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Zusammenfassung

Wissenschaftliches Rechnen ist heute ein zentraler Bestandteil der Forschung. Ins-
besondere im Bereich der theoretischen Beschreibung kondensierter Materie sind auf-
grund der starken Korrelationen zwischen den Komponenten eines Festkörpers (Ionen
und Elektronen bzw. Spins) numerische Methoden wie exakte Diagonalisierung oder
Quanten-Monte Carlo seit langem etabliert. Allerdings bedingt eine realistische Behand-
lung bereits kleiner Systeme im Rahmen von mikroskopischen Hamilton-Operatoren
wie dem Hubbard- oder dem Holstein-Hubbard-Modell einen sehr hohen Ressourcen-
verbrauch, da die Zahl der zu betrachtenden Freiheitsgrade typischerweise exponentiell
mit der Zahl der Gitterplätze skaliert. Dieses Problem war und ist trotz der steigenden
Leistungsfähigkeit moderner Supercomputer ein aktives Feld der Forschung. Ausgehend
von Renormierungsgruppenmethoden für Einteilchensysteme entwickelte Steve White im
Jahr 1992 ein neues numerisches Verfahren, den Dichtematrix-Renormierungsgruppen-
Algorithmus (DMRG). Er erlaubt die Auswahl einer “optimalen” Menge von Hilbert-
raum-Basiszuständen, was bedeutet, dass die gewählte Basis einen minimalen Fehler
bei der Berechnung von Erwartungswerten bedingt. DMRG hat im Vergleich mit an-
deren Verfahren sehr moderate Anforderungen an Speicher und CPU-Zeit. Trotzdem
übersteigen aktuelle Probleme bereits die Kapazität von Arbeitsplatzrechnern.

In dieser Arbeit werden zunächst Ansätze zur Parallelisierung von DMRG für Grund-
zustände aufgezeigt, speziell im Hinblick auf Multiprozessorsysteme mit gemeinsamem
Speicher (shared memory). Typischerweise haben solche Rechner einen sehr hohen Spei-
cherausbau, der der DMRG sehr zugute kommt. Durch die Ausnutzung von Parallelität
in den dominanten Teilen einer Rechnung (Davidson-Diagonalisierung des Superblock-
Hamilton-Operators) kann eine Beschleunigung bis zu einem Faktor 5 bis 6 auf 8 Prozes-
soren erreicht werden. Ausführliche Performanceanalysen geben Hinweise auf die Aus-
wahl des am besten geeigneten Computersystems. Mit dem parallelisierten Code wird so
die Behandlung von bisher unzugänglichen Problemgrößen möglich, und insbesondere
können notwendige finite-size-Analysen durchgeführt werden.

Aufbauend auf diesen Arbeiten wird der parallelisierte DMRG-Code exemplarisch
auf aktuelle Probleme der theoretischen Festkörperphysik mit elektronischen, bosoni-
schen und Spin-Freiheitsgraden angewendet. Die Frage, ob es eine streifenförmige Mo-
dulation der Lochdichte in zweidimensionalen, leiterförmigen Hubbard-Systemen unter
zylindrischen Randbedingungen gibt, wird mit Hilfe von Extrapolationsverfahren im
thermodynamischen Limes beantwortet. Obwohl DMRG für eindimensionale Probleme
entwickelt wurde und dort auch am besten konvergiert, ist die Übertragung auf Leitern
möglich und erfolgreich. Für das eindimensionale Holstein-Modell spinloser Fermionen
bei Halbfüllung werden die Luttinger-Parameter und der Ladungs-Strukturfaktor be-
stimmt, und so das bisher nur mit Rechnungen auf kleinen Gittern etablierte Pha-
sendiagramm abgeleitet. Im halbgefüllten Holstein-Hubbard-Modell kann durch eine
finite-size-Analyse der Spin- und Ladungsanregungslücken in den relevanten Grenzfällen
(Mott-Isolator, Peierls-Bandisolator bzw. bipolaronischer Peierls-Isolator) das Phasen-
diagramm ebenfalls bestimmt werden. Insbesondere im antiadiabatischen Limes deuten
die DMRG-Ergebnisse auf die Bildung von stationären lokalisierten Bipolaronen hin, wo-



bei keine Spin-Ladungs-Separation auftritt. Schließlich wird eine Heisenberg-Spinkette
mit dynamischen Phononen betrachtet, die als relevantes Modell für den Spin-Peierls-
Übergang in Kupfer-Germanat dient und bekanntlich spontane dynamische Dimerisie-
rung für überkritische Kopplung zeigt. Mittels DMRG wurde erstmals der Zusammen-
hang zwischen dynamischer Dimerisierung und Singulett-Triplett-Anregungslücke im
thermodynamischen Limes herausgearbeitet.

Obwohl auch dynamische Observablen mit DMRG zugänglich sind, tritt der Vor-
teil im Vergleich mit älteren Methoden wie exakte Diagonalisierung oder Monte-Carlo-
Algorithmen vor allem bei Grundzustandsrechnungen zu Tage. Insgesamt hat die An-
wendung von paralleler DMRG die handhabbaren Problemgrößen deutlich erhöht und
so zu neuen Einsichten bei stark korrelierten Quantensystemen geführt.



Summary

Scientific computing is a vital component of scientific research today. Especially in
the field of theoretical description of condensed matter, where there are strong corre-
lations between the components of a solid (ions and electrons, or spins, respectively),
numerical methods like exact diagonalization or Quantum Monte Carlo have been estab-
lished a long time ago. However, as the number degrees of freedom in a quantum system
scales exponentially with the number of lattice sites, a realistic numerical treatment of
microscopic Hamiltonians is only possible for very small lattices due to excessive re-
source requirements. In spite of the constantly growing performance of supercomputer
systems, the search for solutions of this problem is an ongoing task. In 1992, Steve
White developed a new numerical method called the Density Matrix Renormalization
Group Algorithm (DMRG), using renormalization group techniques for single-particle
systems as a starting point. It enables Hilbert space truncation using an “optimal” set of
basis states, which means that the error in observables becomes minimal. In comparison
with other methods, DMRG has very moderate memory and CPU time requirements.
Current problems nevertheless exceed the capabilities of workstations.

This thesis will first present different alternatives for parallelization of ground-state
DMRG, with a focus on shared memory multiprocessor systems which are typically
equipped with large amounts of memory, this being quite favourable for DMRG. By
exploiting the parallelism in the dominant part of a DMRG calculation (Davidson diag-
onalization of the superblock Hamiltonian), speedups of 5 to 6 on 8-CPU machines can
be achieved. An extensive performance analysis gives hints as to which machine is best
suited for the task. Using the parallelized code, previously unmanageable problem sizes
become accessible and required finte size studies can be performed.

The parallelized DMRG code is subsequently applied to current problems in the-
oretical solid state physics with electronic, bosonic and spin degrees of freedom. The
question whether there is a stripe-like modulation of the hole density in the ground state
of doped Hubbard ladders with cylindrical boundary conditions is answered in the ther-
modynamic limit using extrapolation techniques. Although DMRG was developed for
one-dimensional problems and shows best convergence there, the application to ladders
is possible and successful. In the one-dimensional Holstein model of spinless fermions at
half filling, Luttinger parameters and the charge structure factor are determined in order
to derive the phase diagram that had previously been established only on small lattices.
Analogously, for the half-filled Holstein-Hubbard model, a finite size analysis of spin and
charge excitation gaps in the relevant sectors of the model (Mott insulator, Peierls band
insulator and bipolaronic Peierls insulator) is able to yield the phase diagram as well.
Finally, the Heisenberg spin chain with dynamical phonons is considered as a relevant
model for a spin-Peierls transition in Copper Germanate. It exhibits a well-known tran-
sition to spontaneous dimerization at overcritical coupling. Using DMRG, the relation
between singlet-triplet excitation gap and dynamical dimerization has been calculated
for the first time.

Although dynmical observables are accessible for DMRG, it shows its greatest ad-
vantage over alternative methods like exact diagonalization or Monte Carlo algorithms
at ground state calculations. All things considered, the application of parallel DMRG
has pushed the limit of manageable problem sizes to new heights and has thus led to
new insights in strongly correlated quantum systems.
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Preface

In the last few years solid-state physics has benefited a lot from scientific computing.
The use of numerical techniques is likely to keep on growing quickly in almost all other
fields of physics as well. Because of the high complexity of many physical problems this
will become possible only by the use of modern high-performance supercomputers that
are powerful enough to simulate complex systems. Not only do the computational results
provide us with important clues on the behaviour of specific materials but they are also
widely used as a touchstone to test theoretical approaches, especially in the very difficult
regime of strong correlations where the different energy scales in the problem are not
well separated. In highly correlated systems, the interaction between the constituents
is so strong that they can no longer be considered separately and perturbative methods
becomes unreliable. In other words, “the whole is greater than its parts”. As a result,
the collective behaviour of the microscopic particles, e. g., the electrons in a solid, may
scale up to a macroscopic ensemble, exhibiting new and fascinating properties such as
high-temperature superconductivity or colossal magnetoresistance [1]. Although there
are already many materials under experimental and theoretical inspection, new and
interesting substances like, e. g., carbon nanotubes keep showing up and break new
ground to as yet uncovered fields of application.

Quasi-onedimensional strongly coupled electron-phonon systems like MX-chain com-
pounds are further examples of electronic systems that are very different from traditional
ones [2]. They are particularly rewarding to study for a number of reasons. First they
exhibit a remarkably wide range of strengths of competing forces, which gives rise to
a rich variety of symmetry-broken ground states. Second these systems share funda-
mental features with higher-dimensional novel materials, such as high-Tc cuprates or
charge-ordered nickelates, i. e. they are complex enough to investigate the interplay of
charge, spin, and lattice degrees of freedom which is important for strongly correlated
electronic systems in two and three dimensions as well. Nevertheless they are simple
enough to allow for a nearly microscopic modeling.

In order to do this, one must first come up with some model Hamiltonian that might
be able to reproduce the essential physics. A large number of such models have been
“on the market” for several decades. A typical example is, e. g., the Heisenberg spin
Hamiltonian,

HH =
∑

〈ij〉
Jij ~Si~Sj , (1)
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describing a system of N immobile quantum spins interacting via an exchange integral
Jij (Fig. 1). This was one of the first models for which an exact ground-state solution was

i j

Jij

Figure 1: Depiction of the Heisenberg Model with next-neighbor exchange interaction
Jij.

determined analytically in the one-dimensional homogeneous spin- 1
2 case, the Heisenberg

antiferromagnet (HAFM, [3, 4]). As each of the N sites can assume one of two states
(spin up or spin down), the total number of quantum states and, accordingly, the Hilbert
space dimension, is 2N . The purely electronic one-band Hubbard Model,

HHM = −
∑

〈ij〉,σ
tij
[
c†iσcjσ + H.c.

]
+ U

∑

i

ni↑ni↓ , (2)

adds electron mobility (tij) and on-site Coulomb repulsion (U) (Fig. 2). 〈ij〉 denotes
summation over next neighbors. The hopping term introduces additional degrees of

U
−t −t

Figure 2: Depiction of the Hubbard Model with on-site electron repulsion U and mobility
t.

freedom as each site can now accommodate two electrons, one electron with spin up
or down, respectively, and none at all. Hence the Hilbert space dimension is now 4N .
Finally, the Holstein-Hubbard Model,

HHHM = HHM + gω0

∑

i,σ

(b†i + bi)niσ + ω0

∑

i

b†ibi , (3)

allows for optical phonons coupled to the electronic subsystem with interaction strength
g (Fig. 3). Under the assumption that at most M phonons are excited in the system
one arrives at a Hilbert space dimension of 4N (M + 1)N . Many extensions and simpli-
fications are possible, some of which will be mentioned in this thesis. Nevertheless, the
exponential growth of degrees of freedom with N cannot be circumvented.

As indicated above, in an attempt to bridge the gap between a microscopic model
on one hand and its actual ground state, spectral and thermodynamic properties on the
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ω0

−t

U

−t

g

Figure 3: Depiction of the Holstein-Hubbard Model. In addition to the Hubbard terms,
sites can accommodate optical phonons of frequency ω0, and the local site
distortion is coupled to the fermion density.

other hand, theorists have turned to the use of numerical techniques (Fig. 4). Despite
the apparent simplicity of the model Hamiltonians, numerical calculation of observables
is often computationally intensive and can only be carried out on supercomputers. As
shown above, the reason for this is the inevitable exponential growth in the number of
degrees of freedom when the system is enlarged in order to get more realistic results.
The latter is often required for carrying out finite-size studies which are unavoidable
when doing the comparison with experiment or for the theoretical prediction of phase
transitions. However, depending on the problem at hand and the actual method chosen,
there might still be vast differences in computational cost. Nowadays finite-cluster exact
diagonalization (ED), density matrix renormalization group (DMRG) calculations and
quantum Monte Carlo (QMC) simulations have become very powerful and important
tools for solving many-body problems with high accuracy. Among those, DMRG is the
youngest method and the exploration of its capabilities is still a field of active research [5,
and references therein]. The appealing quality of DMRG compared to other approaches
is that it provides a mechanism to perform a well-defined procedure for Hilbert space
truncation, which is, in a certain sense, optimal as far as computational accuracy of
observable quantities is concerned.

This work has two goals. First, to describe a feasible and efficient approach to the
parallelization of ground-state DMRG on shared-memory computers. Shared-memory
programming is, fortunately, subject to incremental parallelization, i. e. it is usually not
required to rethink an algorithm completely in order to make it run in parallel. This is
also true for DMRG. The second goal is to apply the parallelized DMRG code to prob-
lems in the physics of strongly correlated electron, electron-phonon and spin-phonon
systems, helping to identify important properties that may enhance our understanding
of real materials that show interesting behaviour like high-temperature superconduc-
tivity (HTSC), colossal magnetoresistance (CMR) or the formation of charge and spin
density waves (SDW/CDW) in quasi-onedimensional materials like MX chains. How-
ever, the focus lies on DMRG as a numerical method which is often able to refine the
results previously obtained with other approaches, but, on the other hand, is not very
easy to manage and requires careful interpretation of its results. The scope is almost
completely on ground-state calculations as the determination of dynamical properties,
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while possible with DMRG (see section 2.2.6), would require a completely different ap-
proach to parallelization [6, 7].

The layout of this thesis is as follows. Part I deals with the DMRG algorithm itself.
After a brief introduction of ED, MC and DMRG in chapter 1, chapter 2 describes the
basic density-matrix renormalization group algorithm and gives an overview of possible
extensions as well as advantages and shortcomings. Some hints for the correct selection
of DMRG parameters are pointed out. Shared-memory parallelization is developed
in chapter 3, starting from an existing DMRG program package originally written by
S. White and E. Jeckelmann which was first made portable so that it could be run on
a large variety of current architectures. Detailed performance figures and applicability
limits are given. It is shown that using the parallelized algorithm on large shared-
memory nodes can shorten the time needed to reach a desired convergence level by
factors of four to six.

In part II, the code is applied to specific physical setups. In chapter 4 an interesting
contribution to the still controversial question about the existence of stripes in doped
cylindrical Hubbard ladders is made. It is demonstrated that even when the DMRG
algorithm has not completely converged (for which indicators are given), extrapolation
procedures can still yield results for infinite-length systems at m → ∞. Using the
parallelized DMRG code on systems with up to 126 sites and m <∼ 8000, it is shown that
stripe-like structures, i. e. fluctuations in hole and spin density of the ground state can
be observed in long 7r× 6 ladders for any 3 ≤ U ≤ 12, but that these structures are an
artefact of the method for small U . Increasing the hole doping leads to a considerable
flattening of stripes, and the transition point to a striped state is shifted to larger U .
Difficulties in interpreting observables like local magnetization are discussed.

Chapter 5 is concerned with the one-dimensional Holstein and Holstein-Hubbard
models. Going back to one dimension is by no means a simplification because, as
shown above, phonons introduce new degrees of freedom and make the numerics equally
demanding. The Holstein model can be obtained from (3) in the limit of vanishing
on-site electron repulsion U . This is applicable, e. g., for spinless fermions, where the
Pauli exclusion principle rules out the Hubbard interaction. For this case, the nature
of the different ground states at half-filling is discussed. In the metallic (Luttinger
liquid) regime, the renormalized effective coupling constant and the velocity of the charge
excitations is determined. At large coupling the charge structure factor is used to identify
long-range order in the charge-density wave Peierls-distorted state. Turning to the full
Holstein-Hubbard model at half-filling, DMRG will be used to calculate charge and spin
gaps in the Mott-insulator and Peierls-insulator phases of the HHM, as well as right
at the critical point, in order to support the recently developed phase diagram [8]. In
the antiadiabatic limit, the conjecture that the HHM behaves like an effective Hubbard
model with attractive Coulomb interaction is tested.

Chapter 6 sheds some light on open questions regarding the Heisenberg spin chain
with dynamical phonons. After proving the applicability of DMRG by reproducing
the Bethe Ansatz ground-state energy in the (simpler) antiferromagnetic Heisenberg
model, it is shown that previous calculations using ED and MC methods have vastly
overestimated the infinite-system singlet-triplet excitation gap, mainly due to the very
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small accessible system sizes for ED. The gap as well as the dynamical dimerization
are extrapolated to the thermodynamic limit, allowing for much improved numerical
validity compared to previous ED results.

Finally, a concluding chapter sums up the results and gives an outlook to possible
future work.
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Part I

The Numerical Method
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Chapter 1

Introduction

1.1 Numerical methods

Although a tremendous amount of work has been devoted to the solution of the Heisen-
berg, Hubbard and Holstein-Hubbard models [9, 10, and references therein], exact results
are very rare and only a few special cases and limits have so far been understood analyt-
ically. Therefore a numerical treatment of these models seems to be inevitable. As will
be explained, the huge number of degrees of freedom even for moderate system sizes is
the main problem here. DMRG is the only method that tries to circumvent this obstacle
by a ingenious selection mechanism, effectively reducing the Hilbert space dimension to
manageable sizes, but without the imponderabilities of genetic algorithms [11, 12].

In the following sections, the currently dominating numerical methods will be intro-
duced and briefly compared.

1.1.1 Exact diagonalization

In principle, exact diagonalization (ED) is presently the best-controlled numerical me-
thod which allows an approximation-free study of coupled electron-phonon models in
the whole parameter range. A full orthonormal basis set {|Φi〉} is used to build up the
matrix representation of the Hamiltonian:

Hi,j = 〈Φi|H|Φj〉 . (1.1)

No conservation law is applicable for the phononic basis states and thus the total matrix
dimension (Dtot = Del×Dph) is infinite in principle. However, a well-defined truncation
procedure can be applied for the phonon sector, effectively rendering the representation
finite (see below).

