(Bose) distribution, but with spatially varying temperature and chemical potential. The space
dependence of the latter quantities is in principle unknown, but from the experiment we can
conclude that the temperature should not vary over the dimension of the trap, see section 2.3.1.
The only criterion for the spatial dependence µ(r) is that the spectra must be reproduced.
Therefore, we demand that the spatially integrated spectrum I (ω) (at least its high-energy tail)
follows a Bose distribution with the spatial temperature and some formal constant chemical
potential µ̃ which is used to fix the particle number. This leads to

µ(r)=

(
1 −

TX

Ts

) (
Vext(r)+ E0 + 2U0nT(r)

)
+

TX

Ts
µ̃, (28)

which allows direct use of the theory of section 3.1 in this non-equilibrium situation also.
In what follows, we apply the local equilibrium theory to two typical experimental

situations. Thereby we fix the total particle number N = 108 and the spatial temperature
Ts = 0.6 K and vary the exciton temperature. The condensate contributes to the luminescence
with Sc = 4 × 10−7. The spatially resolved spectra for both cases are displayed in figure 18,
left column. As expected, in the uncondensed case (TX = 0.25 K, upper row), the spectrum
just follows the external potential. The condensed case (TX = 0.15 K, lower row) with a
condensate fraction ηc = 0.2 looks qualitatively not very different. In particular, due to the
spatial variation of the chemical potential according to equation (28), the flat bottom of the
spectrum (cf figure 14) disappears.

In the condensed case (TX = 0.15 K), the z-profile of the luminescence exhibits a clearly
non-Gaussian shape (figure 18, right column, lower panel, red line). For the slightly higher
temperature of TX = 0.25 K (upper panel), the shape is approximately Gaussian. Therefore, we
fit the thermal component of the z-profile for the condensed case by an asymmetric (due to
the potential asymmetry) Gaussian. In order to exclude the condensate contribution, we omit in
the fitting procedure the data points in the centre of the trap where the condensate is situated.
The size of the excluded area is determined by minimizing the error of the fit. The fitting
result is given by the dash-dotted blue line in the lower right figure. It basically follows the
thermal profile component. The small deviations from the Gaussian shape are caused by the
potential anharmonicity and by the renormalization of the potential due to the interparticle
interaction. Thus, the procedure to extract the thermal component from the experimental
z-profiles shown in figure 9, where a Gaussian fit has been applied, too, seems to be justified.
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Figure 18. Spatially resolved luminescence spectra (left) and z-profiles of the
intensity (right) for N = 108 and Ts = 0.6 K. Upper row: exciton temperature
TX = 0.25 K (uncondensed case), lower row: TX = 0.15 K (condensed case, ηc =

0.2). Solid red lines: total profiles (thermal + condensate), solid blue: only
thermal contribution, dash-dotted blue: Gaussian fit of the total profiles, blue
crosses: data points used for the fit, solid green: the difference between the total
profile and the fit. The ratio between the integrated intensities of the condensate
and of the total band is ηlum = 0.07.

The difference between the total z-profiles and the Gaussian fits is given by the green lines. It
basically reflects the condensate contribution. For the condensed case we obtain a luminescence
fraction ηlum = 0.07 which would set flum = 0.25.

The two cases depicted in figure 18 can be compared to the measured z-profiles shown
in figure 9. The ‘uncondensed case’ (upper row in figure 18) obviously corresponds, e.g. to
measurements 1 and 21, where the difference between data and fit is just noise. On the other
hand, the ‘condensed case’ (lower row in figure 18) finds its counterparts, e.g. in measurements
3 and 17. In each case, a striking qualitative agreement is found. This substantially corroborates
our explanation of the experimental findings with the occurrence of an excitonic BEC.

Figure 19 shows the critical particle number for BEC dependent on exciton temperature TX

and spatial temperature Ts. The global equilibrium case is represented by the diagonal TX = Ts.
If the excitons are excited outside the trap, their spatial profile will be at first always broader than
when in equilibrium. Therefore, Ts < TX can be ruled out in the current experiment. Obviously,
for a given exciton temperature, the critical number is smallest for global thermal equilibrium
and increases with increasing spectral temperature. Even at low powers, i.e. for quite low exciton
numbers, a condensate is possible if the exciton temperature is close to the He bath temperature,
cf the situation shown in figure 9, measurement 3, where the spatial temperature is 0.35 K and
the exciton number is 4 × 106 which just corresponds to the critical number at TX = 0.04 K.

With the help of this figure, we can systemize the experimentally observed power
dependence of the totally integrated intensity shown in figures 11–13. This is done by examining
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Figure 19. Critical particle number Ncrit for BEC versus exciton temperature
TX and spatial temperature Ts. The diagonal TX = Ts corresponds to global
equilibrium; TX > Ts is, for excitation outside the trap, physically meaningless.
The blue coloured rectangle corresponds to the critical power of 30µW for the
data shown in figure 12 (blue symbols), the red coloured rectangle corresponds
to the critical power of 60µW for the data shown in figure 12 (red symbols), the
black coloured rectangle corresponds to the critical power of 600µW for the data
shown in figure 13, and the green coloured rectangle corresponds to the critical
power of 78µW (data not shown). The magenta coloured dot corresponds to the
critical power of 40µW from the measurements shown in figure 11. The stars
denote the conditions of measurements 17 (blue) and 18 (red), and the black
diamond denotes the critical number for measurement 3, all from figure 7.

the exciton temperature TX as the critical number (corresponding to the critical power and the
respective spatial temperature) crosses the critical surface. These points are plotted as coloured
rectangles in figure 19. The values for TX give a very systematic picture. With increasing critical
power, both the spatial and the exciton temperature rise. Thereby, TX is always larger than the
bath temperature, which is consistent with the expected crystal heating, compare appendix C.