Due to the locality of interactions, the matrices Hi,j are extremely sparse in a real
space basis and standard algorithms such as Lanczos [13, 14] or Davidson [15] can be
used to compute exact ground states or low lying excited states while good estimations
for excitation spectra are provided by a kernel polynomial method in combination with
a maximum entropy method [16]. The CPU-time and memory requirements of the three

12



1.1. Numerical methods 13

methods are determined by a sparse matrix-vector multiplication (MVM) involving the
sparse matrix representation of H. Unfortunately, the number of required degrees of
freedom still grows exponentially with increasing cluster size. Counting the electronic
part alone, each of N sites can accommodate four states (empty, one electron with spin
up or down, two electrons), which makes up for 4N degrees of freedom. So even for
rather small clusters, e.g., with N = 16 to 20 lattice sites, the memory requirements
can already exceed the resources of present-day supercomputers. The dimension of the
matrix to be diagonalized can be somewhat reduced by exploiting conservation laws. For
instance, the conservation of electron number (n =

∑
i ni↑ + ni↓) and the z component

of the total spin (Sz = 1
2

∑
i ni↑ − ni↓) is usually easy to use.

At that point a peculiarity of coupled electron-phonon models becomes apparent:
the full basis set can be constructed as a direct product of electronic and phononic basis
sets,

{|Φu,v〉 = |u〉el ⊗ |v〉ph; u = 1, . . . , Del; v = 1, . . . , Dph} . (1.2)

The required truncation procedure for the phononic states,

|v〉ph =
N∏

i=1

1√
mi,v!

(
b†i
)mi,v |0〉ph, mi,v ∈ [0,∞] , (1.3)

can be implemented by introducing an upper limit for the number of phonons M con-
tained in each basis state: ∑

i

mi,v ≤M . (1.4)

In this way, the dimension of the phononic part of the Hilbert space becomes DM
ph =

(M +N)!/M !N !. Truncating the phonons in such a way is equivalent to setting an
upper limit Mω0 for the elastic energy of the harmonic lattice (second term in Eq. (3)).
Of course, only the lower part of the spectrum of H with E �Mω0 is described well in
this approximation and convergence with respect to M has to be checked carefully for
each parameter set {t, U, g, ω0}.

Although a lot of work has been done to reduce the number of basis states in the
ED algorithms, even for clusters with only N = 8 sites matrix dimensions beyond
DM

tot = Del ×DM
ph ∼ 1010 may be required to achieve sufficient convergence with respect

to the truncation of the phonon basis states. As a consequence, the use of powerful
supercomputers is indispensable for ED studies of the model. The feasibility of such
an undertaking depends crucially on the existence of well-optimized, well-parallelized
numerical codes. In order to save memory, it may be required to recompute the elements
of the sparse matrix in each MVM step instead of storing them. Parallelization can be
achieved by exploiting the natural parallelism in the direct product formulation of the
basis set (1.2). For a detailed discussion see [17, 18].

1.1.2 (Quantum) Monte Carlo Methods

The massive computational power required to carry out exact diagonalization already
for small systems has inspired the search for less costly methods. A widely used ap-
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proach is to statistically scan the multi-dimensional configuration space, using some
knowledge about the system as a bias. This is called statistical importance sampling,
and it originated from statistical methods for evaluating integrals [19].

As an example, consider numerically integrating a function f(x) over some interval,

I =

b∫

a

f(x) dx ≈ I(N) =
(b− a)

N

∑N
i=1wif(xi)∑N

i=1 wi
. (1.5)

Here, the {xi} are N equidistant points and {wi} are appropriate weight factors. The
choice of the weights determines the actual algorithm, like the trapezoidal or the Simpson
rule. Unfortunately, while this works well for one or a few dimensions, it is quite
inefficient for multi-dimensional integration, the reason being that the effort for reaching
a certain numerical accuracy for a d-dimensional integral is proportional to N d if N is
the number of points in one direction. This problem can be circumvented by choosing
the {xi} to be randomly (but uniformly) distributed in the integration domain. By
the Central Limit Theorem, the statistical error or standard deviation of I(N) is now
proportional to 1/

√
N , and does not depend on the dimensionality of the integral.

If f(x) is a function with significant weight only in some regions, sampling with a
uniform probability distribution is still inefficient because most of the function evalua-
tions are carried out for x values that do not contribute substantially to the integral. To
overcome this difficulty, one turns to importance sampling, meaning that points in the
integration interval are chosen according to some probability distribution p(x) that is,
preferably, similar to |f(x)| so that areas of large contribution become overrepresented.
This scheme is justified by conveniently rewriting the integral (1.5) as

I =

B∫

A

f(x(y))

p(x(y))
dy , (1.6)

where dy = p(x)dx. After this change of variable, y can be chosen to be uniformly
distributed between A and B. The integrand is, however, nearly constant and this has a
positive effect on the variance of the numerical integral. The optimal choice p(x) = |f(x)|
for which the variance would vanish is regrettably ruled out because evaluation of (1.6)
requires integration (and inversion) of p(x) [19].

Choosing the right distribution p(x) might not be easy in the general case, espe-
cially with multi-dimensional integration, but without a proper sampling probability
density statistics gets too weak to be useful. It would be of advantage to have a scheme
that samples points according to the desired probability distribution without having
to analytically integrate and invert it. This is indeed possible with the more general
Markov Chain Monte Carlo methods, of which the Metropolis Algorithm [20] is the most
prominent example.

The Metropolis Algorithm is applicable to a broad range of multi-dimensional prob-
lems, from simple integration to wave function optimization (variational Monte Carlo)
and the calculation of thermal properties of classical and quantum systems. It works by
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traversing the configuration space {X} in a random walk, where each step from xi ∈ {X}
to xi+1 is accepted with probability

Pacc = min

[
1,
ρ(xi+1)

ρ(xi)

]
. (1.7)

Here, ρ(xi) is the probability density for finding configuration xi. It can be shown that
the random walk is equivalent to picking configurations xi according to the distribution
ρ. This could be, e. g.,

ρ(xi) =
e−S(xi)

∑
i e
−S(xi)

, (1.8)

where S(xi) is the Euclidean action for configuration xi (another popular choice is the
particle density from a trial wavefunction, leading to the Variational Monte Carlo [VMC]
approach). Identification of imaginary time iτ with the inverse temperature β = 1/kBT
leads to the conclusion that one can get estimates for the expectation value of some
operator Â by

〈Â〉(N) =

N∑

i=1

A(xi) , (1.9)

where the xi are selected by the random walk. Like in the simple integration example,
the statistical error of the result depends on the number of samples only.

Parallelization of Monte Carlo algorithms is often easy, which adds to the appealing
properties of this approach. Nevertheless there are some important obstacles to con-
sider. Before actual measurements can be carried out, the system must reach thermal
equilibrium. This can be difficult to achieve close to a phase transition where correlation
lengths become large (critical slowdown). Trying to get around this problem by choosing
larger steps, i. e., distances between xi and xi+1, is futile because this also raises the
probability of a move to be rejected by the rule (1.7). On the other hand, if the steps
are too small, equilibration can take a long time and autocorrelations between succes-
sive configurations lengthen the time required between measurements. The probably
most intricate impediment in QMC simulations is the sign problem or fermion problem.
Performing a QMC algorithm essentially solves a path integral over all possible config-
urations of the system. This includes, by the quantum nature of the physics involved,
particle interchange. For fermions this means that the numerical approximation to the
integral contains many terms of similar magnitude but opposite sign, and it is only by
mutual cancellation that convergence can come about (one could also argue that the
probability density for a fermionic Hamiltonian is not positive everywhere). Despite nu-
merous efforts to resolve the sign problem over the last half century, no general method
is available to date. For more information on QMC methods, see [21].

In comparison with exact diagonalization, QMC methods can often reduce the re-
source requirements for a given problem considerably. They also involve careful tuning
of several parameters in order to yield useful and correct results, a task which requires
some expertise. On the other hand, ED does not involve any approximation or uncer-
tainty apart from the well-controlled truncation of phonon Hibert space.
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1.1.3 DMRG

This section only gives a rough overview of the DMRG method. A more in-depth
description of the DMRG algorithm and its variants can be found in chapter 2.

DMRG is a variational method. It tries to overcome the problems with exponen-
tially increasing Hilbert space dimensionality by providing a scheme which allows one
to select an “optimal” basis with a manageable number of elements. In this sense, “op-
timal” means that the truncation error in observables like energy, density, correlations
etc. is minimized. The key for this selection is the so-called reduced density matrix,
which is obtained from the full density matrix by splitting the complete physical system
into “system” and “environment” blocks and summing over the environment’s states.
One is left with another density matrix that describes the “system” block and all pos-
sible boundary conditions that it may be subjected to. The m largest eigenvalues and
corresponding eigenvectors of the reduced DM determine an optimal basis for the rep-
resentation of all relevant operators, where m should of course be chosen as large as
possible. An iterative procedure allows one to increase m gradually along the course of
the calculation up to a point where some required convergence criterion is fulfilled. This
could be, e. g., stationarity of ground state energy or particle densities. Section 2.4.1
contains more details. In many cases, several hundreds of eigenstates are sufficient to get
decent accuracy, so that previously unmanageable systems can be tackled on PC-class
computers.

Moreover, due to the nature of the algorithm, well-optimized vendor-supplied library
subprograms can be used to speed up DMRG calculations considerably. This is due to
the fact that the dominating operation in DMRG ground-state calculations is a large,
sparse matrix-vector multiply that has a dense matrix-matrix multiplication as its ele-
mentary operation. On current RISC-based commodity microprocessors this procedure
can be optimized for cache and register reuse and runs with near-peak speeds.

1.2 Applicability of DMRG and current problems

DMRG has been used in the course of the last decade to tackle an enormously broad
range of physical problems. It had first been devised for the calculation of ground-state
properties like energy gaps, correlation functions and the like. Later, the method was
extended to yield dynamical aspects of quantum systems [22, 7], optical conductivities
being the most important. Systems at finite temperature and time evolution have as of
late entered the realm of DMRG applicability.

Although a large class of problems can be treated using DMRG, there are also
some practical limits where it ceases to be useful. Some rough guidelines may serve as
indicators:

• Due to its origins (renormalization group), DMRG is especially well suited for
systems showing some translational invariance, in the sense that there is only a
small number of “classes” that sites can be sorted into. Moreover, long-range
interactions pose a notorious problem for the algorithm. Nevertheless, it has also
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been applied with some success to quantum chemical problems, especially small
molecules [23]. Section 2.2.5 describes briefly how DMRG is used in that context.

• The dimensionality of the Hilbert space should increase by as small an amount as
possible when adding a single site to a system. In other words, a single site should
comprise only few degrees of freedom. Section 2.2.1 will show a method by which
this can be accomplished in spin- 1

2 systems.

• DMRG prefers the use of open boundary conditions over periodic continuation.
Section 5.3, which deals with phase transitions in the 1D Holstein-Hubbard Model,
shows that a finite-size scaling analysis with closed boundary conditions is rather
difficult.

• DMRG makes it quite hard to identify the actual point of convergence: looking
at observables like structure factors can give a different view on convergence than
the ground-state energy alone. Sometimes it is even impossible to get appropri-
ate convergence and one must use extrapolation techniques (such a case will be
described in section 4.3).

• DMRG is often very good for one-dimensional systems, but as of now it is not
at all clear what the optimal algorithmic strategy for higher dimensions might
be. Section 2.2.2 describes a widely used algorithm for ground-state calculations,
and in chapter 4 DMRG results for the two-dimensional Hubbard Model will be
discussed that have been obtained using this standard approach.

• Finally, although DMRG seems to be a straightforward method at least for ground-
state properties, it is nevertheless a tedious task to arrive at a truly efficient
implementation. As mentioned in the previous section, the algorithm leads to well-
optimizable matrix-matrix operations, but only by exploiting symmetries helps to
reduce the actual amount of work to be done. Work that has not to be done is in
any case better than unnecessary work done efficiently.

Nevertheless, DMRG has proven its power many times, and is currently in active
use in many areas, including classical physics. Some of the most interesting applications
encompass:

• Calculation of ground state properties of one-dimensional lattice models with
electron-electron, electron-phonon and spin-phonon interactions. In one dimen-
sion the DMRG algorithm works best, and several applications will be described
in detail in part II of this thesis.

• Dynamics of non-uniformly charged polymers, of which gel electrophoresis (used in
DNA fingerprinting) is an application. This classical problem can, in the context of
a suitable model, be mapped to a one-dimensional non-hermitian quantum system
which is subject to DMRG investigation [24, 25, 26].

• Several modifications of the original (ground-state) DMRG algorithm can yield
dynamical properties like optical absorption or even time evolution [7, 22].
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Summary The presently available numerical methods for the determination of ground-
state properties in strongly correlated systems, namely exact diagonalization (ED),
Quantum Monte Carlo (QMC) and the density-matrix remormalization group (DMRG)
have been introduced and their dominant features compared. Applicability limits for
DMRG have been pointed out.



Chapter 2

The Density-Matrix
Renormalization Group Method

2.1 General algorithm

For simplicity, the following discussion restrains itself mostly to ground-state calculations
for one-dimensional systems as the algorithm can be demonstrated there most easily
and also works best. Some comments on DMRG in two dimensions and numerous other
extensions can be found in section 2.2. A number of review articles have been published
that give a more complete overview to DMRG [5, 27].

2.1.1 Origins

In 1975, Wilson [28] applied a novel method called the Numerical Renormalization Group
(NRG) to the Kondo problem with enormous success. The central hypothesis was that
most important properties of a system will be retained when integrating out the “ultra-
violet” (high-energy) sector, thereby adding an effective term to the Hamiltonian. Later
White and Noack [29] showed that, while the NRG breaks down already for simple sys-
tems having no clear energy separation, it can be extended by taking care of boundary
conditions correctly. Nevertheless, it was at the time unclear how to treat interacting
many-particle systems.

DMRG overcomes this difficulty by giving a well-defined recipe as to how the “en-
vironment” of a system under consideration should be simulated in order to get a basis
set which is suitable for system and environment together.

2.1.2 The algorithm

DMRG splits the physical system (usually in real space, although a momentum space
approach is possible [30]) into two pieces, the so-called system block and the environment
block . Both together form the superblock (see Fig. 2.1).

19
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Figure 2.1: Division of the complete physical system into “system block” and “environ-
ment block”. Both blocks together form the “superblock” whose Hamiltonian
matrix is diagonalized.

The central entity in the algorithm is the reduced density matrix

ρii′ =
∑

j

ψ∗ijψi′j , (2.1)

where i and j label the states of the system and environment blocks, respectively, so
that a superblock state |ψ〉 can be composed:

|ψ〉 =
∑

ij

ψij |i 〉|j 〉 . (2.2)

Definition (2.1) shows that in ρ the states of the environment block are summed over.
In this manner all possible boundary conditions that the environment may impose on
the system are incorporated in the density matrix. It can now be shown [10] that the
eigenstates of ρ with the largest eigenvalues are those that have the most significant
impact on observables, i. e., in order to get a good guess at an optimal basis set for the
superblock Hamiltonian one has to

• diagonalize the reduced density matrix for a system block of size l and extract the
m eigenvectors with largest eigenvalue,

• construct all relevant operators (system block and environment Hamiltonians, ob-
servables) for a system block of size l+ 1 in the reduced density matrix eigenbasis,

• form a superblock Hamiltonian from the system and environment block (size l−1)
Hamiltonians plus two single sites (see Fig. 2.2) and determine its ground state by
diagonalization.

These steps must be repeated several times, shifting the interface between system block
and environment block back and forth until some convergence criterion is fulfilled. This
might be e. g. stationarity of the ground state energy or a sufficiently small discarded
weight Wm, which is the sum of all density matrix eigenvalues wi that were not consid-
ered when forming the basis:

Wm =

d∑

i=m+1

wi . (2.3)
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| | H̄R
l′−1H̄l+1

Figure 2.2: One step of the finite system DMRG algorithm (left-to-right phase). H̄l+1

and H̄R
l′−1 are system block and environment block Hamiltonians in the re-

duced density matrix eigenbasis.

Here, d is the size of the reduced density matrix. The procedure can be generalized to
two dimensions, although it is not quite clear as to how the best “path” for the sweeps
through the grid should be chosen [10]. See also section 2.2.2 for more comments on
this problem.

The accuracy of observables like the ground state energy depends on the number m
of density matrix states kept. The discarded weight gives some hint for choosing the
right m for a particular problem. Usually one starts with m rather small and increases m
every time the ground state energy has converged. Nevertheless most of the computing
time is spent in the sweeps with largest m. Sensible values for m depend on the physical
model under consideration. In the one-dimensional case where DMRG usually performs
best, m = 500 to 1000 is often sufficient to get decent data, even for models with
electron-phonon interaction like the Holstein-Hubbard Model (3). In two dimensions a
larger m is in order, e. g. m = 2000 to 10000 for a 2D Hubbard model (2). Although in
that case performance and memory requirements easily exceed the resources of standard
PCs, they are still far below those needed for an ED approach, and valuable results can
often be obtained on off-the-shelf hardware instead of teraflop-class supercomputers (see
section 3).

2.2 Modifications and enhancements of the DMRG me-
thod

It must be stressed that many complications show up in implementing the algorithm for
a real-world problem. Fermionic and bosonic commutation rules, reflection and other
symmetries, boundary conditions, degeneracies etc. all require special attention [31, 32].
These issues will be discussed in the following sections, with a focus on the methods
that will be applied in part II of this thesis.

2.2.1 Fermions

It is crucial for the efficiency of the DMRG algorithm to not increase the number of
degrees of freedom by too much when extending the system block by one site. In other
words, one site should be a “small” entity in terms of its degrees of freedom. In the case
of fermion sites, this requirement can be fulfilled better by using so-called “half-sites”.
Usually, in a system with freely moving fermions, Pauli exclusion limits the available
states per lattice site to four: |0〉, |↓〉, |↑〉 and |↓↑〉. Half-sites are special in the sense
that each site can only carry either no or one single fermion, having a predefined spin.
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system block env. block

Figure 2.3: One possible
mapping of a one-
dimensional path on a
two-dimensional lattice.
The two DMRG “center
sites” are marked in grey.

Thus, there are now two kinds of sites: those that can carry “up” spins and those that
can carry “down” spins, each with a local Hilbert space that has two basis states only,
|0〉 and |↑〉 (or |↓〉, respectively).

In this approach, one fermion site with its four possible states is split into two sub-
sites, one exclusively for “up” fermions and the other for “down” fermions. This way, the
degrees of freedom for both sites still match the original ones, but the DMRG algorithm
can cover the two half-sites one by one, effectively reducing the number of degrees of
freedom to newly introduce in each step. This trick comes at the small cost of having
to correct for the change in Hilbert space due to the site splitting when calculating
observables or formulating operators.

2.2.2 Two-dimensional systems

In principle, the DMRG algorithm lends itself to the study of higher-dimensional sys-
tems. The problem here is, however, how to design one DMRG step in order to keep
the number of degrees of freedom on the new site as small as possible. This rules out
from the beginning an approach where a new “site” is taken to be one complete column
of the lattice. On the other hand, it is straightforward (albeit not unique) to map a
one-dimensional path onto the lattice, traversing the sites in some scheme that adds no
more degrees of freedom per step than in a purely one-dimensional situation (Fig. 2.3).
Careful examinations of the implied truncation error of this procedure have been carried
out [33], showing that for ladder-like systems (Lx × Ly with Lx ≥ 2Ly) the number of
states to keep in order to get some predefined accuracy depends on the ladder width
Ly only (exponentially in the case of spinless fermions). This is, e. g., important for the
study of stripe formation in Hubbard ladders, to be described in section 4.3.

It must be noted that an important optimization that is possibe for one-dimensional
systems might not be applicable for 2D lattices: block reflection for speeding up the
algorithm by a factor of two. Section 4.3 also demonstrates this issue.

2.2.3 Spins

The treatment of spin systems using DMRG is mainly a matter of implementing the
appropriate Hilbert space. The number of states per site is now only two (|↓〉, |↑〉), and
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Figure 2.4: Adding a phonon site to an m-state system block. Left: Traditional approach
with “full” 8-state phonon site. Right: Three two-state pseudosites replace
the full site, representing 23 = 8 states as well. Taken from [35].

the number of spins is always equal to the number of sites. Of course, spin systems can
always be recovered from more complicated models by appropriate choice of parameters
(like U → ∞ for the Hubbard Model at half-filling), but this would be a waste of
resources as the full model Hilbert space would still have to be accounted for. DMRG
has been shown to be very successful for the study of spin systems [34], and will be
applied to the HAFM and the Heisenberg spin-phonon chain in chapter 6.

2.2.4 Phonons and electron-phonon systems

As described in section 1.1.1, the presence of dynamical phonons renders the Hilbert
space infinite-dimensional. Here, DMRG faces the same problem as ED, and finding
a well-defined truncation procedure for phononic states is critical. A very successful
approach is to transform “large” phonon sites into several smaller ones [31, 35].

Typically, Einstein phonons are introduced by coupling the fermionic density to
lattice distortions, so that the Hamiltonian is equipped with terms like

Hph = gω0

∑

i,σ

(b†i + bi)niσ + ω0

∑

i

b†ibi . (2.4)

One could indeed use the standard DMRG algorithm and represent one boson site with
an appropriate (i. e. sufficient) number M of states, as shown in Fig. 2.4 a, to the effect
of adding an M -dimensional space to the system block in a DMRG step whenever a
boson site is encountered. This leads to a large computational effort in diagonalizing
the new superblock (∝ M 3), cf. section 2.2.1. To solve this problem, a boson site with
2nb states is represented by nb pseudo-sites, each of which can accommodate two states,
“occupied” and “empty” (denoted in the following as |0〉 and |1〉, respectively). Adding
a boson site to the system block then takes nb DMRG steps, but each step enlarges the
system block Hilbert space only by a factor of two (Fig. 2.4 b). Of course, the bosonic
operators b† and b (site indices omitted here) must now be rewritten in terms of nb

pseudo-site operators a†j and aj, whose matrix representation in the {|0〉j , |1〉j} basis is

aj =

(
0 1
0 0

)
and a†j =

(
0 0
1 0

)
, (2.5)

leading to the anticommutation rule aja
†
j +a†jaj = 1, which is the same as for spin oper-

ators. Operators on different pseudo-sites are chosen to commute, and the pseudo-states
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Figure 2.5: Approach for local
phonon Hilbert space optimization.
each site has a (small) number of
optimal states. One “big” site has
some additional bare states which
are selected anew for each iteration.
Taken from [36].

are then called hard-core bosons. The M levels of the full boson site get represented as
binary numbers, where each “1” corresponds to an occupied pseudo-site. In this way,
all possible boson configurations (up to M) can be accounted for.

The full-site boson operators must now be reformulated in terms of the aj . Obviously,
the boson occupation number operator can be written as b†b =

∑
j 2j−1a†jaj , but b and

b† require more work. However, the operator B† for which B†|n〉 = |n+ 1〉 is easily seen
to be

B† =

N∑

i=1

a†i

i−1∏

j=1

aj , (2.6)

because it increments the binary representation by one. Normalization can be ensured
(for details, see [31]), and so all bosonic parts of the Hamiltonian can be rewritten.

The pseudo-site method leads to tremendous savings in computer time and memory
compared to the full-site approach. The downside is that the reformulated Hamiltonian
takes, at least in some part of the calculation, a very complicated form with long-range
interactions. Nevertheless, the method will be used for the DMRG analysis of electron-
phonon systems in this thesis.

Another way to handle the problem of infinite phonon space dimension is the con-
struction of an optimal phonon basis [36]. Much in the spirit of DMRG, an iterative
procedure yields an optimal basis for the representation of the phonon states. The algo-
rithm works as follows: First, a certain number of bare (original basis) phonon states per
site is taken into account. This number should be small enough so that the superblock
can be diagonalized with modest effort. In the course of the calculation, the bare states
will be gradually transformed to optimal states. One site of the system, however, called
the “big site”, has additional phonon states which are always selected from the bare
ones (Fig. 2.5). The superblock Hamiltonian is then diagonalized as usual. In order to
get a new approximation for the optimal phonon basis, the reduced density matrix of
the big site with respect to the rest of the lattice is formed,

ραi,i′ =
∑

j

ψαi,jψ
∗
αi′,j , (2.7)

where α labels the four possible electronic states, i and i′ number the phonon states of the
big site, and j summarizes the states of the whole rest of the system. By diagonalizing
ραi,i′ and identifying its largest eigenvalues one gets an optimized big-site phonon basis
which is afterwards used for all other sites. It is important to select new bare phonon
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states for the big site in each step, allowing many bare states to contribute to the optimal
basis. For details, see [36].

The optimized phonon approach is not limited to DMRG just because it uses a
density matrix to compute an optimal basis. It has, e. g., been used successfully together
with exact diagonalization (ED) for spotting the transition from inter-site to on-site
bipolarons in the one-dimensional Holstein-Hubbard model and for the determination
of Luttinger parameters in the metallic regime of the spinless fermion Holstein model
[37].

2.2.5 Orbitals in quantum chemistry

DMRG has been used with some success in quantum chemistry (QC), although the
abundance of non-local interactions makes it more difficult to apply than for the usual
translationally symmetric locally-interacting strongly correlated electron- and electron-
phonon models. Nevertheless, it shows a more favourable complexity as compared to the
standard QC approaches which scale at least with N 5, N being the number of orbitals.
The starting point is usually a Hartree-Fock (HF) calculation in Born-Oppenheimer
approximation, yielding a mean-field approximation of the orbitals. In this HF basis,
the QC Hamiltonian then reads

HQC =
∑

ijσ

Tijc
†
iσcjσ +

1

2

∑

ijkl

Vijkl
∑

σσ′
c†iσc

†
jσ′ckσ′clσ , (2.8)

where Vijkl describes Coulomb repulsion between orbitals and Tij is everything else,
including kinetic energy and interaction with nuclei. In QC terms, Tij is the one-electron
integral between orbitals i and j. Compared to the cases described so far, (2.8) contains
many (N 4) non-local interaction terms. In order to shorten the range of interactions,
one can turn to orbital functions that are more localized than the usually broad HF
solutions [38]. The number of interaction terms and thus the computational effort and
memory footprint can be reduced in a variety of ways [23, and references therein]. One
of the problems and the actual ordering of orbitals in the following DMRG sweeps plays
a significant role as well and is still subject to recent studies [23, 39, 40]. A summary of
open problems and showcase applications of QC-DMRG can be found in [5].

2.2.6 Dynamical DMRG

So far, DMRG has been shown to be a method for the determination of ground-state
properties. Nonetheless, extensions for dynamical observables have appeared already ten
years ago. Since then, several alternatives have emerged that are suitable for different
problems. At the center of every investigation of dynamical properties lies the zero-
temperature Green’s function

GA(ω + iη) = 〈0|Â† 1

E0 + ω + iη −H Â|0〉 , (2.9)

where η > 0 and η → 0 in the end. In the following, the main methods of dynamical
DMRG will be described briefly. For details, see the cited references.
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In the method of continued fractions or Lanczos vector method [7], the operator
E0+ω+iη−H is inverted by an iterative procedure. First, the Schmidt-Gram coefficients
an and b2

n are obtained by the recursion relation

|fn+1〉 = H|fn〉 − an|fn〉 − b2n|fn−1〉 , (2.10)

with

|f0〉 = Â|0〉 , an =
〈fn|H|fn〉
〈fn|fn〉

and b2
n =

〈fn|fn〉
〈fn−1|fn−1〉

, (2.11)

and |0〉 being the ground state. The {|fn〉} form an orthogonal basis in which H is
tridiagonal. The Green’s function can then be shown to be

GA(z) =
〈0|Â†Â|0〉

z − a0 − b21

z−a1−
b2
2

z−···

. (2.12)

This technique had been applied already before the advent of DMRG for the evaluation
of dynamical correlation functions with exact diagonalization [41]. DMRG, however,
is much more powerful for evaluating the ground state |0〉, the operator Â and the
Hamiltonian. The described Lanczos vector method is useful and very fast for getting
a rough outline of the spectrum like the position and width of bands, but is unable to
reproduce continuous spectra [42].

A different approach, the correction vector method, is able to address this problem.
It is based on the determination of a correction vector at some initial frequency ω:

|c(ω + iη)〉 =
1

E0 + ω + iη −H Â|0〉 . (2.13)

If this vector can be calculated, the spectral Green’s function is easy to get as GA(ω +
iη) = 〈0|Â†|c(ω + iη)〉. There are essentially two approaches for computing the correc-
tion vector. One can either solve the large sparse nonhermitean linear equation system

(E0 + ω + iη −H)|c(ω + iη)〉 = Â|0〉 (2.14)

by a suitable direct method (e. g., conjugate gradient [42]) or minimize the functional

WA,η(ω, ψ) = 〈ψ|(E0 + ω −H)2 + η2|ψ〉+ η
(
〈0|Â†|ψ〉+ 〈ψ|Â|0〉

)
. (2.15)

with respect to |ψ〉 [6, 22]. The minimum of the functional is then equal to the imaginary
part of the dynamical correlation function,

WA,η(ω, ψmin) = η ImGA(ω + iη) . (2.16)

The latter method, which had originally been introduced by Jeckelmann [22] and for
which the term “DDMRG” was coined, has been shown to be much more efficient as it
can be incorporated easily into the DMRG algorithm.
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Using the calculated spectral Green’s function for a specific operator, one can ob-
tain observables. One must keep in mind, though, that all calculated spectra are still
convoluted with a Lorentzian of width η. In case of the optical conductivity, which is
proportional to the imaginary part of GJ(ω + iη) at η → 0+, one chooses Â = Ĵ , the
current operator. For the electron- and electron-phonon models considered here,

Ĵ = −iet
∑

i,σ

[
c†i,σci+1,σ − c†i+1,σci,σ

]
. (2.17)

A comparison of ED and DDMRG data for the optical conductivity in the Holstein-
Hubbard model can be found in [43]. Generally, DDMRG is able to reproduce the
continuous part of the spectrum quite well, but it is computationally expensive to get
a high accuracy on the peak structure. In this sense, DDMRG and the Lanczos vector
DMRG are complementary techniques.

2.3 Analysis of performance-critical parts of the algorithm

Diagonalization of the superblock Hamiltonian is the most time-consuming part of the
algorithm and is usually done by a Lanczos or Davidson procedure. Thus repeated
multiplications of H with superblock vectors ψ have to be performed. This is not done
by constructing H explicitly as a matrix, but by using the fact that a Hamiltonian that
describes the concatenation of two blocks can be written as

Hij;i′j′ =
∑

α

Aαii′B
α
jj′ , (2.18)

where A and B are operators in the two blocks and α counts different terms in the
Hamiltonian. Due to the fact that H “lives” in two blocks and thus has double indices,
the elementary operation in the MVM is not the multiplication of scalars (matrix entry
times vector component), but actually a dense matrix-matrix multiply:

∑

i′j′
Hij;i′j′ψi′j′ =

∑

α

∑

i′
Aαii′

∑

j′
Bα
jj′ψi′j′ . (2.19)

Dense matrix-matrix multiplication can be optimized using standard unrolling and
blocking techniques [44] so that near-peak performance is theoretically achievable on
modern cache-based RISC architectures. This is not quite true for very small matrices,
where loop overhead and pipeline fill-up effects come into play, but the MVM part of
DMRG is nevertheless well suited for RISC machines.

A slight complication arises because it is quite unfavourable with respect to perfor-
mance and memory requirements to use dense matrices throughout. Many operators
only have nonzero matrix elements between states with specific quantum numbers (or
quantum number differences), so that it is sufficient to store the nonzero blocks. Those
blocks are labeled by indices R(k) on the RHS and are, by virtue of the MVM, mapped
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to blocks with indices L(k) on the LHS. Consequently, there is an additional sum over
quantum numbers in (2.19). Omitting the “normal” matrix indices, (2.19) becomes

Hψ =
∑

α

∑

k

(Hψ)αL(k) =
∑

α

∑

k

AαkψR(k)

[
BT
]α
k

. (2.20)

In the software package developed by White and Jeckelmann, the structure of MVM
in the Davidson algorithm is exactly as shown above, featuring two nested loops that
handle Hamiltonian terms and quantum numbers separately.

Every shared-memory parallelization attempt must identify loops in the algorithm
that lend themselves to parallel execution. In (2.20) three such loops are visible: The
innermost matrix-matrix multiplication (twice), the sum over quantum numbers and the
sum over terms in the Hamiltonian. In chapter 3 it will be shown how this parallelism
can be exploited.

2.4 Applying DMRG

The DMRG algorithm must be applied with care in order to avoid misinterpretation of
results. This section tries to give some hints as to which precautions and observations
are required.

2.4.1 Convergence

As described in section 2.1.2, convergence of DMRG is usually established for each
number m of states kept. It can be observed by identification of “plateaus” in a plot
of current ground state energy versus sweep number. After such a plateau has been
reached, m can be increased and the process is repeated. Fig. 2.6 shows this for the
two-dimensional (4 × 4) Hubbard Model at U = 4t with periodic boundary conditions,
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to be discussed in more detail in section 4.2. Although this picture gives a rough
impression about convergence, there is no well-defined criterion. Indeed, one would like
to reach the point where the discarded weight Wm and thus the DMRG truncation error
vanishes to machine precision. This is usually impossible because it would require an
arbitrary amount of resources. It has been shown, however, that the error in the DMRG
ground-state energy vanishes linearly with the discarded weight as m → ∞ [10]. So
once the DMRG algorithm has reached a state where this linear behaviour manifests
itself, an extrapolation to vanishing truncation error is possible (inset of Fig. 2.7). This
method has been used in the literature [45], but it must be noted that extrapolation
breaks the variational property of DMRG, i. e., the resulting ground-state energy could
in principle be lower than the exact value. In chapter 4 the scheme will be used to
extract ground-state information from non-converged DMRG data.

Generally, DMRG tends to converge much better (i. e., the discarded weight decays
faster from sweep to sweep at given m) for open boundary conditions. This can be
attributed to an approximate two-fold degeneracy of the highest-weight density-matrix
eigenstates in the periodic case [46], which emerges because those states are localized
at the boundary between system and environment block. Recently, a method has been
proposed to circumvent this problem [47], but it will not be used for the application
cases in part II.

2.4.2 Selection of parameters

Just like with the Quantum Monte Carlo methods described in section 1.1.2, DMRG re-
quires a careful tuning of several algorithmic parameters, like the strategy for increasing
m in the course of the calculation, the number of sweeps to perform for any given m,
the convergence threshold for the Davidson diagonalization, or the initial setup of the
lattice during the warmup sweeps. Experience has shown that one should follow some
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simple guidelines in order to keep the required number of reruns low:

• After the numerical ground-state energy at some mi has been established, mi+1

should be chosen to be smaller than 2mi.

• At mi+1, the first sweep will usually see a strong drop in the discarded weight,
followed by a steep increase. After some sweeping the truncation error should
again be smaller than for te previous m. Generally, a new mi+2 should not be be
chosen unless Wmi+1 < Wmi .

• Sometimes, the algorithm can get “trapped” in some metastable state and increas-
ing m does not help at all for obtaining an improved ground state. This usually
comes along with a tiny discarded weight. In this case, increasing the number of
states in the environment block on the warmup sweep and the number of sweeps
in the low-m region can sometimes help.

• As m is gradually increased, the Davidson threshold should simultaneously be
narrowed until, at the desired m and Wm, the required accuracy of the ground-
state energy is reached. It makes no sense to select a tiny Davidson threshold
when the energy is off by a large amount due to m being too small yet. There
is an interesting connection between the discarded weight Wm and the Davidson
convergence limit ∆D. Assuming that there is a DMRG approximation of the
ground-state wavefunction |ψ〉0 = |ψ〉DMRG + ε|δ〉 (with |δ〉 normalized), then
Wm ∝ ε2 for small ε. On the other hand, the Davidson algorithm produces
an approximation of the ground state for the Hamiltonian in its current m-basis

representation, |ψ〉David
0 = |ψ〉David +λ|ζ〉, where λ ∝ ∆D =

√
〈H2〉 − 〈H〉2. Thus,

∆D ∝Wm should be maintained in the course of the calculation.

• For models with phonons, the applied pseudosite method (see section 2.2.4) re-
quires to choose an appropriate number of pseudosites, close to the number actually
needed to accommodate sufficiently many phonons. Using significantly more pseu-
dosites has, apart from wasting resources, the negative side effect that very sparsely
populated sites emerge which couple too weakly to the neighbouring fermion site.
This could lead to a reduced density matrix having zero trace.

• When m gets close to its final value and the discarded weight is already quite
small, the number of sweeps for a given m may be reduced as the algorithm
converges more quickly to a new ground-state energy (see Fig. 2.6). This can save
a considerable amount of computer time as the large-m sweeps are certainly the
most time-consuming ones.

The DMRG algorithm is by no means an “out of the box” method that gives correct
answers under all circumstances. Some trial and error is usually involved to get useful
results.
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Summary of results In this chapter the DMRG algorithm was outlined and im-
portant modifications which make it applicable to a broader range of problems like
two-dimensional systems, electron-phonon systems, quantum chemistry and dynamical
properties, were described. Davidson diagonalization was identified as the part of the al-
gorithm that should be targeted for improvement, by parallelization or otherwise. Some
best practices for the useful application of DMRG were given, like proper identification
of convergence and the correct strategy for increasing the number of basis states kept,
m, in the course of the calculation.