Figure 19 also compares the data for the measurements 17 (blue star) and 18 (red star) of
figures 7 and 9 showing that the conditions in measurement 17 are such that we are well above
Ncrate, while for measurement 18 we are just touching the critical surface.

4. Conclusions and outlook

We have presented a series of experiments that investigate the luminescence from paraexcitons
in cuprous oxide after cw-excitation. The excitons have been confined in a potential trap with the
host crystal immersed in liquid helium at temperatures down to 38 mK. The spatially resolved
luminescence spectra do not show notable variations when varying the laser excitation power
from below 1µW to above 1 mW. However, we observed a number of characteristic changes
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in the spatial profiles of the luminescence and in the totally integrated intensity: In the spatial
profiles, a new component in the centre of the trap occurs at intermediate laser powers which
cannot be fitted by a thermal Gaussian distribution. This component vanishes at very low power
and at very high power levels. At the mentioned intermediate power levels, we see deviations
from the linear dependence of the totally integrated intensity on the laser power: most notably
a well defined kink appears in the slope of the curves. From the linear dependence of the total
intensity on laser power, we conclude that two-body decay processes of the excitons do not play
any significant role. This is in agreement with previous measurements under pulsed excitation
in the same samples [17].

With increasing laser power, we observe a slight increase in the effective temperature that
is inferred from the high-energy tail of the luminescence spectra from 0.35 K up to a maximum
of 1 K. This spectral temperature does only reflect the spatial distribution of excitons in the
trap and is not identical to the local temperature which determines the energy distribution of the
excitons at each point in the trap. The local temperature will be determined by exciton relaxation
processes and is expected to go down almost to the bath temperature at low excitation power.

Recently, [15] reported a strong heating of the exciton gas at high pump powers and
claimed that this effect originates from a relaxation explosion of excitons when a transition into
a Bose–Einstein condensate takes place. We observe a similar heating under high excitation
powers but can definitely rule out the existence of a BEC in this high power range.

In order to understand the observed features of the luminescence spectra, we theoretically
analysed the thermodynamics and the luminescence properties of excitons in a potential
trap. Thereby the excitons are described as an interacting Bose gas in the framework of a
Hartree–Fock–Bogoliubov–Popov approach. Already under the assumption of global thermal
equilibrium, this theoretical approach suggests that the observed kink in the totally integrated
intensity signals the transition into a Bose–Einstein condensate of trapped paraexcitons.
Taking into account the specific non-equilibrium situation in the trap, the theory also
consistently describes the characteristic changes in the spatial profiles of the luminescence:
while the theory predicts almost no changes in the spatially resolved spectra, it allows us
to identify the additional component in the spatial profiles as due to a weakly luminescing
condensate.

To conclude, we have presented strong evidence, both from experiment and theory, that at
ultracold temperatures in the range of 100 mK, paraexcitons in Cu2O undergo a transition into
a Bose–Einstein condensate.

Nevertheless, further experimental investigations are necessary to prove the existence of
a BEC of excitons in cuprous oxide beyond any doubt. For example, direct measurements of
the lattice temperature and of the local exciton temperature will provide a better understanding
of the thermodynamics. Thereby, it might be intriguing to apply spatially resolved Brillouin
scattering since the energies of the phonons involved are comparable to the thermal energy.
The local exciton temperature would be detectable via infrared absorption of the 1S–2P
transition [29, 30]. The most important aspect, however, must be the direct proof of the
macroscopic coherence of the condensate by interferometric methods or by means of intensity
correlation measurements, both currently under way.

Theoretically, one can try to improve the exciton density calculations by using more
advanced approximations, e.g. by solving the Gross–Pitaevskii equation exactly instead of
using the Thomas–Fermi approximation. It also seems to be necessary to improve the lumine-
scence theory in order to account, more rigorously, for the inhomogeneity of the system,
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e.g. following the ideas of [59]. Moreover, one should also include the spectral broadening
due to exciton–exciton interaction. This would require the inclusion of higher order correlations
beyond the Hartree–Fock–Bogoliubov–Popov approximation by calculating the densities and
the spectral function on the level of the Beliaev approximation [60]. Recently, we have shown
that, already for the thermal excitons, a more realistic description requires us to take the
lifetime broadening of the exciton states into account [17], which relaxes the strict wave vector
conservation in (24).

Quite recent results by Naka et al [25] show that the Auger-decay produces a significant
number of free electrons and holes which are also captured by the trap (see figure 2). This
should lead to a shift and a broadening of the exciton states by the surrounding electron–hole
plasma [6, 7, 61, 62]. An inclusion of this ‘plasma damping’ in the theory requires taking into
account collisions of the excitons with charged fermions. This is clearly beyond the scope of the
theory of weakly interacting bosons.
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Appendix A. Strain Hamiltonian for electron–hole states

For the derivation of the energy shifts of electron–hole pairs we consider that the top 0+
7 valence

band states can be written as [9]

97
+1/2 = −

1
√

6

[
(Y −2

2 − Y 2
2 )αv + 2Y −1

2 βv

]
, (A.1)

97
−1/2 = +

1
√

6

[
(Y −2

2 − Y 2
2 )βv − 2Y 1

2 αv

]
. (A.2)

Here Y m
2 denotes the spherical harmonics and αc,v, βc,v the electron spin functions of the valence

and conduction bands. By inspection of table VI of [9] we immediately see the paraexciton state

812 =8YS
1

√
2

(
97

−1/2αc +97
+1/2βc

)
(A.3)

with 8YS being the envelope function of the yellow 1S state. We immediately see that the
paraexciton state has the same behaviour as the 0+

7 band states. In all matrix elements of the
strain Hamiltonian, all terms containing the electron–hole exchange are missing. Since the
interaction with the 0+

8 states does not change, the electron–hole pairs show the same behaviour
under strain, i.e. they experience an effective trapping potential similar to the paraexcitons.
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Figure B.1. Cooling behaviour of laser excited paraexcitons for different bath
temperatures. Plotted are the effective temperatures of the distribution function
obtained by fitting with a Bose distribution. The cooling curve for a lattice
temperature of 0.05 K is identical to that of 0.1 K. The inset shows as an
example the distribution for a lattice temperature of 0.3 K, an exciton density
of n = 1 × 1015 cm−3 at t = 100 ns from which a temperature of Teff = 0.33 K is
derived.