Chapter 3

Shared-Memory Parallelization of
DMRG [48]

3.1 Parallelization basics

Code parallelization has been on the agenda of scientists dealing with numerical prob-
lems for several decades now. Depending on the target machine architecture, several
approaches can be chosen that are fundamentally different from each other. Nowadays
we distinguish between shared memory and distributed memory programming.

In distributed memory parallelization, several processes, usually — but not neces-
sarily — running on different computer systems, work together cooperatively in order
to solve a large problem. There is no concept of a shared memory region common to all
processes; each one has its own local memory. Coordination is done via explicit message
passing through some (hopefully) fast network interconnect. This approach is suitable
for large-scale parallelization. Experience has shown that scalability beyond several tens
of processes can only be achieved with message passing. On the other hand, this pro-
gramming model is, due to its low-level approach, difficult to handle and debugging is
often tedious.

Shared-memory parallelization, on the other hand, uses several program threads shar-
ing a single address space, i. e., the memory of a multiprocessor computer system. Al-
though it is possible that each thread has private data elements (variables), message
passing is pointless because all data needed by more than one thread can be put into
shared memory and accessed as and when required. Of course, suitable synchronization
mechanisms must be used in order to prevent uncontrolled write access and resulting
race conditions. Scientific codes are mainly loop-based and thus often suitable for data-
parallel programming. The fact that loops are at the focus of parallelization makes
shared-memory programs a viable target for incremental parallelization, which means
that one can arrive at gradually higher levels of concurrence (and, correspondingly, lower
serial fractions) by parallelizing more and more loops.

For distributed as well as shared memory machines, standards have been agreed
upon that make parallel programming portable and well-defined. OpenMP [49, 50] is

32
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the de facto standard in shared memory programming, and it will hence be used here.
In code parallelization, the primary interest lies in the performance of the resulting

program, and especially in how fast performance grows when using more and more
resources (i. e., processors). For parallel performance studies there are essentially two
metrics that can be considered: Speedup S(N) and parallel efficiency ε(N). If P (N) is
the performance of the benchmark on N processors, then

S(N) =
P (N)

P (1)
and ε(N) =

S(N)

N
. (3.1)

Speedup quantifies how much faster a given program runs on N CPUs compared to a
serial run, given the same size of problem (this is also called strong scaling as opposed
to weak scaling where the problem size is chosen to grow as a function of N). Parallel
efficiency measures the average fraction of compute power that each CPU actually con-
tributes to the solution of the numerical problem, i. e. a fraction of 1 − ε(N) is lost. In
the following we will present data for one or the other metric as appropriate.

As a sidenote, the way in which “performance” is actually defined has a strong
influence on speedup and efficiency numbers. It is vital that a concept of “numerical
work” gets used which really maps to a real-world metric. In this context, elapsed
walltime is usually the best choice, even if “MFlop/sec” or other metrics are often used
for illustrative purposes [51].

An important limitation on parallel efficiency and speedup is imposed by a theoretical
limit called Amdahl’s Law. In a simple model one can split a single-threaded application
into a serial (non-parallelizable) fraction s and a perfectly parallelizable fraction p =
1− s. The speedup with N CPUs is then calculated as

SA(N) =
s+ p

s+ p
N

=
1

s+ 1−s
N

, (3.2)

with

lim
N→∞

SA(N) =
1

s
. (3.3)

Thus, even when using a very large number of CPUs, speedup saturates at 1/s. The
severe impact that a nonvanishing serial fraction can have on parallel performance and
parallel efficiency can be seen in Fig. 3.1, where speedup and efficiency are plotted for
serial fractions s of 0.1, 0.05 and 0.01, respectively, in addition to the ideal speedup
behaviour at s = 0. Even at s = 0.01, using 100 CPUs yields a speedup of 50 only, so
that half of the hardware’s compute power is lost (εA = 0.5).

Of course, the Amdahl model is just a very rough picture of reality. One possible
refinement that fits quite nicely with the shared-memory parallelization approach for
DMRG as described later is the introduction of some constant per-CPU (or precisely,
per-thread) overhead r. This extra time is required for setting up a computational
thread, so the impact is linear with N . As it cannot be hidden by overlapping with
useful computation, it dominates performance for large N and even leads to a slowdown
in that case:

SrA(N) =
1

s+ 1−s
N + rN

, (3.4)
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and

lim
N→∞

SrA(N) = 0 . (3.5)

In Fig. 3.1, the solid curve shows that even for small r � s this effect can be catas-
trophic. It is indeed responsible for many scalability problems with shared-memory
codes. Other factors like inefficient implementations of lock and barrier mechanisms can
further contribute to speedup limitations and make the situation even worse.

3.2 Details about shared-memory parallel programming
with C++

A peculiarity of C++ that makes this language especially difficult to handle with shared-
memory programming is that code often gets called implicitly. This is the case for
(copy) constructors, destructors and type converters. Moreover, temporary objects are
frequently constructed and destroyed in the course of a calculation. Whenever strict
thread locality for the data that those codes handle can not be assured, race conditions
are bound to appear. A race condition occurs if the result of a calculation depends on
the order in which shared resources are accessed. This happens only if the resource is
modified by at least one thread and access is unsynchronized.

A simple but instructive example is given by a class whose instances (objects) are
thread-local but which has a static, i. e., class-global, member:

class A {

static long memory;

vector<double > v;

public:

A(int _s=1) : v(_s) { memory += v.capacity(); }

A(const A& _o) : v(_o.v) { memory += v.capacity(); }
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~A() { memory -= v.capacity(); }

...

};

long A::memory = 0;

Every time an object of type A gets instantiated or destroyed, A::memory is updated.
If this happens in an OpenMP parallel region, there is a race condition on the static
member even if instances of A are thread-local:

A a(100);

#pragma omp parallel firstprivate(a) // cctor for a

{ // A::memory probably wrong here

// work with private a

} // private a dtor

// A::memory probably wrong here

The static member is potentially wrong already on entry to the parallel region due to
the race condition in the copy constructors. This might be a negligible problem in
the simple case shown here, but efficient C++ codes (like this DMRG program) tend
to apply advanced programming techniques like smart pointers and reference counting
[52, 53], which means, e. g., that the lifetime of an object’s data members depends on
the exact number of references to them. Destroying the members prematurely due to a
wrong reference count will lead to undefined program behaviour.

The remedy for this kind of problem comes with OpenMP’s critical sections and
API locking functions:

class A {

static long memory;

vector<double > v;

public:

A(int _s=1) : v(_s) {

#pragma omp critical(A_memory)

memory += v.capacity();

}

A(const A& _o) : v(_o.v) {

#pragma omp critical(A_memory)

memory += v.capacity();

}

...

};

Now the shared static variable is protected from race conditions because a critical

section (or, to be exact, any code in all critical sections with the same name) can only
be executed by at most one thread at a time. There are two caveats connected with
this straegy: First, deadlocks could occur if a thread encounters a critical region while
already executing one with the same name. Second, an overabundance of locks could
seriously degrade parallel performance.

The solution to the first problem is just correct programming. Using different names
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(locks) for protecting different resources and avoiding recursive function calls (or using
nestable locks where appropriate) eliminates deadlocks. The second problem can some-
times be solved by trading space for speed and using thread-private copies of data even
if not strictly dictated by program logic. One must, however, keep in mind that this
enlarges the memory footprint of the applicaiton, which might not be desirable. Both
strategies have been applied in the parallelization of the DMRG code under discussion.

3.3 Benchmarking and performance analysis

In this chapter, viable shared-memory parallelization approaches for DMRG are dis-
cussed. In order to evaluate the efficiency of different methods, two benchmark cases
have been selected:

1. The ‘default’ benchmark case used here, unless otherwise noted, is a calculation
of ground state properties for the Hubbard model (2) in two dimensions with
4× 4 sites and periodic boundary conditions (BCs) at half-filling with U = 4 and
isotropic hopping tx,y = 1. For practical reasons (manageability of the benchmark-
ing process) m was chosen to be 2000. In order to get a good approximation of the
ground state wavefunction and, in particular, to preserve translational invariance,
m must be larger (≈ 7000). In section 4.2, details about DMRG calculations for
the 2d Hubbard model are revealed.

2. The second benchmark, an 8-site one-dimensional Holstein-Hubbard system (3) at
half-filling with U = 3, t = 1, ω0 = 1, g2 = 2 and periodic BCs, has been chosen to
show the deficiencies of the parallelization approach. We represent each boson site
with six pseudosites [31] corresponding to a maximum of 64 phonons per boson
site. Thus, the effective number of DMRG sites is 56. To achieve convergence,
m = 900 has to be used. Actual DMRG results for the Holstein-Hubbard model
will be discussed in section 5.3.

One-CPU performance numbers for all systems under consideration are presented
here in order to set the scale (Table 3.1). Although the main focus is on scalability,
it is nevertheless very instructive to see which current architecture performs best with
DMRG, and at which price. A point to note is that all else being equal, DMRG scales
roughly with clock frequency, further confirming the notion that in-cache operations
are dominating. Although it is clear that performance is always determined by the
Davidson diagonalization, the quality of the C++ compiler and the dense matrix-matrix
implementation have some influence, the latter especially due to the abundance of small
and non-square matrices. Because of a sophisticated, object-oriented data housekeeping
structure in the code, proper inlining and optimization is essential as well. A comparison
with peak performance for every system (last column in Table 3.1) shows deficiencies in
those respects quite prominently.

As dense matrix-matrix multiplication and, to a lesser degree, also other dense matrix
operations, are key ingredients for fast DMRG calculations, it may pay off to try different
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Table 3.1: One-CPU performance in GFlop/s and efficiency in terms of fraction of peak
performance for all systems studied (benchmark case 1). Optimized vendor-
supplied BLAS and LAPACK implementations were used in all cases.

System Peak Perf.
[GFlop/s]

DMRG Perf.
[GFlop/s]

Fraction
of Peak

IBM p690/Power4 (1.3 GHz) 5.2 2.78 0.53

HP rx5670/Itanium2 (1 GHz) 4.0 2.25 0.56

Intel Xeon DP (2.4 GHz) 4.8 2.08 0.43

SunFire 3800 (900 MHz) 1.8 0.92 0.51

SGI Origin 3400 (500 MHz) 1.0 0.78 0.78

implementations of the linear algebra libraries (BLAS/LAPACK). Performance can
improve by large factors when using well-optimized versions.

In our case the serial fraction s is strongly influenced by the quality of the C++
compiler, which has thus a large impact on scalability. The typical fraction of 85 % of
total computing time for the sparse MVM in benchmark case 1 (leading to p = 0.85
in the Amdahl model) leads to the expectation that speedups between 6 and 7 are
achievable when parallelization overhead is negligible, even when the only parallelized
part is the MVM. The thread startup overhead r depends on several factors. Among
those are the efficiency of the threading library and the operating system kernel. Those
are usually not under program control, although there might be user-accessible tuning
parameters.

3.4 Trivial library parallelization approach

This approach is the simplest one possible due to the fact that no additional program-
ming effort is necessary. At the lowest level, the sparse matrix-vector multiplication
(2.19) that has to be performed in the Davidson algorithm for superblock diagonal-
ization consists of a large number of dense matrix-matrix multiplications. In practice,
operations of this type are always performed in optimized libraries (BLAS) which are
usually provided by the computer system, chip or compiler vendor. In almost all cases,
those exist in serial as well as (shared-memory) parallel versions. Consequently, in
order to get a parallel DMRG program, relinking with a parallel library is all that is re-
quired. All parallelization complexities are hidden inside vendor-provided matrix-matrix
(DGEMM) code.

Unfortunately, the DMRG method has an important drawback — the matrices which
form the operands for DGEMM calls are often quite small or very non-square, leading to
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non-negligible parallelization overhead (load imbalance, barrier wait, thread wakeup).
This fact makes the DGEMM approach unsuitable for a large class of problems. Even
worse, also in otherwise well-optimized BLAS implementations, DGEMM on “narrow”
matrices can be a slow scalar operation because developers did not take into account
that the memory access characteristics change from cache-bound to memory-bound,
requiring a completely different class of optimization strategies [54].

Parallel efficiency was measured on a variety of architectures (see Fig. 3.3). As
can be seen from the parallel efficiency data, this is actually a very poor method for
parallelization. Scalability depends heavily on the quality of the implementation of
parallel DGEMM, as well as more obscure features like hardware barriers and associated
loss. Compared to other systems, the SGI Origin still does quite well, which can at least
partly be attributed to the high-quality C++ compiler.

Fig. 3.3 also shows the limit where parallelization becomes entirely useless (grey
zone), i. e. where N -CPU performance drops below the 1-CPU case.

3.5 Efficient shared-memory parallelization

One of the basic rules of OpenMP parallelization is to try to find loops that are as far
as possible at the outside of a loop nest and identify their parallelism. The sparse MVM
at the core of the Davidson diagonalization routine is a viable target for this approach.

In a first attempt one would simply use an omp parallel for directive at the outer
loop of (2.20). This, however, yields unsatisfactory performance because the outer loop
runs over the terms in the Hamiltonian, and although the number of terms can easily
become a couple of hundreds (especially when using a large number of sites), load
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imbalance will readily show up. Moreover the number of terms can become very small
in the course of the calculation when the system block comprises a couple of sites only.

The inner loop over the quantum numbers suffers essentially from the same deficien-
cies when it comes to parallelization. In order to get proper scaling, the loop nest has to
be transformed into a single loop (an optimization technique customarily called “loop
coalescing”, usually applied in vectorization). This is the original code of the loop nest:1

// W is wave vector , R ist result

for(i=0; i < number_of_hamiltonian_terms ; i++)

{

term = hamiltonian_terms[i];

for(q=0; q < term.number_of_blocks; q++)

{

li = term[q].left_index;

ri = term[q].right_index;

temp_matrix = term[q].B.transpose() * W[ri];

R[li] += term[q].A * temp_matrix;

}

}

The outer loop is for the Hamiltonian terms whereas the inner loop counts quantum
numbers. The StateSet indices li and ri identify blocks with certain quantum numbers
in the wave vectors. There are some peculiarities one must take care of:

• Every loop iteration writes to some part of the result vector, identified by li.
Parallelization must account for the possibility that any two iterations might have
the same value for li.

1The pseudocode snippets in this section are simplified excerpts that serve to illustrate the coding
strategy. They do not constitute runnable code.
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• The trip count for the inner loop is not a constant but depends on the term.

So when replacing the loop nest by a single loop, one has to take some measures with re-
spect to bookkeeping. First, a prologue loop must prepare an array that stores references
to all blocks required:

for (ics=0,i=0; i < number_of_hamiltonian_terms ; i++)

{

term = hamiltonian_terms[i];

for(q=0; q < term.number_of_blocks; q++)

{

block_array[ics] = & term[q];

ics++;

}

}

icsmax = ics;

Second, an array of OpenMP locks has to be set up (once) that will later serve to avoid
race conditions when updating the result vector. Each element of R[] is protected by
its own lock. This array could potentially be established using a C++ vector class
(STL or self-made, probably with some enhancements like automatic resizeability), but
experience shows that most compilers have severe difficulties in parallelizing OpenMP
loops that handle complicated C++ objects. Moreover, the design of a really thread-safe
container class is a nontrivial task and is thus not worth the effort just for the purpose
of using it for a single lock array. Consequently, the required arrays were declared as
having a fixed length, and appropriate checking mechanisms (not shown here) prevent
boundary violation:

static int flag=0;

if(!flag)

{

flag=1;

for(i=0; i < MAX_NUMBER_OF_THREADS; i++)

mm[i] = new Matrix; // temp. matrix

for(i=0; i < MAX_NUMBER_OF_LOCKS; i++)

{

locks[i] = new omp_lock_t;

omp_init_lock(locks[i]);

}

}

Now the loop nest can be transformed into a single parallel loop. The required temporary
matrix for each thread is provided inside the parallel region but before the loop actually
starts:

#pragma omp parallel private(mytmat,li,ri,myid ,ics)

{

myid = omp_get_thread_num();

mytmat = mm[myid]; // temporary matrix , thread-local

#pragma omp for
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Figure 3.4: Illustration of a lock-free version of the sparse MVM. Each row represents
the local result vector for a thread (T0...TN), with dots marking blocks that
get written to. Grey columns show where potentially mutual locking could
have occured, degrading performance.

for(ics=0; ics < icsmax; ics++)

{

li = block_array[ics]->left_index;

ri = block_array[ics]->right_index;

mytmat = block_array[ics]->B.transpose() * W[ri];

omp_set_lock(locks[li]);

R[li] += block_array[ics]->A * mytmat;

omp_unset_lock(locks[li]);

}

}

Only the second matrix-matrix multiplication has to be protected with OpenMP locks,
as it writes to block number li of the result vector. The first one stores its result in a
thread-local temporary matrix.

Although protecting the different parts of the result vector using OpenMP locks
increases parallelism, setting a lock is an operation that uses resources by itself. More-
over, certain physical situations might lead to increased thread interlocking. In order
to remedy this problem, a lock-free version of the parallel MVM was devised that can
enhance performance in some cases, albeit at the cost of using up more memory. Getting
rid of the locks in the most expensive operation, namely sparse MVM, means that each
thread must now get its own copy of the result. Nevertheless, only certain parts of it
actually get updated (Fig. 3.4). In a sense, each thread does its own sparse MVM, with
its own private result vector. At the end, a reduction operation must sum up all of them
(columns in Fig. 3.4).

WaveVector lhs[MAX_NUMBER_OF_THREADS];

long liflag[MAX_LI][MAX_NUMBER_OF_THREADS];

for(i=0; i < MAX_NUMBER_OF_THREADS ; i++)

{

lhs[i] = 0;
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for(j=0; j < MAX_LI; j++) liflag[j][i] = 0;

}

#pragma omp parallel private(mytmat,li,ri,myid ,ics)

{

myid = omp_get_thread_num();

mytmat = mm[myid]; // temporary matrix , thread-local

#pragma omp for

for(ics=0; ics < icsmax; ics++)

{

li = block_array[ics]->left_index;

ri = block_array[ics]->right_index;

Matrix& Rli = lhs[myid][li];

liflag[li][myid]++;

mytmat = block_array[ics]->B.transpose() * W[ri];

Rli += block_array[ics]->A * mytmat;

}

// #pragma omp for schedule(dynamic ,1)

#pragma omp single

for(ics=0; ics < icsmax; ics++)

{

for(j=0; i<number_of_threads ; i++)

{

if(liflag[ics][j])

{

R[ics] += lhs[j][ics];

liflag[ics][j]=0;

}

}

}

}

Here, the final reduction is carried out in a serial manner. This can be changed if the
maximum index li on the LHS is large so that thread startup overhead is insignificant.
In the cases explored so far, serial execution of the reduction loop is slightly more
efficient.

It must be stressed that other parts of the code also require some intervention to
ensure thread-safety for C++ constructs. Among those are constructors, copy con-
structors, destructors and assignments. As explained in section 3.2, advanced C++
programming techniques like reference counting, smart pointers, copy-on-write etc. [52]
do, unfortunately, stand in the way of efficient shared-memory parallelization. The lat-
ter usually becomes possible only by compromising on the applicability of the former.
Literature on this topic is essentially non-existent.

In the default benchmark case 1, sparse MVM takes about 85 % of total computing
time in the serial version. As mentioned, parallel speedups of up to 6 or 7 may be
expected, not taking into account mutual locking overhead, thread startup and the like
(see discussion in section 3.3). In the next section, real-world scalability data will be
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discussed.

3.6 DMRG on contemporary supercomputer architectures

At the time of writing, the OpenMP variant of the program effectively runs with SGI,
IBM, Intel and AMD systems and a wide variety of compilers. Sun compilers have defi-
ciencies that either prevent the code from compiling or generate nonfunctional programs.
It must be noted, though, that OpenMP parallelization of C++ code is a nontrivial issue
for all compilers. Even if the parallel code is completely standard-compliant, one must
always be prepared for some failure that leads to compiler crashes or even nonfunctional
(i. e. wrong) binary code.

3.6.1 Performance and scalability measurements

Performance measurements for the two standard benchmark cases indicate that there is
no benefit of the lock-free version for case 1, but that case 2 runs roughly 10 % faster on
an IBM p690 system. As this gain comes at the cost of a much larger memory footprint,
the lock-free code will not be referred to in what follows. Different OpenMP scheduling
strategies for the sparse MVM loop were tried, and the best result could be achieved
with dynamic scheduling at rather small blocksize, like “dynamic,2”.

Fig. 3.5 shows the results of a scaling run with up to 8 CPUs on an SGI Origin
system, where scaling is broken down to different abstraction levels (MVM, Davidson,
whole program). While the “whole program” scaling is what the end user is finally
interested in, it is quite clear that some significant optimization potential is still hidden
between Davidson diagonalization and sparse MVM. Amdahl scaling for two different
serial fractions (s = 0.02 and 0.16) is also shown. Although the Amdahl performance
model is admittedly too simplistic for this code, it nevertheless gives a rough impression
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Figure 3.6: Left: OpenMP parallel efficiency on IBM p690 and SGI Origin SMP systems
(whole program), benchmark case 1. The data for the IBM system was taken
on a loaded system. Right: OpenMP absolute performance in GFlop/sec on
IBM p690 and SGI Origin SMP systems (whole program), benchmark case
1.

about what has been achieved. Obviously, the MVM parallelization is very efficient with
only a minor serial fraction.

Fig. 3.6 a displays the parallel efficiency of the code on IBM p690 and SGI Origin
systems. In contrast to the DGEMM parallelization case, SGI does not have an advan-
tage here. Although the two systems are practically on par with respect to scalability,
a direct comparison of performance in GFlop/sec shows clearly what the favourable
architecture for DMRG today should be (Fig. 3.6 b).

As the Davidson procedure itself is very well parallelizable, it can be expected that
some performance boost is still in reach. Other aspects of the implementation that be-
come more prominent with other physical setups also bear some optimization potential.
An example for this is the Holstein-Hubbard model (benchmark case 2) for which the
broken-down parallel profiling data is shown in Fig. 3.7. Here we see that the mediocre
overall speedup is partly caused by the sparse MVM itself. Profiling reveals that a
significant amount of time is spent in acquiring locks for shared variables in reference
counted classes (see also section 3.2), and this is the reason why the lock-free version
has some benefit here (see section 3.6.1). Further optimizations are being investigated,
including parallelization of block construction.

3.6.2 Selection of the right system for the right purpose

As has been demonstrated in the previous section, the parallelized DMRG algorithm
shows large variations in parallel efficiency and absolute performance across different
system platforms. Thus is it not clear from the start which system to pick for a particular
problem.

First of all, it is important to find out whether and how well DMRG scales for the
problem at hand. If OpenMP scaling is not to be expected, the use of large shared-
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memory nodes makes sense only if the memory requirement is very large. In most cases,
single or dual processor cluster nodes with high clock speeds (Intel Pentium4/Xeon) are
appropriate. If scaling is good, performance and scalability data (see previous section)
implies that IBM Power4(+) nodes are the architecture of choice. Otherwise comparable
systems like SGI Altix with Itanium2 processors show acceptable speedup to four CPUs
but performance levels off from there on. This can be attributed to a less-than-optimal
lock and barrier implementation on Linux systems that generally adds excess overhead
on OpenMP code [55]. The same applies to the currently popular four- or eight-CPU
AMD Opteron nodes.

Due to the largely cache-friendly memory access characteristics of DMRG, internode
communication bandwidth on ccNUMA (cache coherent Non-Uniform Memory Access)
systems is presumably of small importance. It must be mentioned, though, that the
distribution of matrices across threads is inherently ccNUMA-unfriendly for this code
because first-touch page mapping policy [56] leads to a distribution of memory pages
that is essentially unconnected to the access pattern in the sparse MVM loop. In cases
where the in-cache part of the computational kernel (dense matrix-matrix multiplication)
is less dominant, e. g., if m is relatively small, this could lead to considerable NUMA
network traffic and limited scalability.

Summary of results In this chapter, some basic facts for parallelization in general
and shared-memory parallelization in particular were given. It was shown that scala-
bility limits can show up quite easily if an algorithm is not really suitable for parallel
execution. An important aspect of using shared-memory programming together with
advanced C++ programming techniques, namely the requirement to avoid race condi-
tions by appropriately locking shared data, was pointed out. Efficient shared-memory
parallelization of the sparse MVM in the Davidson step of DMRG is, however, possible
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with moderate effort. Linking to a parallel linear algebra library is only applicable for
problems with large m, otherwise an OpenMP parallelization of the performance-critical
parts of the algorithm (sparse MVM in the Davidson diagonalization) is in order. The
advanced data housekeeping mechanisms made possible by the use of the C++ language
impose a careful analysis to prevent deadlocks and race conditions. Scalability of the
parallel code depends on the problem and is best for large m. A modification of the
parallel sparse MVM that effectively reduces the probability of thread interlocks to zero
has been shown to be moderately useful in the case of Holstein-Hubbard calculations
with m < 1000. Of all high-performance shared-memory systems considered, IBM p690
shows best absolute performance and scalability and is thus the machine of choice. Con-
sequently, most of the results that will be presented in part II were generated on IBM
systems.
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Chapter 4

The Two-Dimensional Hubbard
Model [57, 58]

4.1 Introduction

The one-band Hubbard model,

HHM = −
∑

〈ij〉,σ
tij
[
c†iσcjσ + H.c.

]
+ U

∑

i

ni↑ni↓ , (4.1)

was independently proposed in 1963 by Gutzwiller [59], Hubbard [60] and Kanamori
[61] and was originally designed to describe the ferromagnetism of transition metals.
Here, c†iσ (ciσ) denote fermionic creation (annihilation) operators of spin-σ (σ ∈ {↑, ↓})
electrons, niσ = c†iσciσ (for the construction of the Hilbert space basis see, e. g., [17]).
The physics of the model is governed by the competition between electron itinerancy
(tij, responsible for delocalization) and short-range Coulomb repulsion (U , responsible
for localization and magnetic order), where the fermionic nature of the charge carriers
is of great importance because of the Pauli exclusion principle, i.e., the existence of
an ‘effective’ long-range interaction. Apart from the ratio U/t, further parameters like
the particle density n, the temperature T , and the spatial dimension D (geometry of
the lattice) are crucially involved in the model. Successively, the Hubbard model was
studied in the context of magnetism, metal-insulator (Mott) transition, heavy fermions
and high-temperature superconductivity as the probably most simple model to account
for strong correlation effects [62].

4.2 N×N Hubbard systems at half-filling

In order to put the capabilities of parallel DMRG into some context, a “toy system”
was selected for which the method works well but which can also be set up in a way
as to overstrain the algorithm and the computer systems available today. Here the

48
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Figure 4.1: Ground-state energy per site in dependence on m for the 4×4 and 6×6 Hub-
bard model with periodic BC. Different sweeps with same m have identical
abscissas. For reference, the ED result for the 4× 4 system is included.

two-dimensional Hubbard model,

Ĥ = −t
∑

x,y,σ

(
ĉ†x,y,σ ĉx,y+1,σ + ĉ†x,y,σ ĉx+1,y,σ + h.c.

)

+ U
∑

x,y

n̂x,y,↑n̂x,y,↓ , (4.2)

is considered, where x and y denote the lattice site, ĉ†x,y,σ and ĉx,y,σ are creation and
annihilation operators for an electron with spin σ =↑, ↓ at site (x, y), and n̂x,y,σ =

ĉ†x,y,σ ĉx,y,σ is the corresponding density operator.

Results for ground-state properties of 2D 4 × 4 and 6 × 6 Hubbard systems with
U = 4t, subjected to periodic boundary conditions, are presented. Today the 4×4 system
can be easily treated by DMRG even with up to m = 104 target states. Note that this
calculation has very moderate resource requirements of about 6 GBytes of memory and
100 CPU hours on a 500 MHz MIPS processor. Using the m = 10000 numerical value of
the DMRG ground-state energy alone, there is an agreement with an ED calculation to
a relative error of 2 × 10−4 (see Fig. 4.1). Extrapolating the energy towards vanishing
discarded weight as indicated in Fig. 2.7 achieves an even greater accuracy of about
5× 10−5. Although this extrapolation procedure is not strictly required here, it will be
a vital part in the analysis of stripe patterns in the next section.

The 6 × 6 system, unfortunately, requires significantly more resources. Figure 4.1
indicates that even using m = 104 target states DMRG has definitely not converged in
that case (supported by Monte Carlo calculations it can be expected that the ground-
state energy of the 6×6 Hubbard system should be lower than for the 4×4 system [63]),
but the memory requirement is already about 30 GBytes. On eight Itanium 2 CPUs
the calculation took roughly 10 days. As a crude estimate one would expect to establish
convergence similar to the 4×4 case at about m = 105, which is well beyond reach right
now. Extrapolation of the energy towards vanishing truncation error is futile because
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the range over which E0/N shows linear behaviour with respect to Wm is too short in
comparison with the absolute value of Wm at the highest m considered. Extrapolation
errors would thus totally invalidate the result.

These observations set the stage for the following section, in which the two-dimen-
sional Hubbard model will be subjected to cylidrical boundary conditions and ground-
state calculations on systems with up to 28× 6 sites (closed BCs in the short direction)
will be presented. As described in section 2.4.1, DMRG convergence is significantly less
difficult to achieve with open boundary conditions, hence the much larger system size.

4.3 Stripe formation in doped Hubbard ladders

Two-dimensional lattice models for correlated electrons are often used to describe the
properties of layered cuprate compounds [64]. There is a controversial discussion [65, 66,
67, 68, 69, and references therein] about whether the ground state of interacting doped
lattice models in two dimensions like the t-J and the Hubbard model forms stripes when
subjected to particular, e.g. cylindrical boundary conditions. In a hole doped system a
stripe is a domain wall ordering of holes and spins. The wall is made of a narrow hole rich
region. The spins are antiferromagnetically ordered between the walls and are correlated
with a π phase shift across a wall. The formation of stripes in the ground state has been
demonstrated numerically for the t-J model on (narrow) ladders [69, 70, 71] using the
density-matrix renormalization group (DMRG) method [32, 72]. For square lattices,
however, the presence of stripes remains controversial [73, 65, 74, 66, 68, 67, 75, 76, 77]
because a reliable investigation of the ground state in the thermodynamic limit is not
possible with the methods currently available.

Recently, attention has turned to the two-dimensional Hubbard model (4.2) on an
R × L ladder, where x = 1, . . . , R is the rung index and y = 1, . . . , L is the leg index.
Now we exclusively consider the Hubbard model on 6-leg ladders (L = 6) with R = 7r
rungs for r = 1, . . . , 4. Cylindrical boundary conditions were used (closed in the rung
[y] direction and open in the leg [x] direction), because they are the most favorable ones
for DMRG simulations. Moreover, open boundaries break the translational invariance
of the system, allowing spin and charge structures to appear as local density variations
in a finite ladder. If periodic boundary conditions were used, one would have to analyze
correlation functions to detect stripes in finite ladders. Since we are interested in the
ground state of the hole-doped regime, a system with N = 4r holes doped in the half-
filled band (corresponding to RL−N = 38r electrons) is considered. The average hole
density is n = N/RL = 4/42 ≈ 0.095 for all cases, as in Ref. [69] (see section 4.3.3 for a
discussion of other densities). For U = 0, eq. (4.2) describes a Fermi gas, which obviously
has no stripes in the ground state. Moreover, no instability toward the formation of
stripes has been found in the weak-coupling limit U � t using renormalization group
techniques [78]. In the strong-coupling limit U � t, however, the Hubbard model can
be mapped onto a t-J model with J = 4t2/U � t, which does have stripes in the ground
state, at least on narrow ladders with J ≈ 0.35t [69, 71, 70]. Therefore, investigating
the formation of stripes in the Hubbard model at finite coupling U/t could significantly
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improve our understanding of these structures. Moreover, such investigations should
reveal the true capability of the various methods used to study stripes much better than
calculations for the t-J model alone.

An early DMRG investigation of 3-leg Hubbard ladders [45] found that stripes formed
in the ground state only for U ≥ 6t. Recently, White and Scalapino [69] have published
DMRG results for a 6-leg Hubbard ladder with cylindrical boundary conditions (7 × 6
sites, open BC in x- and periodic BC in y-direction) and doped with four holes. They
conclude from their data that there is stripe formation in the ground state for U ≥ 8
and that the stripe is broadened for smaller U and also for very large U (above 20). In
both works, however, no finite-size scaling was performed. Thus, it is not clear if the
observed structures are really stable stripes in the thermodynamic limit (infinitely long
ladders) or if they are Friedel oscillations induced by the the open boundary conditions
used in DMRG calculations. Moreover, in both works the amplitude of the spin and
hole density modulations have not been investigated systematically as a function of
the DMRG truncation error. The amplitude of hole structures can be extrapolated to
the limit of vanishing DMRG truncation errors for systems with up to 21 rungs. This
allows a reliable finite-size scaling analysis of the hole density modulation. Results for
28 rungs are inconclusive up to now due to non-convergence of the stripe structures
even at m = 6000. DMRG calculations have already been performed for the Hubbard
model on larger systems (square lattices or ladders) than 28 × 6-site clusters but for
a significantly smaller number of density matrix eigenstates (m ≤ 2000) [65, 79]. The
computational cost of these simulations was at least an order of magnitude lower than
in the present work.

In section 4.3.1, the results from [69] are reproduced and some improved numerical
validity is established. Convergence behaviour and density data for all systems consid-
ered (up to 28 × 6) is presented. In section 4.3.2, this data will subsequently be used
for extrapolation to vanishing DMRG error and finally R → ∞. The results will show
that the stripes found by White and Scalapino [69] are stable in the limit of an infinitely
long ladder for strong coupling U = 12t. For weak coupling (U = 3t), however, the hole
density fluctuations found in Ref. [69] are an artifact of truncation errors and boundary
conditions. The value of U at which the transition from a uniform to a striped state
occurs will be identified in the case of infinitely long ladders. Finally, section 4.3.3 will
briefly comment on the dependence of stripes on hole concentration.

4.3.1 Stripe signatures at various ladder lengths

For the 6-leg Hubbard ladders dealt with here, the standard DMRG method yields the
ground state energies and various expectation values for the ground state of the system
investigated. Here, the focus lies on the hole density

h(x, y) = 1− 〈n̂x,y,↑ + n̂x,y,↓〉 (4.3)

and the staggered spin density

s(x, y) = (−1)x+y 〈n̂x,y,↑ − n̂x,y,↓〉 , (4.4)
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Figure 4.2: Ground-state energy per electron in dependence on m (a) and as a function
of the discarded weight (b) for a Hubbard ladder at U = 12t, where cylindrical
BC, i.e. open BC in x-direction and periodic BC in y-direction, were used.
Circles (m ≤ 8000) and squares (m ≤ 3600) give the results for 7 × 6 and
11 × 6 systems, respectively.

where 〈. . .〉 represents the (DMRG) ground state expectation value. In the first few
lattice sweeps of the DMRG calculations or for a small number m of density-matrix
eigenstates per block (m <∼ 1000), the DMRG wavefunction reaches a ‘metastable’ state
[74, 65, 45], which depends essentially on the initial conditions, i.e., on the detail of the
method used to construct the lattice in the first sweep (for more detail about the DMRG
method, see [32, 72]). The hole and staggered spin densities show irregular fluctuations
in both the rung and the leg directions at that point of the DMRG calculation.

For all system sizes and coupling strengths investigated, the DMRG wavefunction
“tunnels” to a stable state after several sweeps and sufficiently large m, as reported in
Ref. [69] (see Fig. 4.2, left panel). This state is then essentially independent of the initial
conditions, but it is nevertheless essential to make m as large as feasible in order to get
sufficient data for a reliable extrapolation of observables (see below). The tunneling
occurs for smaller m when it is possible to utilize the block reflection technique (see
Fig. 4.10). Note, however, that the combination of spin and charge density fluctuations
can easily break the symmetry between left and right DMRG blocks and that the block
reflection technique should not be used in that case as it can lead to incorrect results.

The paper [69] comments only briefly on the exact DMRG algorithm used (“one-
site method”). Therefore, this analysis started with the usual strategy of using two
intermediate sites and block reflection. Fig. 4.2 (a) shows ground-state energy versus
m ≤ 8000 for U = 12t. One significant difference compared to the data by White and
Scalapino is the fact that the transition to the “striped” state happens already at very
small m ≈ 600, as opposed to m ≈ 1200 in the paper. This could be due to differences
in the algorithm (warmup), though. Regarding computational resources, to achieve the
m = 3600 results with the same quality as in [69] our parallel DMRG code required
roughly 6 hours on eight CPUs of an IBM p690 node. For the full m = 8000 run
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Figure 4.3: Hole density in x-direction for the 7×6 Hubbard ladder for U = 12t (a) and
U = 3t (b) at different m. The y-direction was summed over.

the walltime was about one week. Please note that although the ground-state energy
suggests convergence (see Fig. 4.2 (a)), the discarded weight (Fig. 4.2 (b)) shows that
there is still some room for improvement.