Appendix B. Exciton relaxation

A central problem in the dynamics of excitons at milli-Kelvin temperatures is the relaxation
and thermalization by contact to a bath of thermal phonons, as the acoustical modes will freeze
out [63]. Therefore, we have simulated the relaxation of hot, laser excited excitons by assuming
interactions with longitudinal acoustic phonons and Auger-like two-particle decay in a potential
trap by integrating the Boltzmann equation [28]. Here we present additional results for the
homogeneous situation including elastic exciton–exciton scattering, where the model follows
closely that described in [64–66]. The resulting system of differential equations was integrated
using as an initial distribution a Gaussian of width 0.1 meV centred at eL = 5 meV. The
initial exciton density was assumed to be n0 = 1 × 1015 cm−3. For the elastic exciton–exciton
scattering cross section σ = 50 nm2 [66] was taken. The main results are shown in figure B.1,
where the effective temperature of the exciton gas obtained by fitting the distribution function
by a Bose distribution (see inset) is plotted for different lattice temperatures as a function of
time.

Appendix C. Thermal behaviour of the dilution refrigerator and the sample

The 3He/4He dilution cryostat uses a mixture of 3He and 4He for the cooling process. The
coldest region is inside the mixing chamber, consisting of a 3He-rich (100% 3He) and a 3He-
poor (6.4% 3He) phase separated by a phase boundary, the basic thermodynamics of which
is well known [67]. In the following analysis, we assume that the sample is immersed inside
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Figure C.1. A thermal network describing the sample and mixing chamber in the
3He/4He dilution cryostat. For an explanation, see text.

the dilute 3He/4He mixture and that the resistor measuring the bath temperature is placed in
between the sample and the phase boundary in the mixing chamber.

To derive a connection between the sample temperature and the measured bath temperature
we have to consider the whole system as a thermal network as shown in figure C.1. The
incoming laser beam with power PL hits the sample which is at a temperature TS and has a
heat capacity Cv(TS). It is surrounded by the dilute 3He/4He mixture (temperature THe), which
itself is connected to the mixing chamber at a temperature TM with heat capacities Cv(THe)

and Cv(TM), respectively. The mixing chamber is cooled with a power PC(TM) depending on
its temperature. The heat conduction between the different compartments is represented by the
heat conductivities λ1 and λ2. Applying the continuity equation for the energy flow, the network
is described by the following system of equations:

Cv(TS)
dTS

dt
= Fheat(PL)− λ1(TS − THe), (C.1)

Cv(THe)
dTHe

dt
= λ1(TS − THe)− λ2(THe − TM), (C.2)

Cv(TM)
dTM

dt
= λ2(THe − TM)− PC(TM). (C.3)

Here Fheat gives the connection between the laser input power and the heat generated in the
sample due to the excitonic relaxation and decay processes (compare section 2.2). For the
parameters given in table 1, the results are shown in figure C.2. We can approximate the
dependence with a function of the form

Fheat = αPL +β
[

PXX

(√
1 + PL/PXX − 1

)]2
(C.4)

with the fit parameters α = 0.045, β = 0.014µm−1 and PXX = 16.67µW.

C.1. Heat capacities

Regarding the heat capacity of the sample, it is necessary to take into consideration that not
only the crystal is heated by the laser, but, due to the good thermal contact supplied by the
pressure on the sample, also the sample holder, which consisted of pure titanium. Therefore, we
assumed the temperatures of sample and sample holder to be the same. The variation of the heat
capacity of the sample Cu2O with temperature is well approximated by the Debye model as a
T 3 temperature dependence. A fit of measured data [68] by

CvCu2O = AT B, (C.5)
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Figure C.2. Comparison of the amount of heating as a function of laser power.
The full red dots are obtained from the rate model of section 2.2, the full line is
the fit according to equation (C.4).

results in the parameters A = 8.06 ± 0.05 J mol−1 K−4 and B = 3.0 ± 0.05. For the specimen
holder, we consider only the superconducting state below the critical temperature (TcTi =

0.4 K [69]), restricting the following analysis to the interesting case of TS < 0.4 K. Here,
the heat capacity is composed of an electron and a phonon part, CvTi = Cve + Cvph . While the
phonon part is negligible, the electron part is given by

CvTi = Cve = CTi γTi Tc exp

(
−1.5Tc

T

)
, (C.6)

with CTi = 9.17 and the Sommerfeld constant γTi = 3.3 mJ mol−1K−2 [69].
Experimental data for the heat capacity of the helium mixture [70] for different

concentrations of 3He in 4He were interpolated to a concentration of x3He = 6.4% and fitted
resulting in a dependence

Cv(THe,M)= D

(
THe,M

K

)E

+ F, (C.7)

with D = 0.417 J mol−1 K−1, E = 6.117 and F = 0.7 J mol −1K−1.