The “transition point” is marked by a qualitative change in the hole density in x
direction (Fig. 4.3 (a)),

h(x) =

L∑

y=1

h(x, y) . (4.5)

Later the staggered spin density in x direction,

s(x) =
L∑

y=1

s(x, y) , (4.6)

will also be investigated. At lower values of the Hubbard interaction, e.g., U = 3t (see
Fig. 4.3 (b)), the density peak is significantly less pronounced, quite in agreement with
[69].

Interestingly, increasing m even further after the stripe has formed does not enhance
but slightly flatten the peak for m > 800 (not shown in Fig. 4.3 (a)). If the stripe is
really the ground state, it would thus not make sense to use m � 1000, at least if the
stripe is the only thing one likes to see. However, the gradual flattening of the peak
with growing m indicates some kind of convergence for m→∞, which will be discussed
in detail in section 4.3.2. It is further worth noting that although the hole density does
not change significantly between m = 800 and m = 8000, the ground-state energy is
still lower than what White and Scalapino [69] have published.

An open question is whether stripe formation in the 7 × 6 system might be forced
by the rather small lattice size in x-direction (in combination with open BC in this
direction). In order to investigate this issue, DMRG calculations on the somewhat
larger 11 × 6 and 14 × 6 ladders were performed with 6 and 8 holes, respectively (see
Figs. 4.4 (a) and (b)). Severe convergence problems have prevented the use of block
reflection with the 11 × 6 ladder at U = 12t, but not for the 14× 6 ladder.
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Figure 4.4: Hole density in x-direction for the 11×6 (a) and 14×6 (b) Hubbard ladders
(U = 12t) with 6 and 8 holes, respectively. Block reflection was not used for
the 11 × 6 system but employed for the 14× 6 system.

For the 11×6 ladder the transition to a stripe-like state occurs atm ≈ 1000. However,
the resulting hole distribution shows two peaks of different heights. Obviously, four of
the six holes are concentrated in one peak and the remaining two in the other one.
Looking at the two-dimensional hole density distribution (Fig. 4.5, left panel) and also
at the discarded weights (Fig. 4.2 (b)) it becomes clear that the algorithm has not really
converged yet: the density fluctuates in the periodic (y-) direction, so a larger m and/or
more sweeps are in order. Another important observable for stripe formation is the
spin density distribution. There should be a phase shift of π in the spin density across
the stripe. Despite the non-convergence of the 11 × 6 run at U = 12t this particular
feature can be identified from Fig. 4.5 (right panel) showing the staggered spin density
Sz(x, y)(−1)x+y and its zero-crossing contours. Two phase shifts are clearly visible (one
along each stripe).

For the 14 × 6 Hubbard ladder with 8 holes, from Fig. 4.4 (b), it was seen that
the transition to a striped state occurs already at very low m ≈ 600. There are three
“stripes” with two, four and two holes, respectively. Due to the fact that block reflection
was used, the formation of an asymmetric ground state like in the 11× 6 case was ruled
out from the beginning. The hole and spin densities for this system reveal, however,
that the two smaller stripes have obviously not formed completely, even at m = 8000
(cf. Fig. 4.6). It is therefore concluded that it can be numerically unfavorable to use
block reflection with Hubbard ladders, at least in some cases.

As a consequence, the analysis of the 14 × 6 case was repeated without using block
reflection. A comparison of ground-state energy versus m for symmetric and non-
symmetric calculations is shown in Fig. 4.7 (a) and reveals that a non-symmetric calcu-
lation leads to lower energies at large m. The inappropriateness of block reflection for
the 14× 6 system is also emphasized by the discarded weight (see Fig. 4.7 (b)).

Fig. 4.8 shows the hole density (summed over the y-direction) for the 14×6 Hubbard
ladder (8 holes) with and without using block reflection. The transition to the striped
state occurs at m ≈ 600 in the former case and m ≈ 1500 in the latter case. For
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Figure 4.5: Spatial distribution of the hole density (left panel) and the spin density
Sz(x, y)(−1)x+y (right panel) for the 11 × 6 Hubbard ladder with 6 holes
at U = 12t. The lines in the bottom canvas mark zero-crossings.

the “true” ground-state solution (i.e. the one being lowest in energy) the hole and spin
densities show clearly that there are two stripes with four holes each (cf. Fig. 4.9).

Finally, data for the 21 × 6 Hubbard ladder at U = 12t with 12 holes at up to
m = 8000 is shown. By comparison of the block-reflected with the non-block-reflected
result, it is obvious that block reflection must be used (Figs. 4.10, 4.11, 4.12 and 4.13),
although it can be assumed that at some (presumably very large) m one should be able
to obtain the same results without block reflection. Fig. 4.13 shows that the ground
state has three stripes, looking essentially like another periodic continuation of the 7×6
result. In the upper panel of Fig. 4.14, hole and raw spin densities for this case are
depicted. The coincidence of spin phase shifts, spin density zero crossings and hole
density peaks can be clearly identified. For illustration, the lower panel shows the same
data at U = 3t where the structures are significantly less pronounced.

In the 28×6 case, as shown in Fig. 4.15, it can not be decided whether block reflection
is useful or not, at least not for the values of m considered here. Furthermore, no clear
stripe patterns could be identified with either approach (Figs. 4.16, 4.17), although there
appears to be evidence for five stripes in the spin density when using block reflection
(Fig. 4.18). As will be shown in the next section, this indication is unreliable as it does
not survive subsequent extrapolation to zero truncation error. Consequently, the 28× 6
results will be disregarded in the following.

So far, analysis was mostly concentrated on “raw data”, and some peculiarities of
hole and spin densities were pointed out. As mentioned earlier, this data is useful only
if it gets interpreted using some careful analysis. It is, for instance, quite disturbing
that Fig. 4.14 implies a nonvanishing local magnetization between the stripes. Due to
the inherent spin symmetry of the model, one would expect s(x, y) = 0 for all x, y.
In the next section, this problem will be resolved by an extrapolation procedure which
will essentially allow one to arrive at expectation values at zero truncation error in the
thermodynamic limit.
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Figure 4.6: Hole density (left) and spin density (right) for the 14 × 6 Hubbard ladder
with 8 holes at U = 12t (block reflection was used).
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Figure 4.7: Comparison of convergence of ground-state energy as a function of m for the
14 × 6 Hubbard ladder with and without using block reflection (panel (a)).
Ground-state energy per site vs. discarded weight for the 14 × 6 Hubbard
ladder with and without using block reflection (panel (b)).
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Figure 4.8: Hole density in x-direction for the 14× 6 Hubbard ladder at U = 12t with 8
holes. Block reflection was employed in (a) but not used in (b).
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Figure 4.9: Hole density (left) and spin density (right) for the 14× 6 Hubbard ladder at
U = 12t (8 holes, no block reflection).
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Figure 4.10: Comparison of convergence of ground-state energy as a function of m for
the 21×6 Hubbard ladder with and without using block reflection (panel (a)).
Ground-state energy per site vs. discarded weight for the 21 × 6 Hubbard
ladder with and without using block reflection (panel (b)).
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Figure 4.11: Hole density versus x for the 21 × 6 Hubbard ladder at U = 12t with 12
holes (block reflection was employed in (a) but not used in (b)).
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Figure 4.12: Hole density (left) and spin density (right) for the 21x6 Hubbard ladder at
U = 12t with 12 holes and not using block reflection.
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Figure 4.13: Hole density (left) and spin density (right) for the 21 × 6 Hubbard ladder
at U = 12t with 12 holes and block reflection.

4.3.2 Analysis of stripe patterns

For the calculations presented here, up to m = 8000 density-matrix eigenstates per block
were kept for systems with up to L×W = 168 sites. Such a calculation requires up to
four weeks (walltime) and 100 GBytes of memory on eight processors of an IBM p690
node. (For comparison, it takes about 6 hours to reproduce the results of Ref. [69] for
7× 6 clusters with m = 3600.)

As was shown in the previous section, the tunneling to a striped state is marked by
a sharp drop of the energy and changes in the spin and hole densities, which become
more regular. In particular, the hole density and the staggered spin density are almost
constant in the rung direction. The stability of this DMRG ‘ground state’ is demon-
strated by the systematic behavior of the energy and expectation values as a function
of the discarded weight (see the discussion below).
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Figure 4.14: Depiction of spin and hole density for a 21×6 Hubbard ladder at U =
12t (top) and U = 3t (bottom). The circle areas and arrow lenghts are
proportional to the local hole and spin densities, respectively. See text for
interpretation of local magnetization.

On the 7r × 6 ladders with 4r holes investigated here, r stripes with 4 holes each
appear in the DMRG ground state. These stripes are clearly seen in the hole density
modulation in the leg direction (4.5), which is shown again in Fig. 4.19 for a 21 × 6
ladder at U = 12t. In the same figure, one sees that the staggered spin density in the leg
direction (4.6) is finite and changes sign exactly where the hole density h(x) is maximal.
Therefore, the specific features of stripes are clearly observed in the DMRG ground state
densities. Note, however, that the finite staggered spin density may be an artifact of
the DMRG method, which does not use the full spin symmetry. In the true ground
state of a finite ladder one would expect s(x, y) = 0. A quasi-antiferromagnetic order
and a π phase shift should be visible in spin-spin correlation functions only. However,
this artifact has little effect on the validity of the DMRG results [69]. In Fig. 4.19 the
results for U = 3t appear qualitatively similar to those obtained for U = 12t although
the amplitudes of the density fluctuations are clearly smaller for the weaker coupling.
Nevertheless, one notices that the hole and spin density profiles for U = 3t are less
regular than for U = 12t.

To make a quantitative analysis of these structures, a systematic spectral analysis
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Figure 4.15: Comparison of convergence of ground-state energy as a function of m for
the 28×6 Hubbard ladder with and without using block reflection (panel (a)).
Ground-state energy per site vs. discarded weight for the 28 × 6 Hubbard
ladder with and without using block reflection (panel (b)). Inset: same data
as in panel (b), but zoomed into the large m region.
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Figure 4.16: Hole density versus x for the 28 × 6 Hubbard ladder at U = 12t with 16
holes (block reflection was employed in (a) but not used in (b)).

of the hole and staggered spin densities was carried out. The spectral transforms are
defined as

F (kx, ky) =

√
2

L(R+ 1)

∑

x,y

sin(kxx)eikyyf(x, y) (4.7)

with kx = zxπ/(R + 1) for integers zx = 1, . . . , R and ky = 2πzy/L for integers
−L/2 < zy ≤ L/2. Here f(x, y) and F (kx, ky) represent either the hole density h(x, y)
and its transform H(kx, ky) or the staggered spin density s(x, y) and its transform
S(kx, ky). The transformation in the rung direction (with periodic boundary conditions)
is the usual Fourier transform. In the leg direction (with open boundary conditions), an
expansion the particle-in-the-box eigenstates is used because this is a natural basis for
a finite open system. In the infinite-ladder limit R → ∞ this transformation becomes
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Figure 4.17: Hole density (left) and spin density (right) for the 28 × 6 Hubbard ladder
at U = 12t with 16 holes and not using block reflection.
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Figure 4.18: Hole density (left) and spin density (right) for the 28 × 6 Hubbard ladder
at U = 12t with 16 holes and block reflection.

equivalent to the standard Fourier transformation. As the systems considered have a
reflection symmetry (x→ R+ 1− x), the hole spectral transform H(kx, ky) always van-
ishes for even integers kx while the spin spectral transform S(kx, ky) vanishes for odd kx
if R is odd and for even kx if R is even. Moreover, in the converged DMRG ground state
the uniform behavior of h(x, y) and s(x, y) along the rungs implies that the spectral
weight is concentrated at ky = 0 for both densities.

In Fig. 4.20 the power spectrum (squared norm of the spectral transforms) of the
hole and staggered spin densities presented in Fig. 4.19 is shown. In both cases, the
power spectrum has been normalized by its total weight

F 2 =
∑

kx,ky

|F (kx, ky)|2 , (4.8)

which we denote H2 and S2 for the hole and spin power spectrum, respectively. For
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U = 12t one sees that both hole and spin power spectra have a single strong peak
containing most of the spectral weight (92 % and 84%, respectively). For U = 3t,
however, one observes a broad distribution without a clearly dominant mode kx in the
hole density power spectrum. Similar results are found for ladder lengths R ≤ 21. (For
R = 28 the power spectra are mostly inconclusive because of the non-convergence of the
hole and spin densities mentioned previously).

For U = 12t the observed positions of the dominant peaks in the hole and spin
spectral transforms for r ∈ {1, 2, 3} can be extrapolated to the R =∞ limit, yielding

kH
x

π
=

2r + 1

R+ 1

R→∞−→ 2

7
(4.9)

and
kS
x

π
=

r + 1

R+ 1

R→∞−→ 1

7
, (4.10)

which agrees perfectly with the expected values corresponding to one stripe every seven
rungs in an infinitely long ladder. For U = 3t, the position kx of the maximum in the
spectral transforms is not always well defined (for instance, it changes with the number
m of density matrix eigenstates kept even for large m) and thus a quantitative analysis
of kx for R→∞ is not possible.

As described in chapter 2, DMRG calculations suffer from truncation errors which
are reduced by increasing the number m of retained density matrix eigenstates (for
more details, see [32, 72]). As the error in the ground state energy is proportional to
the discarded weight Wm =

∑d
i=m+1 wi, the extrapolation technique from section 2.4.1

can be used to estimate that the error in ground state energy per site is typically about
4 × 10−3t (U = 12t) and 7 × 10−3t (U = 3t) for the largest number of density-matrix
eigenstates kept (m = 8000 and m = 6000, respectively) and R ≤ 28. Consequently,
the error in the total energy is of the order of t for the largest system (168 sites). For
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the one-dimensional Hubbard model it can be shown and the lowest excited states is of
the order of t/N for charge excitations and t2/UN for spin excitations, where N is the
length of the system. If we approximate N by R for long ladders, the energy separation
between ground state and the lowest excited states is still significantly smaller than
the error in the total energy. Therefore, the DMRG wavefunctions obtained in these
calculations are not accurate descriptions of the true ground states. Although the DMRG
wavefunctions converge systematically to the true ground states (as shown by the linear
scaling of the energy with Wm), for m ≤ 8000 they still have significant overlaps with
other eigenstates. Expectation values calculated with such a DMRG wavefunction (i.e.,
for a given m) could thus be extremely inaccurate. In order to get reliable results the
scaling of observables with increasing m will in the following be carefully analyzed.

If a variational ground-state wavefunction, as used in the DMRG algorithm, is known
up to an error of ε, the corresponding error in the energy is of the order of ε2. Other
observables, whose operators are nondiagonal in the energy basis, converge only with ε.
For DMRG it is known that ε2 ∝Wm (see above), thus expectation values of operators
are polynomials of

√
Wm for small discarded weights Wm. For the maximum Hmax

of the absolute hole spectral transform |H(kx, 0)| a linear scaling with
√
Wm can be

identified (see Fig. 4.21)1. This allows to extrapolate Hmax to the limit of vanishing
truncation errors. It is worth noting that Hmax decreases with decreasing Wm. This
corresponds to a diminution of the stripe amplitude with increasing m (i. e., decreasing
Wm) for sufficiently large m >∼ 2000. This diminution can be seen directly in the hole
density profile h(x) (for instance, in Fig. 3b of Ref. [69]). For U = 12t the extrapolated
values of Hmax are clearly finite as shown in Fig. 4.21 for a 21× 6 ladder. It can thus be
concluded that the hole density fluctuations found on finite ladders are not an artifact of
DMRG truncation errors but a feature of the true ground state for U = 12t. For U = 3t,

1Such a scaling has already been found for other density modulation amplitudes [80]
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Figure 4.21: Maximum Hmax of |H(kx, 0)| in a 21×6 system with U = 12t (solid circle)
and U = 3t (open circle) as a function of the square root of the discarded
weight Wm for various numbers of density-matrix eigenstates 1800 ≤ m ≤
8000. Dashed lines are linear fits. Inset: Extrapolation H 0

max of Hmax for√
Wm → 0 versus U .

Hmax extrapolates to very small values as Wm → 0. Typically, the range of
√
Wm over

which a linear behavior in
√
Wm can be observed is smaller than the smallest value of√

Wm used in the extrapolation (this can be seen for the example shown in Fig. 4.21).
The uncertainty in the extrapolated Hmax is thus larger than its value for U = 3t.
Therefore, the hole density fluctuations could be the result of DMRG truncation errors
and the true ground state could be uniform in that case (i.e., Hmax = 0 for Wm → 0).
For intermediate values of U , the extrapolated Hmax show a monotonic increase as U
grows, and one sees in the inset of Fig. 4.21 that the transition from a (probably) uniform
state to a striped state occurs between U = 3 and U = 5.

Extrapolating the maximum Smax of the absolute spin spectral transform |S(kx, 0)|
to the limit Wm → 0 turns out to be more difficult than extrapolating Hmax (see
Fig. 4.22 a). Contrary to Hmax, Smax has not reached an asymptotic regime (as a
function of Wm) for the largest number m of density matrix eigenstates used. This
difference is probably due to the smaller energy scale of spin excitations compared to
that of charge excitations, resulting in a DMRG ground state which describes the charge
properties of the true ground state correctly but not its spin properties.

It should be noted that the “raw” spin density is usually not the correct observable to
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Figure 4.22: Left: Maximum Smax of |S(kx, 0)| on the 7 × 6 (inset: 21 × 6) ladder
at U = 12t (dashed line: linear fit, dotted line: quadratic fit, solid line:
quadratic fit with constraint Smax(0) ≥ 0). Right: Amplitude |σs(kx)| of the
spin structure factor in x direction for the 7× 6 ladder at U = 12t. Inset:
staggered spin-spin correlation in leg direction along the first leg with respect
to the first rung.

consider here, but that the staggered spin-spin correlation (or anticorrelation) functions
in leg direction,

σl(i, j) = 〈(−1)i−jSz(i, l)Sz(j, l)〉 , (4.11)

and the corresponding structure factors,

σl(kx) =
1

R2

∑

i,j

eikx(i−j)〈Sz(i, l)Sz(j, l)〉 , (4.12)

are normally used to identify short- or long-range order. The inset of Fig. 4.22 b shows
the spin-spin anticorrelation for the smallest ladder (7× 6 sites) along the first leg with
respect to the first rung, σ1(1, x), with the expected strong next-neighbor anticorrelation.
It also indicates a π phase shift across the stripe location (rung 4). Not surprisingly,
the spin structure factor σ1(kx) peaks at kx = π (Fig. 4.22 b), substantiating the image
obtained by looking at the spin densities alone. Due to the open boundary conditions
in leg direction, the spin structure factor does not lead to new insights here and will be
disregarded in the following.

Extrapolation of Smax to Wm → 0 using linear and quadratic fits (see Fig. 4.22 a)
suggests that Smax vanishes for Wm → 0 and thus that the true ground state has no
spin density fluctuations, s(x, y) = 0, as expected.

Typically, the discarded weight Wm is about 10−5 or smaller for m = 8000. Although
this appears to be a small value, the above discussion shows that errors in the ground
state energy and Hmax are still quite large for that number m. This confirms that the
absolute value of the discarded weight Wm alone does not give a reliable estimate for
errors on physical quantities.
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Figure 4.23: Left: Amplitude Hmax/
√
R of the hole density modulation for a fixed num-

ber m(= 6000 − 8000) of density-matrix eigenstates (square) and extrap-
olated to the limit Wm → 0 (circle) as a function of the inverse ladder
length for U = 12t (solid symbols) and U = 3t (open symbols). Right: Zero
truncation error extrapolation H∞max = of the amplitude of the dominant
Fourier component in the hole density modulation for hole dopings of 4r
(circles) and 8r (squares)

The final step in the analysis of the patterns is extrapolation to infinite ladder length
as it can be used to decide whether the open boundaries in leg direction induce stripe
formation. A ladder with a periodic array of stripes has a modulation of the hole density
(charge density wave)

h(x) = h0 sin(kHx x) , (4.13)

which corresponds to

Hmax = |H(kHx , 0)| =
√

(R+ 1)L

2
h0 . (4.14)

If the amplitude h0 of the hole density modulation is finite in the limit of an infinitely
long ladder (R → ∞), the maximum Hmax of the spectral transform must diverge as√
R for R→∞. Fig. 4.23 a shows the finite-size scaling of Hmax/

√
R ∼ h0 as a function

of the inverse ladder length for U = 3t and U = 12t. The values of Hmax/
√
R obtained

for a fixed number m of density matrix eigenstates converge to finite values for R→∞,
suggesting the existence of stripes in this limit for both couplings U . After extrapolation
to the limit of vanishing DMRG truncation errors, however, Hmax/

√
R seems to vanish

for large R in the case U = 3t while it still converges to a finite value for U = 12t (see
Fig. 4.23 a). This indicates that stripes exist in the ground state of infinitely long ladders
for sufficiently strong coupling such as U = 12t but that the hole and spin structures
found in finite ladders for weak couplings such as U = 3t are artifacts of open boundaries
and DMRG truncation errors. It has already been observed in other problems [80] that
DMRG truncation errors can result in an artificial broken symmetry ground state after
extrapolation to infinite system sizes, while extrapolating first to the limit of vanishing
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truncation errors restores the true ground state symmetry in the thermodynamic limit.
Infinite length and zero truncation error extrapolations could in fact be carried out for
several values of U between U = 3t and U = 12t. Fig. 4.23 b shows that the transition to
a stripe state actually occurs between U = 3t and U = 4t, and that the stripe amplitude
starts to saturate already for U & 5t.

4.3.3 Influence of hole doping on stripe formation

In order to investigate the influence of hole doping on stripe formation, the same analysis
as in the previous section was carried out using 8r instead of 4r holes on a 7r× 6 ladder
up to r = 3 (21 rungs). Fig. 4.24 exemplarily shows the effect that a larger doping has
on the stripe amplitude for a 21× 6 ladder at U = 12t. Obviously, the stripe amplitude
is much reduced and the number of stripes doubles so that one arrives again at a hole
density of four holes per stripe. Extrapolation of the dominant Fourier component in the
hole density modulation towards vanishing truncation error and R→∞ yields a much
more gradual transition to the striped state (squares in Fig. 4.23 b), which happens to
occur at larger U & 6t.

In contrast to this result, a small hole doping of 2r holes on a 7× 6 ladder does not
lead to stripe formation in the range of U considered. Holes tend to localize and the
resulting density distribution, while consolidating with increasing m as also seen in the
previous cases, is not translationally invariant in the y (rung) direction.

Summary of results In summary, this analysis has shown the presence of stripes
in the ground state of infinitely long ladders for U = 12t but a uniform ground state
for U = 3t. For small U , stripe signatures observed in numerically determined ground
states are artifacts of the method and vanish when proper extrapolation procedures
are employed. Therefore, there is a crossover at a critical value Uc between a uniform
ground state (for U < Uc) and a state in which the translation symmetry is broken
by the formation of stripes (for U > Uc). The amplitude h0 ∼ Hmax/

√
R of the hole

density modulation serves as an indicator as to when the transition actually occurs. The
results for finite ladder lengths show that the critical coupling Uc probably lies between
U = 3t and U = 5t (see the data for 21× 6 ladders in the inset of Fig. 4.21). Extensive
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calculations for various values of U and a systematic extrapolation of the order parameter
h0 ∼ Hmax/

√
R to the limit of infinite ladder length have been performed, and the critical

Uc could be determined for two different hole dopings, 4r and 8r. At a doping of 4r, the
transition occurs with a rather steep slope at U ≈ 4t. Increasing the doping to 8r shifts
the transition to larger U ≈ 6t and makes it much smoother. Moreover, the number of
stripes in the ground state is doubled and the stripe amplitude is considerably reduced.
At the smaller doping of 2r, no stripe signatures could be found in the parameter range
covered. As a sidenote, it must be stressed that no phase transition has so far been
found for the one-dimensional Hubbard model in the thermodynamic limit as a function
of U [62, and references therein]. As the cylindrical system discussed here is effectively
one-dimensional in the R → ∞ limit, the term “phase transition” as a description of
the crossover to a striped state has deliberately been avoided.

The conclusions for ladders of finite width cannot be extended to a two-dimensional
lattice with L = R→∞. Nevertheless, combined with other results for two-dimensional
systems [64, 73, 74, 65, 66, 75, 78] the results suggest that a similar transition between
a uniform ground state (possibly with off-diagonal superconducting correlations) and a
striped ground state could occur at finite coupling U in the two-dimensional Hubbard
model close to half-filling. The existence of such a transition in two-dimensional strongly
correlated electron systems could play a significant role in the physics of layered cuprate
compounds.



Chapter 5

One-Dimensional
Electron-Phonon Systems
[43, 8, 81]

5.1 The Holstein-Hubbard Model

In addition to the purely electronic interactions in the Hubbard model it is often nec-
essary to incorporate the coupling to lattice degrees of freedom in order to describe
the electronic properties of solids. Since dynamical phonon effects are known to be
particularly important in quasi-1D materials, the Holstein-Hubbard model [82, 83],

HHHM = HHM + gω0

∑

i,σ

(b†i + bi)niσ + ω0

∑

i

b†ibi (5.1)

tries to incorporate these effects by coupling the electronic system locally to an internal
optical degree of freedom of the effective lattice (second term), whereas the third term
takes into account the elastic energy of a harmonic lattice itself. With εp being the po-
laron binding energy, g =

√
εp/ω0 is a dimensionless electron-phonon coupling constant

and ω0 denotes the frequency of an optical phonon mode, respectively. b(†)
i are the usual

phonon annihilation (creation) operators. The electron-phonon coupling contributes —
in addition to the short-range Coulomb repulsion from the Hubbard term — to electron
immobilization. At half-filling the electron-phonon coupling may lead to a Peierls insta-
bility related to the appearance of charge density wave (CDW) order (in competition
to the antiferromagnetic spin density wave (SDW) correlations triggered by U). If, for
some reason, electron-electron interaction via the Hubbard term becomes unimportant,
one arrives at the Holstein model. This limit is applicable, e. g., in the following cases:

• If there is only a single electron. The resulting model has been studied extensively
as a blueprint for the mechanisms of polaron formation.

• In the case of spinless fermions. In the following section, DMRG will be applied

69
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to the Holstein model of spinless fermions (HMSF),

H = −t
∑

i

(c†i ci+1 + c†i+1ci) + ω0

∑

i

b†i bi

− gω0

∑

i

(b†i + bi)(ni −
1

2
) , (5.2)

in order to shed some light on the large-coupling limit and the corresponding
emergence of a CDW phase.

Finally, in section 5.3, a DMRG finite-size analysis will be used on the full Hostein-
Hubbard model (5.1) at half filling. Spin and charge gaps for large system sizes will be
used to support a recently propsed phase diagram of the HHM [8].

5.2 Luttinger parameters in the spinless Holstein Model

The challenge of understanding quantum phase transitions in novel quasi-1D materials
has stimulated intense work on microscopic models of interacting electrons and phonons
such as the Holstein model of spinless fermions (5.2). The HMSF describes tight-binding
band electrons coupled locally to harmonic dispersionless optical phonons.

Despite of its simplicity the HMSF is not exactly solvable and a wide range of
numerical methods has been applied in the past to map out the ground-state phase
diagram in the g-ω0-plane, in particular for the half-filled band case (Nel = N/2).
There, the model most likely exhibits a transition from a Luttinger liquid (LL) to a
charge density wave (CDW) ground state above a critical electron-phonon (EP) coupling
strength gc(ω0) > 0 [84, 85, and references therein].

In this section, large-scale DMRG calculations are presented, providing unbiased
results for the (non-universal) LL parameters uρ, Kρ, and the staggered charge structure
factor Sc(π).

To leading order, the charge velocity uρ and the correlation exponent Kρ may be
obtained from a finite-size scaling of the of the ground-state energy of a finite system
E0(N) with N sites

ε0(∞)− E0(N)

N
=
π

3

uρ/2

N2
(5.3)

(ε0(∞) denotes the bulk ground-state energy density) and the charge excitation gap

∆c(N) = E
(±1)
0 (N)−E0(N) = π

uρ/2

NKρ
(5.4)

(here E±1
0 (N) is the ground-state energy with ±1 fermions away from half-filling). The

LL scaling relations (5.3) and (5.4) were derived for the pure electronic spinless fermion
model only [86, 87].

Fig. 5.2 demonstrates, exemplarily for the adiabatic regime, that they also hold for
the case that a finite EP coupling is included. The resulting LL parameters are given in
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g2 ω0/t = 0.1 ω0/t = 10.0
Kρ uρ/2 Kρ uρ/2

0.6 1.031 ∼ 1 ∼ 1 0.617
2.0 1.055 0.995 0.949 0.146
4.0 1.091 0.963 0.651 0.028

Table 5.1: LL parameters at small and large phonon frequencies.

Table 5.1. Most notably, around ω0/t ∼ 1, the LL phase splits in two different regimes:
For small phonon frequencies the effective fermion-fermion interaction is attractive, while
it is repulsive for large frequencies. In the latter region the kinetic energy is strongly
reduced and the charge carriers behave like (small) polarons. In between, there is a
transition line Kρ = 1, where the LL is made up of (almost) non-interacting particles.
The LL scaling breaks down just at gc(ω/t), i. e. at the transition to the CDW state.
Here it was found that g2

c (ω/t = 0.1) ' 7.84 and g2
c (ω/t = 10) ' 4.41 [88].

Fig. 5.2 proves the existence of the long-range ordered CDW phase above gc. Here
the charge structure factor

Sc(π) =
1

N2

∑

i,j

(−1)j〈(ni −
1

2
)(ni+j −

1

2
)〉 (5.5)

unambiguously scales to a finite value in the thermodynamic limit (N →∞). Simulta-
neously ∆c(∞) acquires a finite value. In contrast, there is Sc(π) → 0 in the metallic
regime (g < gc). The CDW for strong EP coupling is connected to a Peierls distortion of
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Figure 5.2: DMRG and ED results for the Scaling of the charge structure factor Sc(π)
using periodic (PBC) and open (OBC) boundary conditions.

the lattice, and can be classified as traditional band insulator and bipolaronic insulator
in the strong-EP coupling adiabatic and anti-adiabatic regimes, respectively.

The emerging physical picture can be summarised in the schematic phase diagram
shown in Fig. 5.3. In the adiabatic limit (ω0 → 0) any finite EP coupling causes a
Peierls distortion. In the anti-adiabatic strong EP coupling limit (ω0 →∞), the HMSF
can be mapped perturbatively onto the XXZ model and the metal-insulator transition
is consistent with a Kosterlitz-Thouless transition at g2

c (∞) ' 4.88.

5.3 Mott-insulator to Peierls-insulator transition in the

one-dimensional Holstein-Hubbard Model

Over the past years the ground-state phase diagram of the Holstein-Hubbard model (5.1)
has been intensely studied using numerical methods. However, despite the apparent sim-
plicity of the model, the quantum lattice and interaction effects are still not completely
understood. At half-filling (

∑
i,σ niσ = Nel = N), electron-phonon and electron-electron

interactions tend to localize the charge carriers by establishing CDW and SDW ground
states, respectively. As a result, Peierls or Mott insulating phases are energetically
favoured over the metallic state (Fig. 5.4). At U = 0, the ground state is a Peierls insu-
lator (PI) above a critical electron-phonon coupling gc(ω0), with a vanishing threshold
in the adiabatic limit ω0 → 0. The PI state has equal spin and charge excitation gaps,
and site-parity eigenvalue P = +1 [89, 90]. It is mainly characterized by alternating
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doubly-occupied and empty sites and exhibits long-range order because the CDW phase
has broken discrete symmetry. By contrast, at g = 0 the ground state is a Mott insulator
(MI) with finite charge excitation gap but vanishing spin excitation gap and site-parity
P = −1 [89, 90]. The corresponding SDW phase has continuous symmetry and hence
cannot exhibit true long-range order in one dimension.

An interesting and still controversial question is whether or not only one critical
point separates PI and MI phases at T = 0 [91, 92]. Furthermore, it is also important to
understand how the nature of the PI and MI phases is modified when phonon dynamical
effects are taken into account. For a detailed discussion of these problems, cf. [89, 90].
Here the focus will be on computational aspects at the determination of ground state
properties in the HHM phase diagram.

CDW

Peierls Insulator
∆c ∆s= > 0; P = +1

Mott Insulator
∆c ∆s> = 0; P = −1

SDW

u/λ >> 1

u/λ << 1

Figure 5.4: Schematic phase diagram of the Holstein Hubbard model, where u = U/4t
and λ = εp/2t = 2αg2 with α = ω0/t.
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To spot the transition from the PI to the MI state, the behaviour of the kinetic energy
Ekin = −t〈∑〈i,j〉σ c

†
iσcjσ〉 was traced when increasing the Coulomb on-site repulsion

U (see Fig. 5.5). Since both CDW and SDW correlations reduce the kinetic energy
significantly, Ekin reaches a maximum when the system crosses from the PI to the MI
regime. At the transition point the optical gap closes. In the non-adiabatic strong
electron-phonon coupling regime at small u/λ, the electrons are heavily dressed by
phonons, forming bipolarons in real space. As a result the system typifies rather a
charge-ordered bipolaronic insulator than a traditional band insulator. This is reflected
by the number of phonons M needed to reach convergence using the ED approach (see
inset). On the other hand, at the transition point and within the MI phase, the ground
state is basically a zero-phonon state. The extremely weak finite-size dependence of the
Ekin results must be emphasized here.

Further insight into the nature of the PI and MI phases can be obtained by calcu-
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lating staggered charge and spin structure factors:

Sc(π) =
1

N2

∑

i,j
σσ′

(−1)|i−j|〈(niσ − 1
2 )(njσ′ − 1

2)〉 , (5.6)

Ss(π) =
1

N2

∑

i,j

(−1)|i−j|〈Szi Szj 〉 , Szi = 1
2(ni↑ − ni↓) . (5.7)

Here, (5.6) is essentially equivalent to (5.5). Results for Sc(π) and Ss(π) are given in
Fig. 5.6 for two characteristic Hubbard interactions. As expected, pronounced CDW
and weak SDW correlations in the Peierls distorted state were found. Increasing U at
fixed g and ω0, Peierls CDW order is strongly suppressed, whereas the spin structure
factor becomes enhanced [89, 90]. Most interesting, however, are the different size
dependencies of these quantities in the PI and MI phases. For the PI, Sc(π) shows
almost no dependence on the size of the system, which indicates CDW long-range order,
whereas Ss(π) obviously scales to zero asN →∞. By contrast, in the MI regime the data
provides strong evidence for vanishing spin and charge structures in the thermodynamic
limit. Clearly the MI is characterized by short-ranged antiferromagnetic spin correlations
but nevertheless the staggered spin-spin correlation function shows a slow (algebraic)
decay at large distances. Note that such a finite-size scaling (shown here with lattice
sizes up to N = 128) is definitely out of the range of ED, i. e., in order to obtain
reliable results concerning the behaviour of the infinite system, the DMRG method is
indispensable. The DMRG memory and CPU time resources required to compute the
kinetic energy and structure factor data presented are moderate, especially in relation to
the ED algorithm. Each data point in Fig. 5.5 takes roughly one CPU day on a modern
processor like the Intel Itanium 2, at a few GBytes of memory. The DMRG finite-size
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Figure 5.7: Schematic phase diagram of the Holstein-Hubbard model at half-filling.

analysis of structure factors in Fig. 5.6 is considerably more demanding, with about 5
to 10 GBytes of memory and several CPU days of computer time.

A more complete phase diagram of the half-filled Holstein-Hubbard Model has re-
cently been proposed [8] (Fig. 5.7), which shall here be derived using DMRG calculations
of spin (∆s) and charge (∆c) excitation gaps

∆c = E
(N+1)
0 (1

2 ) +E
(N−1)
0 (−1

2)− 2EN0 (0) (5.8)

∆s = EN0 (1) −EN
0 (0) , (5.9)

for large system sizes. While both ∆s and ∆c are expected to be finite in the PI, the spin
gap vanishes in the one-dimensional MI, which is related to spin-charge separation. At
finite phonon frequency and U = 0 (Holstein model) a critical EP coupling is required to
set up the CDW phase characterized by alternating doubly occupied and empty sites [84,
95, 88]. The accompanying gap formation and metal-insulator transition has recently
been studied in the limit of infinite dimensions [96]. Depending on the adiabaticity
ratio α = ω0/t the PI represents a traditional band insulator (α � 1) or a bipolaronic
insulator (α � 1, g2 = εp/ω0 � 1) (In the anti-adiabatic limit ω0 = ∞, where the
lattice reacts instantaneously to the electronic configuration, an effective [nonretarded]
attractive Hubbard model results; see below for a similar effect in the HHM). Although
for the more general HHM the situation is much less clear, it can be expected that
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Figure 5.8: DMRG finite-size scaling of spin- and charge excitation gaps in the HHM in
the MI and PI-BI cases and at the QCP (left three panels, λ = 0.35, α =
0.1), and in the antiadiaabatic case (right panel, λ = 1.5, α = 1.5). Note
the different scale of ∆c in the MI and PI-BIPO phase. Open and filled
symbols denote DMRG results for periodic (PBC) and open (OPC) boundary
conditions, respectively. The accessible system sizes are smaller at larger
λ/u, where an increasing number of (phononic) pseudosites is required to
reach convergence with respect to the phonons. Stars represent the ED results
for the eight-site system. The arrow marks the value of the optical gap
∆opt for the Bethe-ansatz solvable 1D Hubbard model, which is given by
∆opt/4t = u− 1 + ln(2)/2u in the limit of large u > 1 [93, 94].

the features of the insulating phase will depend markedly on the ratio of Coulomb
and EP interactions u/λ, allowing for quantum phase transitions between insulating
phases. As described above, it has been argued that the HHM shows a crossover between
Mott and Peierls insulating phases at u/λ ' 1 [90]. More precisely, for finite periodic
chains, the MI-PI quantum phase transition could be identified by a ground-state level
crossing associated with a change in the parity eigenvalue P [89]. Note that this scenario
differs from the (weakly interacting) HHM with frozen phonons [90], where there is
strong evidence in favour of two quantum critical points, as in the ionic Hubbard model
[97, 98, 99].