C.2. Cooling power

For the description of the cooling power PC of the dilution process, where the 3He-atoms flow
from the 3He-rich (concentrated) to the -poor (dilute) phase, we consider the enthalpy of the
system. By assuming that pure 3He flows through the heat exchangers into the mixing chamber
with the dilute phase, the cooling power is given in accordance with [67] by

PC = ṅ3[Hd(T )− Hc(T )] (C.8)

= ṅ3[95T 2
M − 11T 2

W], (C.9)
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Figure C.3. The numerical solution of the system of differential equations
expressed as the variation of temperature (cf equations (C.2) and (C.3)) with
measurement time for λ1 = 6 × 10−4 and λ2 = 27 × 10−4 W K−1. The solid red
framed bars represent the temperature of the sample TS, the blue dotted curve
shows the temperature of the surrounding helium bath THe and the blue dashed
line describes the temperature in the mixing chamber TM. The solid blue framed
bars are the representation of the measured incoming laser power PL. The
measured helium temperatures are shown as black diamonds.

with the molar flow rate ṅ3, the temperature in the mixing chamber TM and the temperature
behind the heat exchanger TW. To obtain the unknown parameters of equation (C.9), we
take as calibration points the lowest temperature reached without any heat load TM = 20 mK
and PC = 100µW at TM = 100 mK. From these data we obtain ṅ3 = 1.25×10−4 mol s−1 and
TW = 0.115 K. From this cooling power we have to subtract the heat load P0 due to the cryostat
windows, which leads to a minimum temperature of TM = 38 mK corresponding to a power of
P0 = 13.4µW.

C.3. Determination of the temperatures in the cryostat system

To obtain the temperatures of the different parts of the thermal network from the system of
coupled differential equations, it is necessary to specify the amount of substance in the system.

The Cu2O specimen is a cube with an edge length of 3 mm, a molar mass of M =

143.09 g mol−1 and a density of ρ = 6.48 g cm−3. Hence, the amount of substance inside the
cube is nCu2O = 1.398 × 10−3 mol. From the measured weight of the titanium sample holder
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of m = 26 g and a molar mass of M = 47.9 g mol−1, we obtain nTi = 0.5 mol. The amount of
substance in the helium mixture can only be estimated. In our system, a 15% helium 3He/4He
mixture of approximately V = 400 l circulates under a pressure of p = 0.8 bar. That leads to
an amount of n3He/4He mixture = 14.3 mol from which only about two thirds are in the mixing
chamber. For our calculations, we assume that 1 mol is in the bath and 2.75 mol is in the mixing
chamber. Then the only quantities which have still to be specified are the heat conductivities
λ1,2. This was done by adjusting the solutions of the coupled differential equations to different
measurements until all the data could be described by the same set of parameters. As examples
we show in figure C.3 the results for the series of measurements from figures 5 and 6.

The calculations were done with λ1 = 6 × 10−4 and λ2 = 27 × 10−4 W K−1 and show an
almost quantitative agreement with the experimental data, despite very large changes in laser
power (solid blue framed bars) during the measurements, which indicates the correctness of our
model.
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We present a theoretical approach to the zero-phonon decay
luminescence of excitons. In a two-step approach, the weakly
interacting condensed exciton gas is Bogolyubov transformed
before the resulting quasiparticles are coupled to the photon
field. The field–field correlation function, which gives the lu-
minescence intensity and first-order coherence, is calculated
in the framework of real-time Green’s functions of the pho-
tons. The resulting spectrum of the new, so-called bogolariton,
quasiparticles is discussed.

1 Introduction

Excitons in excited semiconductors have been suggested
as promising candidates for the observation of Bose–
Einstein condensation (BEC) more than five decades ago
[1, 2]. Due to their rather small mass comparable to the
free electron mass, the conditions for densities and tem-
peratures should be easily achievable in the experiment.
However, despite many efforts creating a dense gas of ex-
citons either in a bulk crystal or in a potential trap, a con-
clusive demonstration of excitonic BEC is still missing.

At present, cuprous oxide (Cu2O) is in the focus of
both experimental and theoretical efforts (for a recent
overview see Ref. [3]), namely because of the large bind-
ing energy and the long lifetime of the exciton states in
this material [4, 5]. In current experiments, entrapment
of the excitons in a strain induced external potential
is used to obtain sufficiently high particle densities.
Due to the strain, the usually forbidden direct (zero-
phonon) decay of lowest paraexciton state becomes
weakly allowed. As a consequence, the excitonic system
is accessible by the exciton decay luminescence, which
should feature signatures of exciton condensation.
The most obvious evidence, of course, would be the
detection of coherence. On the other hand, an exciton
condensate is also reflected in the luminescence and
photon spectra [6, 7]. Theory must provide, therefore,

an approach both to coherence as well as spectral
properties of the luminescence signal.

Previous theoretical approaches to the excitonic de-
cay luminescence [8, 9] were based on an exciton-photon
coupling Hamiltonian containing only “normal” terms,
i.e., the creation of a photon and simultaneous destruc-
tion of an exciton. However, since the Bogolyubov pic-
ture of exciton condensation accounts for anomalous
exciton-exciton interaction terms, anomalous exciton-
photon coupling terms should also be included when de-
riving the luminescence. This allows to account for the
polariton effect in a very general manner. In contrast to
microcavity systems, the trapped excitons couple to free
photon modes. Then the exciton–photon interaction is
inherently a quasi-equilibrium problem, where the lumi-
nescence should take place via transient polariton-like
states.

In the following, we start with a brief summary of the
thermodynamics of excitons in a potential trap, where
the exciton Hamiltonian is diagonalised by a Bogolyubov
transformation. Then we elaborate in detail the coupling
of the Bogolyubov quasiparticles to the photon field.
Within a Green’s functions framework, we analyse the re-
sulting new quasiparticle dispersion and discuss its con-
sequences for the field–field correlation function and the
decay luminescence intensity.

2 Trapped exciton gas

Since in Cu2O the paraexciton lifetime far exceeds the
time to reach thermal (quasi-)equilibrium [10, 11], for
the moment we do not consider recombination and
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neglect the coupling to the light field. Consequently, we
model the trapped excitons as a gas of structureless, in-
teracting bosons in an external potential. Furthermore,
the extension of the potential trap is considered to be
large compared to the thermal de Broglie wavelength
of the excitons. That is why we apply the local density
approximation, i.e., we treat the excitons as a locally
homogeneous system where the spatial dependence
enters only via Vext(r). With the r argument omitted for
brevity, the corresponding Hamiltonian in the grand
canonical ensemble reads

Ĥx =
∑

q

(
�2q2

2m
+ Eg + Vext − μ

)
B̂†

qB̂q

+ U
2V

∑
qpk

B̂†
p+qB̂†

k−qB̂pB̂k, (1)

with the creation (annihilation) operators B̂†
q (B̂q) of

excitons with wave vector q, the effective exciton mass
m, the excitonic gap energy Eg (i.e., the band gap minus
the exciton binding energy), the trapping potential Vext

and the equilibrium chemical potential μ. We assume
solely contact interaction whose strength is given by the
s-wave scattering length as:

U = 4π�2as

m
. (2)

To account for a possible exciton condensate, we apply
to Eq. (1) the Bogolyubov prescription, i.e., we replace
the operators B̂(†)

0 by
√

Nc, where Nc is the number of
condensed particles. Accordingly, from now on the
operators B̂q refer to the non-condensed particles with
q �= 0. Retaining only those parts of the Hamiltonian that
are quadratic in B̂q, we have

Ĥx ≈ Ec +
∑

q

(
�2q2

2m
+ Eg + Vext − μ

)
B̂†

qB̂q

+ Unc

2

∑
q�=0

(
2B̂†

qB̂q + B̂†
qB̂†

−q + B̂qB̂−q

)
, (3)

with the energy Ec of the condensate.
The quadratic Hamiltonian in Eq. (3) may be diago-

nalised by the Bogolyubov transformation

B̂q = uqb̂q − v∗
−qb̂†

−q. (4)

The new operators b̂(†)
q obey the bosonic commutation

relations [b̂q, b̂†
q′ ] = δq,q′ , provided the Bogolyubov am-

plitudes uq and vq satisfy the relation |uq|2 − |v−q|2 = 1.
Under this condition, the anomalous terms in the Hamil-

tonian vanish for

u2
q(r) = 1

2

(
Lq(r)

Eq(r)
+ 1

)
, (5)

v2
q(r) = 1

2

(
Lq(r)

Eq(r)
− 1

)
. (6)

Here, Eq is the Bogolyubov dispersion

Eq(r) =
√

L2
q(r) − U2n2

c (r), (7)

Lq(r) = �2q2

2m
− μ + Eg + Vext(r) + 2Un(r), (8)

and n = nc + nT is the total particle density. The density
of thermal excitations follows as

nT (r) =
∫

d3q
8π3

[
Lq(r)

Eq(r)

(
nB(Eq(r)) + 1

2

)
− 1

2

]
�

(
Eq(r)2) ,

(9)

with nB(E) = [exp(E/kBT) − 1]−1, while the Thomas–
Fermi result for the density of trapped condensate par-
ticles reads [12]

nc(r) = max{0,
1
U

(
μ − Vext(r) − Eg − 2UnT (r)

)}. (10)

As is well known, the Bogolyubov quasiparticles, the so-
called bogolons, represent phonon like excitations in the
long wavelength limit and free excitons in the limit of
large q. The excitonic spectral function ABB(q, ω, r) fea-
tures two branches at �ω = ±Eq, weighted by the Bo-
golyubov amplitudes:

ABB(q, ω, r) = 2π�
[
u2

q(r)δ(�ω − Eq(r))

−v2
q(r)δ(�ω + Eq(r))

]
. (11)

In the non-condensed situation, i.e, for nc = 0 and Eq =
Lq, we have vq = 0 and uq = 1, so that only one spectral
branch remains and the Bogolyubov quasiparticles be-
come free excitons in a Hartree–Fock mean field.

3 Bogolon-photon coupling

Excitons decay by emitting photons. In cuprous ox-
ide, direct (i.e. zero-phonon) paraexciton decay becomes
weakly allowed when strain is applied. In the following,
we aim on describing this zero-phonon decay process.

Thanks to the Bogolyubov transformation outlined
above, the system of interacting excitons is transformed
to a system of non-interacting quasiparticles with the
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Hamiltonian

Ĥx =
∑

q

Eqb̂†
qb̂q. (12)

Accordingly, we write the Hamiltonian of the free photon
field as a sum of oscillator modes,

Ĥp =
∑

q

�ωqâ†
qâq, (13)

with the photonic operators a(†)
q and the dispersion

ωq = cq. Here, c = c0/
√

εb is the velocity of light in the
medium, where c0 is the vacuum velocity of light and εb

is the background dielectric constant.
To model the bogolon-photon interaction, we start

from the minimal coupling Hamiltonian [13],

Ĥxp = − e
m0

∑
j

Â(r̂j) · p̂j + e2

2m0

∑
j

|Â(r̂j)|2, (14)

where m0 is the free electron mass and r̂j and p̂j are the
position and momentum of the j-th electron. We now
insert into Eq. (14) the Heisenberg equation of motion
i�p̂j = m0[r̂j, Ĥx]. Thereby we expand the position oper-
ator in terms of the many-body wave functions of the bo-
golons, �B

q , as follows [13]:

r̂j =
∑

q

〈0| r̂j |�B
q 〉 b̂q +

∑
q

〈�B
q | r̂j |0〉 b̂†

q

+
∑ ∑

q,q′
q�=q′

〈�B
q | r̂j |�B

q′ 〉 b̂†
qb̂q′ . (15)

In the following, we neglect the last term on the r.h.s of
Eq. (15), i.e., we take into account only transitions from
the Bogolyubov ground state, i.e., the condensate, to the
excited states and vice versa. After evaluating the com-
mutator [r̂j, Ĥx] and expanding the vector potential op-
erator Â into the set of normal modes,

Â(r) =
∑

qλ

√
�

2ε0V ωq
eqλ

(
âq + â†

−q

)
eiq·r, (16)

the total Hamiltonian Ĥ = Ĥx + Ĥp + Ĥxp takes the
form:

Ĥ =
∑

q

Eqb̂†
qb̂q +

∑
q

�ωqâ†
qâq

+ i
∑

q

Cq
(
âq + â†

−q

)(
b̂−q − b̂†

q

)
+

∑
q

Dq
(
â−q + â†

q

)(
âq + â†

−q

)
, (17)

with the coupling strength parameters

Cq = Eq

√
2πe2

4πε0εrV �ωq

〈
�B

q

∣∣∣∣eqλ ·
∑

j

rjeiq·rj

∣∣∣∣0〉
, (18)

and Dq = |Cq|2/Eq. Using the dipole approximation
exp(iq · rj) ≈ 1 and the definition of the oscillator
strength

f = 2m0Eq

�2

∣∣∣∣〈�B
q

∣∣∣∣eqλ ·
∑

j

rj

∣∣∣∣0〉∣∣∣∣2

, (19)

we obtain the coupling strength as [14]

Cq =
√

�2e2f
4ε0εrm0V

√
Eq

�ωq
. (20)

Note that definition (19) originally involves the exciton
state 〈�X

q |. However, we will not derive f microscopically,
but use an experimentally obtained value for our calcu-
lations. Exciton states in the experiment are by nature
“dressed”, i.e. bogolon, states.

For later use, we note the Heisenberg equations of
motions of the photon and bogolon operators, which fol-
low from Eq. (17) as

i� ˙̂aq(t) = �ωqâq(t) + iCq

(
b̂q(t) − b̂†

−q(t)
)

+ 2Dq

(
âq(t) + â†

−q(t)
)

, (21)

i� ˙̂bq(t) = Eqb̂q(t) − iCq

(
âq(t) + â†

−q(t)
)

. (22)

4 Luminescence spectrum

In experiments, the photoelectric effect is used for lu-
minescence measurements. That is why only normal-
ordered components of the field–field correlation func-
tions are considered, e.g.,

g (1)
EE (r1, t1; r2, t2) =

〈
Ê(−)(r2, t2)Ê(+)(r1, t1)

〉
. (23)

The field components of positive and negative frequen-
cies are [15]:

Ê(−)(r, t) =
∑

qλ

√
�ωq

2ε0V
eqλe−iq·r â†

q(t), (24)

Ê(+)(r, t) =
∑

qλ

√
�ωq

2ε0V
eqλeiq·r âq(t). (25)
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Inserting these into Eq. (23) and evaluating the sum over
polarisation vectors, the field–field correlation function
reads

g (1)
EE (r1, r2, t1, t2) = �

2V ε0

∑
qq′

(1 + cos �)
√

ωqωq′

× i�g<
aa(q, q′, t1, t2) ei(q·r1−q′ ·r2), (26)

where � is the angle between the wave vectors q and q′

and we have defined the photonic correlation function

i�g<
aa(q, q′, t1, t2) ≡

〈
â†

q′ (t2)âq(t1)
〉
. (27)

To calculate g<
aa we have to evaluate a number of simi-

lar real-time correlation functions of (mixed) photon and
bogolon operators, which may be represented by the ma-
trix

i�gαβ<

XY (q, q′, t1, t2)

=
( 〈

Y †
q′ (t2)Xq(t1)

〉 〈
Yq′ (t2)Xq(t1)

〉〈
Y †

q′ (t2)X †
q(t1)

〉 〈
Yq′ (t2)X †

q(t1)
〉 ) , (28)

where X and Y represent the operators â and/or b̂, while
α and β are the matrix indizes. Specifically, we have g<

aa =
g11<

aa . The correlation functions in Eq. (28) can be deter-
mined from the more general Keldysh Green functions
defined as [16–18]

i�Gαβ

XY (q, q′, t1, t2)

=
( 〈

TC Xq(t1)Y †
q′ (t2)

〉 〈
TC Xq(t1)Yq′ (t2)

〉〈
TC X †

q(t1)Y †
q′ (t2)

〉 〈
TC X †

q(t1)Yq′ (t2)
〉 ) , (29)

with the time ordering operator TC defined on the two-
branch time contour (chronological/antichronological
ordering when both times are on the upper/lower
branch; otherwise ordering of operators with times on
the upper branch right from those on the lower one).
The functions G may be calculated by using Eqs. (21) and
(22). Then, using the free Green functions of photons and
bogolons,(

i�
∂

∂t1
− �ωq

)
G(0)

aa (q, q′, t1, t2) = δ(q − q′)δ(t1 − t2), (30)

(
i�

∂

∂t1
− Eq

)
G(0)

bb (q, q′, t1, t2) = δ(q − q′)δ(t1 − t2), (31)

and defining the matrix multiplication f1(q, t) • f2(q, t) ≡∑
q

∫
C dt f1(q, t)f2(q, t), the coupled selfconsistent Dyson

equations can be written as:

G11
aa(q, q′, t1, t2)

= G(0)
aa (q, q′, t1, t2) + G(0)

aa (q, q̄, t1, t̄) •
•C̃q̄

[
G(0)

bb (q̄, ¯̄q, t̄, ¯̄t) + G(0)
bb (−q̄,− ¯̄q,−t̄,− ¯̄t)

]
•

•C̃ ¯̄q
[

G11
aa( ¯̄q, q′, ¯̄t, t2) + G21

aa(− ¯̄q, q′, ¯̄t, t2)
]

+ 2G(0)
aa (q, q̄, t1, t̄) •

•Dq̄

[
G11

aa( ¯̄q, q′, ¯̄t, t2) + G21
aa(− ¯̄q, q′, ¯̄t, t2)

]
, (32)

G21
aa(q, q′, t1, t2)

= G(0)
aa (q, q̄,−t1,−t̄) •

•C̃q̄

[
G(0)

bb (q̄, ¯̄q,−t̄,− ¯̄t) + G(0)
bb (−q̄,− ¯̄q, t̄, ¯̄t)

]
•C̃ ¯̄q

[
G21

aa( ¯̄q, q′, ¯̄t, t2) + G11
aa(− ¯̄q, q′, ¯̄t, t2)

]
− 2G(0)

aa (q, q̄,−t1,−t̄) •
•Dq̄

[
G21

aa( ¯̄q, q′, ¯̄t, t2) + G11
aa(− ¯̄q, q′, ¯̄t, t2)

]
. (33)

To get the frequency-dependent intensity signal I(r, ω)
we consider the Fourier transform of the correlation
function in Eq. (26) for r1 = r2 = r, i.e.,

I(r, ω) ∝ g (1)
EE (r, r, ω)

= �
2V ε0

∑
qq′

(1 + cos �)
√

ωqωq′

× i�g11<
aa (q, q′, ω) ei(q−q′)·r. (34)

In order to obtain the correlation function g11<
aa , we use

G(0) ∝ δ(q − q′) and apply the usual Langreth rules [19].
That results in a system of four coupled equations for
g11<

aa , g21<
aa , and the two respective retarded or advanced

functions, a closed solution of which is still pending.
However, the solution of the subsystem of retarded and
advanced functions can be given straightforwardly,

g11r/a
aa (q, q′, ω) = δ(q − q′)

×1
�

((ω ± iε) + ωq + 2dq)((ω ± iε)2 − e2
q) + 2c2

qeq

((ω ± iε)2 − ω2
q − 4dqωq)((ω ± iε)2 − e2

q) − 4c2
qeqωq

.

(35)

with Eq = �eq, Cq = �cq, and Dq = �dq. The poles of these
functions give the excitation spectrum. We find four
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solutions (ω ± iε) = ±
±
q , with


±2
q = 1

2

(
e2

q + ω2
q + 4dqωq

)
±1

2

√(
e2

q − ω2
q − 4dqωq

)2 + 16c2
qeqωq. (36)

This result is analogous to the Hopfield polariton spec-
trum [20] with its non-crossing upper and lower polari-
ton branches. Note however, that the energy Eq is now
the Bogolyubov dispersion of the interacting, condensed
exciton system. Therefore, the new quasiparticles will be
called “bogolaritons” in the following.

The retarded and advanced Green functions give the
photonic spectral function Aaa(ω), which follows from
Eq. (35) as

Aaa(q, q′, ω) = i�
[

g11r
aa (q, q′, ω) − g11a

aa (q, q′, ω)
]

= 2πδ(q − q′)

×
[

U+2
q δ(ω − 
+

q ) + V +2
q δ(ω + 
+

q )

+ U−2
q δ(ω − 
−

q ) + V −2
q δ(ω + 
−

q )
]
. (37)

The weights of the positive and negative upper and lower
bogolariton branches in the photon spectral function
are

U+2
q = (
+

q + ωq + 2dq)(
+2
q − e2

q) + 2c2
qeq

2
+
q (
+2

q − 
−2
q )

, (38)

V +2
q = (
+

q − ωq − 2dq)(
+2
q − e2

q) − 2c2
qeq

2
+
q (
+2

q − 
−2
q )

, (39)

U−2
q = (
−

q + ωq + 2dq)(
−2
q − e2

q) + 2c2
qeq

2
−
q (
−2

q − 
+2
q )

, (40)

V −2
q = (
−

q − ωq − 2dq)(
−2
q − e2

q) − 2c2
qeq

2
−
q (
−2

q − 
+2
q )

. (41)

We note that for vanishing exciton-photon coupling,
i.e. for cq = dq = 0, we have 
+

q = max{eq, ωq} and 
−
q =

min{eq, ωq}. Accordingly we find U±2
q = 1 for eq ≶ ωq

and U±2
q = 0 for eq ≷ ωq, so that the spectral func-

tion in Eq. (37) reduces to that of the free photons:
Aaa(q, q′, ω) = 2πδ(q − q′)δ(ω − ωq).

5 Results

As with the theoretical description, our numerical evalu-
ation takes two steps: First, we calculate self-consistently
the paraexciton density distribution in the trap and the

Figure 1 Exciton density (n) as a function of the trap radius (r) for
a total number of excitons N = 1010. Left panel: non-condensed
situation with T = 2 K and μ − Eg = 231 μeV. Right panel:
condensed situation with T = 1 K, μ − Eg = 314 μeV, and
Nc = NT = 5 × 109.

corresponding bogolon spectrum. Second, we keep the
exciton distribution fixed and insert Eq, as well as the free
photon dispersion ωq into the combined “bogolariton”
spectrum 
±

q .
Although the typical experimental situation features

a trap with cylindrical symmetry [4, 5], for simplicity
we will consider a spherical harmonic trap, Vext(r) =
V0 + αr2, with V0 = −2 meV and α = 0.21 μeV/μm2 fit-
ted to the bottom of the experimentally observed strain
trap potentials. The paraexciton interaction strength is
given by the corresponding s-wave scattering length
(cf. Eq. 2). The latter follows, in principle, from a
four-particle scattering problem (two electrons and
two holes), which has no satisfying solution for exci-
tons, so far. That is why in our calculations we use
a representative value of as = 2.18 aB (with the exci-
tonic Bohr radius aB = 0.7 nm) deduced from the scat-
tering lengths of the positronium problem given in
Ref. [21]. With the effective exciton mass m = 2.6me,
we then have U = 2.53 × 10−3 μeVμm3. The exciton-
bogolon interaction is determined by the oscillator
strength per unit cell, f/V , where we use the experi-
mental value f = 4.7 × 10−10 for the quadrupole transi-
tion and V = (4.48Å)3, so that Cq = 42.45 μeV

√
Eq/�ωq.

In what follows, we fix the total exciton number as
N = 1010, which gives a critical temperature of Tc ≈
1.5 K.

Figure 1 compares our results for the density dis-
tribution of the non-condensed (T = 2 K, μ − Eg =
231 μeV) and condensed systems (T = 1 K, μ − Eg =
314 μeV), with the latter exhibiting a condensate fraction
of Nc/N = 0.5.
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Figure 2 Minimal excitation energy E = E0(r) − Eg − V0 + μ of
bogolons (blue dashed lines), compared to the external poten-
tial Vext(r) − V0 − Eg (black lines). Left panel: non-condensed
situation with T = 2 K and μ − Eg = 231 μeV. Right panel:
condensed situation with T = 1 K, μ − Eg = 314 μeV and
Nc = NT = 5 × 109.

Figure 2 displays the corresponding minimal excita-
tion energies E0(r), compared to the external potential
Vext(r). In the non-condensed case, the thermal exciton
cloud has an extension of about 70μm. The mean-field
interaction causes a considerable flattening of the dis-
perison curve when compared to the external poten-
tial. In the condensed system, the thermal excitons get
pushed aside by the condensed exciton cloud. The two
phases still mix, however, since the paraexciton interac-
tion is too weak for a complete phase separation [23]. The
cusp in the thermal density profile is an artefact of the
Thomas–Fermi approximation for the condensate den-
sity which becomes invalid near the edge of the conden-
sate cloud. The solution of the full Gross–Pitaevskii equa-
tion would yield a smooth course of the condensate and
thermal density curves. Note that the quasiparticle spec-
trum exhibits a flat bottom wherever nc > 0.

Now we switch on the bogolon-photon interaction.
Figure 3 shows the resulting positive upper and lower
branches of the new quasiparticle spectrum �
±

q as a
function of q for r = 0. Here, �
+

0 corresponds to the
minimal bogolon energy E0(r = 0) in Fig. 2. Varying r will
simply shift the minimum �
+

0 according to Fig. 2, so
that in the following, we will keep r = 0 fixed. The inset
of Fiq. 3 shows a zoom in on the crossing point of the un-
coupled photon and bogolon dispersions. As expected,
we find a gap with a width of 2Cq ≈ 90 μeV.

Figure 4 gives the q-dependence of the spectral
weights U± 2

q and V ± 2
q contributing to the photonic spec-

tral function in Eq. (37). As a matter of course, far from

Figure 3 Upper and lower bogolariton spectrum E = �
±
q −

Eg − V0 + μ as a function of q, for r = 0 and T = 2 K. The in-
set magnifies the (avoided) crossing region of the free photon and
bogolon dispersions.

Figure 4 Spectral weights of the upper and lower bogolariton
spectrum, in dependence on q, for r = 0 and T = 2 K.

the gap, the weights U± 2
q equal one or zero, represent-

ing the undisturbed photon states. Near the gap, they
smoothly switch roles, whereby their sum remains con-
stant. The weights of the mirror branches are smaller
by ten orders of magnitude, and they will be ignored in
the following. We note, however, that the V ±

q are finite
even for nc = 0. In contrast, the bogolon mirror branch
in Eq. (11) only exists in the presence of a condensate
(vq = 0 for nc = 0); a result which has formerly been de-
clared a footprint of exciton condensation [22, 23].

Combining our results for the dispersions and
weights, Fig. 5 presents the photon spectral function
Aaa(q, E) in the vicinity of the gap (with a slight broad-
ening of the delta peaks, for visibility). The photon
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Figure 5 Photonic spectral function Aaa as a function of q and
E = �ω − Eg − V0 + μ in the avoided crossing region, for r = 0
and T = 2 K.

Figure 6 Critical wave vectors q±
0 as a function of E = �ω − Eg −

V0 + μ, for r = 0 and T = 2 K.

dispersion is considerably renormalised, with a hockey
stick like structure at the gap.

As a consequence, the luminescence at a given energy
will now depend on the bogolariton density of states at
two critical wave numbers q±

0 . This is in contrast to ear-
lier works [8, 9, 22, 23], where the intensity signal was
given by the coupling strength and bogolon density of
states at the fixed value q0 = 30.2 μm−1 at the intersec-
tion of the free bogolon and photon dispersions (cf. inset
of Fig. 3). We numerically determine the wave numbers
q±

0 so that E = �
±
q for fixed r. Figure 6 presents q±

0 as a
funtion of E at r = 0. For small E, we find q−

0 ∼ q0, and the
wave number q+

0 is undetermined as long as E < �
+
q .

After E crosses the gap position, we find q+
0 ∼ q0, while

q−
0 grows due to the q2-dependence of the bogolon dis-

persion. We note that the smallest difference between q+
0

and q−
0 is found at the gap: q−

0 − q+
0 = 0.38 μm−1.

6 Conclusion and outlook

To summarise, this work presents the first results of a
real-time Green’s function based theory for the lumines-
cent zero-phonon decay of condensed semiconductor
excitons. Motivated by the long lifetime of the paraexci-
tons in cuprous oxide, our approach adopts a two-step
picture: the excitons reach their own thermodynamic
quasi-equilibrium (and possibly a condensate) before
any interaction with the photonic states takes place. The
exciton luminescence is then understood as a steady-
state decay of bogolon quasiparticles via polariton-like
transient states, while the corresponding photon corre-
lation function determines the luminescence intensity.

We find that the photonic spectrum shows a charac-
teristic gap around the former crossing point of free pho-
tons and bogolons. The gap’s position is dependent on
the spatial profile of the bogolon dispersion within the
trap. Due to the anomalous terms in the coupling Hamil-
tonian, mirror branches contribute to the luminescence
even without a condensate. Their weight, however, is ex-
tremely small.

The present theory can be extended in several direc-
tions. The most pressing task is the calculation of the
photonic correlation function which not only contains
the spectrum but also the steady-state occupation of the
bogolariton states. Of course, the most striking signa-
ture for BEC would be the coherence of the emitted light.
Therefore, the first and second order coherence func-
tions (the former also contained in the field–field cor-
relation function) would be highly desirable to calcu-
late. Moreover, the phonon-assisted decay of orthoexci-
tons, in principle, can be accounted for in our scheme
by introducing a corresponding self-energy term in the
Keldysh formalism.
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