Obviously the finite-size scaling presented in Fig. 5.8 for the spin (∆s) and charge
(∆c) excitation gaps substantiates the discussion of the phase diagram (Fig. 5.7). ∆c and
∆s are finite in the PI and will converge further as N →∞. Both gaps seem to vanish at
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the quantum phase transition point of the HHM with finite-frequency phonons, but in
the critical region the finite-size scaling is extremely delicate. In the MI, a finite charge
excitation gap was found, which in the limit u/λ � 1 scales to the optical gap of the
Hubbard model, whereas the extrapolated spin gap remains zero. For the antiadiabatic
case (right panel in Fig. 5.8), the spin and charge gaps are remarkably independent
of the system size, even for N = 8 (the comparatively weak agreement with ED data
in the N = 8 case is due to an overrestrictive phonon space truncation in the ED
calculations that led to a large error in the ground-state energies; the DMRG energies
are considerably more accurate [i. e., more negative] for this case, and thus the gaps
are more reliable). This agrees well with a physical picture of almost stationary on-site
bipolarons [100]. In order to corroborate this conjecture, a unitary transformation of
the HHM Hamiltonian can be applied:

H̃ = eSLFHe−SLF , with SLF = −
√
εp
ω0

∑

iσ

niσ(b†i − bi) . (5.10)

This is the well-known Lang-Firsov transformation [101], which, after averaging over
the phonon vacuum, leads to an effective Hubbard model with renormalized Coulomb
interaction Ũ = U − 2εp [102]. In the antiadiabatic case shown in Fig. 5.8, the effective
interaction is attractive as Ũ = −3t < 0. The simple self-trapped on-site bipolaron
picture thus seems to be vindicated, and it should further be possible to estimate the
spin and charge gaps: Removing an electron from the half-filled AA ground state then
costs E−−E0 = εp− (U − 2εp) ≈ 6t, because the small polaron energy and the effective
local Coulomb binding must be spent. On the other hand, adding an electron yields
the small polaron energy, i. e. E0 − E+ ≈ εp = 3t, leading to ∆c ≈ 3t. The spin gap
can be estimated along the same lines, giving ∆s ≈ εp again. Both estimates roughly
match the DMRG data in the right panel of Fig. 5.8. The residual deviation might be
attributed to the fact that ω0 is not yet large enough to justify a rigorous antiadiabatic
approximation. There have been recent attempts to calculate finite-ω0 corrections to
Ũ using DMFT [103], but they strongly overestimate the effect when compared to the
numerical data presented here.

All DMRG calculations were performed with m = 1000 and nb = 2, 3 or 4 phonon
pseudosites in the MI, QCP and PI regimes, respectively. The low number of pseudosites
was made possible by the use of a linear shift to the oscillator equilibrium positions via
the operator

Hshift = −
∑

i

gω0Nel

N
(b†i + bi) (5.11)

in the Hamiltonian, effectively removing the phonon zero mode. (In the context of ED
calculations, the number of “real” phonon states would be 2nb). The shift can then be
removed from the ground-state energy result by subtracting ω0g

2N2
el/N . Computational

Resources ranged up to 10 GBytes of memory and 250 CPU hours on a current Itanium
2 machine (SGI Altix) for the 128-site PI cases. The ground state calculation in the MI
case with PBC shows a peculiar behaviour when going beyond 32 sites. At 64 sites and
larger it coincides exactly with the OPC ground state (see Fig. 5.9), showing vanishing
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bond order at site 64. PBC are hard to establish in the DMRG algorithm used because
of the particular way the DMRG sweeps are performed.

Summary of results In this chapter, DMRG was used to trace the phase structure
of the Holstein model of spinless fermions (HMSF) and the Holstein-Hubbard model
(HHM) in one dimension, each at half-filling.

For the HMSF at finite electron-phonon coupling, the Luttinger liquid parameters
and the charge structure factor were determined for large system sizes. It could be
shown that the adiabatic limit exhibits a Peierls distortion regardless of g, due to an
attractive effective electron-electron interaction even for small g. For large coupling, a
long-range ordered CDW phase appears, either in a bipolaronic (large ω0) or a band
insulator (small ω0) flavour.

For the HHM, contact was first made with earlier ED calculations of the kinetic
energy, which exhibits a maximum around the phase transition from Peierls (PI) to
Mott (MI) insulator regimes when increasing U at overcritical electron-phonon coupling.
This could be done with very modest computational effort; DMRG makes it essentially
a workstation-class task. Parallel DMRG was then used for a finite-size analysis of
charge and spin structure factors for up to 128 sites. It could be shown that, in the
thermodynamic limit, CDW long-range order prevails in the PI region, whereas the MI
retains no spin or charge structures apart from antiferromagnetic short-range order.
Finally, a finite-size analysis of the charge and spin excitation gaps in the PI and MI as
well as at the critical point revealed that the spin gap vanishes at the QCP and remains
zero throughout the MI regime, whereas there is always a finite charge gap away from the
QCP in the thermodoynamic limit. For the antiadiabatic case, the absence of spin-charge
separation could be demonstrated and the DMRG data supports the assumption that
the system behaves as an effective Hubbard model with attractive Coulomb interaction.



Chapter 6

The Heisenberg Spin-Phonon
Chain

6.1 Introduction to spin models

While the Hubbard Model, as shown in the previous chapter, is able to describe vari-
ous effects that involve electron mobility, there is a number of materials in which the
interaction of immobile spins accounts for interesting physics. For very strong Coulomb
repulsion, i.e. U/t� 1, the Hubbard model Hilbert space gets reduced because doubly-
occupied sites become highly improbable. By projecting out doubly-occupied states one
arrives at the t-J model,

HtJ = −
∑

〈ij〉,σ
tij
[
c†iσcjσ + H.c.

]
+
∑

〈ij〉
Jij

[
~Si~Sj −

1

4
ninj

]
, (6.1)

where the spin-spin term emerges from second-order electron hopping (J = 4t2/U �
t). This model was discussed very intensively in the context of possible ground-state
stripe formation (see [66, 67, 65] and section 4.3.1). At half-filling, electron itiner-
ancy is ruled out and all except the spin terms vanish, yielding the well-known spin- 1

2
(anti)ferromagnetic Heisenberg Model:

HH =
∑

〈ij〉
Jij ~Si~Sj with Jij ≥ 0 . (6.2)

Here, J < 0 describes a ferromagnet (spins tend to align in the same direction), and
J > 0 marks the antiferromagnetic regime (S = 0 ground state with long-range order of
the staggered magnetization). This model is the “standard model” for (anti)ferromag-
netism and was actually one of the first microscopic models for which the many-body
ground state could be determined analytically by Bethe’s ansatz [104]. As a touchstone
for the applicability of DMRG to spin models, Fig. 6.1 shows a comparison of DMRG
results for the ground-state energy per site E/N at increasing system sizes up to N = 256
with the infinite-system Bethe ansatz result of E/N = − ln 2 + 1/4. Evidently, DMRG
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is well able to scale out to the analytical result for both boundary conditions at large
N . In what follows, PBC are assumed throughout.

6.2 Spin-lattice interaction

The Heisenberg Model is able to reproduce the most important features of (anti)ferro-
magnets, but there are some materials that show a much more complex phase diagram
that emerges from the complicated interplay between spin and lattice degrees of freedom.
In the context of Spin-Peierls (SP) transitions in materials with chain substructures,
Copper Germanate (CuGeO3, see Fig. 6.2) assumes a special role due to its phonon
frequency being similar to the exchange coupling J . The frustrated Heisenberg spin
chain model,

HsHS = J

N∑

i=1

[
(1 + (−1)iδ)~Si~Si+1 + α~Si~Si+2

]
, (6.3)

has been frequently used to discuss ground-state dimerization [105, and references
therein]. Here, δ 6= 0 models static dimerization and α 6= 0 quantifies frustration.
It has been shown that for δ = 0 and α below some critical value, the ground state of
(6.3) is a spin liquid. At α = αc there is a transition to spontaneous dimerization and
a finite energy gap appears (α ≈ 0.36 was determined from experimental susceptibility
data in the non-dimerized phase [106]). For δ 6= 0, the singlet ground state is already
dimerized. It should be possible to fit the model parameters δ and α to experimental
data on CuGeO3, but it was shown [107] that δ is largely underestimated. This leads to
the conclusion that the picture of phonons as “frozen” lattice distortions is insufficient
and a nonadiabatic spin-phonon interaction that takes the full lattice dynamics into
account is required to reproduce the artificial dimerization introduced in (6.3) in the
adiabatic limit.
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In the frustrated magnetoelastic Heisenberg spin chain model,

HdHS = J
N∑

i=1

[
(1 + g(b†i + bi))~Si~Si+1 + α~Si~Si+2 + ω

N∑

i=1

b†ibi

]
, (6.4)

the interaction of lattice and spin degrees of freedom is mediated by a “magnetoelas-
tic coupling” g of the antiferromagnetic Heisenberg term ~Si~Si+1 to lattice deformations
(b†i + bi) (J = 1 is assumed in the following). In the case of g = 0, the phononic and
spin sectors decouple and one is left with the standard frustrated antiferromagnetic
Heisenberg chain. The physical relevance of the model (6.4) emerges from the prospect
of a correct description of the Spin-Peierls transition (at critical temperature TSP) in
CuGeO3 [108, and references therein]. Fig. 6.2 shows a CuO2 chain from this system,
which can, due to weak interchain couplings, be treated in an isolated manner. The
antiferromagnetic exchange interaction of the spins (Cu++ ions) along the Cu-O bonds
is modified by lattice deformations, which corresponds to the abovementioned magne-
toelastic coupling. This model is indeed able to show dynamic dimerization, and can
account for part of the discrepancy to experimental data that rendered the static-phonon
approach inappropriate [108, 109].

For overcritical frustration parameter α > αc the ground state of (6.4) is sponta-
neously dimerized and there is a finite excitation gap to a triplet state. DMRG can be
used to extrapolate the gap in the infinite-system limit with unprecedented accuracy.
The numerical gap at some finite system size N is then fitted to a “scale function” [110]

∆ST(N) = ∆ST(∞) +
A

N
e−N/N0 . (6.5)

As can be seen in Fig. 6.3 a, the finite-size scaling suggests a very large N0, so the singlet-
triplet gap has been overestimated in [109] due to the inability of the used ED method
to handle lattices larger than 16 sites. In other words, fitting to the scale function (6.5)
gives rise to a large error for the extrapolation to N =∞ as long as N is not sufficiently
large to reach the regime where the exponential factor must be considered to more than
first order.
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Figure 6.3: Left: Finite-size ED/DMRG analysis of the singlet-triplet gap ∆ST in
the magnetoelastic Heisenberg model with overcritical frustration parame-
ter α = 0.36. Fits were conducted using the scale function (6.5) for ED
data only [109] (dashed curve) and for ED and DMRG data points (solid
curve). Right: Singlet-triplet gap ∆ST(N) versus inverse system size N for
different couplings at α = 0.36 and ω = 1.0. Dashed lines are linear fits.
Inset: Extrapolated ∆ST(∞) versus the coupling g.
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Figure 6.4: Left: Displacement correlation function C1,i for different couplings g at α =
0.36 and ω = 1.0 with N = 12 (cf. [109]). Right: Square of dynamic
dimerization δ2 versus inverse system size N for different couplings at α =
0.36 and ω = 1.0. Dashed lines are linear fits. Inset: Extrapolated δ for
N →∞ versus g.
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Using the scaling law for ∆ST(N), one can now again use DMRG for a finite size
analysis of the relation between ∆ST and dynamic dimerization in the nonadiabatic case
ω ≈ J that is supposed to describe CuGeO3. In Fig. 6.3 b, the singlet-triplet gap is
extrapolated to the thermodynamic limit at α = 0.36 and ω = 1.0. It must be noted
that the fit of numerical gaps to the scale function is extremely delicate in the weak-
coupling regime due to the non-differentiability of (6.5) at N =∞, and essentially yields
N0 =∞. Thus the infinite-system gaps at g ≤ 0.3 should be regarded as lower bounds.
The inset of Fig. 6.3 b then finally shows ∆ST

∞ (g). Due to the translational symmetry of
the Hamiltonian (6.4), dimerization must be quantified by the displacement correlation
function

C1,i = 〈(b1 + b†1)(bi + b†i)〉 − δ1,i , (6.6)

which, in a Peierls dimerized state, should show an alternating behaviour with i. It
is expected that in the thermodynamic limit, dimerization vanishes below a critical
coupling gc. In Fig. 6.4 a, C1,i is plotted for all couplings considered at system size
N = 12 for comparison with [109]. The displacement correlation cannot be compared
directly to the dimerization parameter δ of the static model (6.3), and a proper finite-
size analysis is also not easily possible. The magnitude of the Peierls dimerization order
parameter, which is proportional to the lattice structure factor at q = π,

δ2 =
g2

N2

∑

i,j

〈(bi + b†i)(bj + b†j)〉eiπ(Ri−Rj) , (6.7)

allows, however, a direct comparison [109]. In Fig. 6.4 b, δ2/g2 is shown to display linear
behavior with inverse system size, and extrapolation to N = ∞ is straightforward (see
inset). Finally, now that the singlet-triplet gap and the dynamic dimerization have been
computed in the thermodynamic limit, their mutual dependence can be traced. Fig. 6.5
shows ∆ST(δ), in comparison with the N = 8, N = 10 and N = 12 results from [109].
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From this data, one can now draw the following conclusions for the thermodynamic
limit. A finite dynamic dimerization is only possible for finite g, so there is a nonzero
gc for the SP transition. Moreover, the gap ∆ST is finite even for g → 0, which can be
attributed to the constant finite frustration parameter α. And finally, in comparison to
[109], the thermodynamic limit favors an even larger dimerization at given ∆ST. In the
light of these results, it should be possible to derive the complete phase diagram of the
Heisenberg spin-phonon chain using DMRG.

Summary of results In this chapter, after calculating numerically the Bethe ansatz
result for the ground state energy of the antiferromagnetic Heisenberg model, a finite-size
DMRG analysis was performed for the singlet-triplet gap and the dynamic dimerization
of the one-dimensional magnetoelastic Heisenberg spin chain. After re-establishing pre-
vious exact diagonalization data, extrapolation of both values to the thermodynamic
limit was possible and yielded a physical picture which is consistent with previous as-
sumptions about the applicability of the model to the spin-Peierls transition in Copper
Germanate. In particular, a finite gap for zero coupling was found at finite frustration,
and the dimerization could be shown to vanish at g → 0. For the first time, the relation
between dimerization and singlet-tiplet gap was established for infinite system size. In
summary, DMRG seems to be extremely well suited for the treatment of spin-phonon
systems.



Conclusions and outlook

This work has been concerned with the development and application of a parallelized
version of the Density-Matrix Renormalization Group algorithm. DMRG has gained
increasing attention since it was first devised by Steve White in 1992, and many appli-
cations have turned up that could previously not be handled due to the limitations of
other methods like exact diagonalization and (quantum) Monte Carlo. Consequently,
many implementations exist, being more or less general in their fields of applicability.
An existing C++ program originally developed by White and Jeckelmann has been used
as a first starting point. This code has the strong advantage of being more general and
flexible than most other implementations. Unfortunately, choosing the several parame-
ters of DMRG in order to get proper convergence is mainly a matter of experience. On
the other hand, even in the non-converged case, one can sometimes still achieve some
numerical validity by extrapolating to vanishing truncation error, a procedure that has
been extensively exploited in the study of stripe formation on doped Hubbard ladders
(see below).

Conventional, non-parallel DMRG codes can only use a limited number of density-
matrix eigenstates, m, due to space and runtime requirements. The central question was
thus how one could parallelize the algorithm in order to make it suitable for running
on modern, state of the art supercomputers instead of small workstations. Performance
analysis has shown that the sparse matrix-vector multiplication (MVM) in the Davidson
algorithm that is used for diagonalization of the superblock Hamiltonian must be the
primary target for parallelization, because it requires most of the algorithm’s runtime.
This is the case for ground-state calculations, on which this thesis is restricted. Due
to the nature of wave function representation in DMRG, the basic operation is dense
matrix-matrix multiplication, a task that is profoundly understood and well optimized
on all modern computer architectures. Accordingly, there are two approaches to par-
allelization: one could either parallelize the elementary dense matrix-matrix operation
or the sparse matrix-vector multiply, the former being trivial by using appropriate li-
braries. The latter can be carried out using shared-memory programming with the
well-known OpenMP standard. The shared-memory approach was chosen because it
required essentially no change in the basic algorithm.

After solving some problems associated with the combination of shared-memory
parallelization and advanced C++ programming techniques, the sparse MVM could
be made to run with impressive parallel efficiency and was shown to be superior to
the dense matrix approach, especially for moderate values of m. Generally, (parallel)
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DMRG achieves a significant fraction of peak performance, ranging as high as 80 % on
some architectures. Scalability analysis for two test cases showed that an IBM p690 node
is the system of choice for parallel DMRG, from a scalability as well as a performance
point of view. Of course, it is possible to devise setups in which other parts of the
algorithm become dominant, and parallelization is considerably more difficult in such
cases. This is particularly true for dynamical DMRG (DDMRG), where another concept
will have to be found. A truly massively parallel (i. e., distributed memory) but also
sufficiently general approach to DMRG parallelization is still not in sight, although
there has been some success for ground-state calculations in quantum chemistry [111].
Although significant advances in raw hardware compute power are still to be expected
in the course of the next decade, the need for parallelization will become more and
more imminent as the one-CPU performance level is going to stagnate soon due to
unmanageable problems with power dissipation.

In order to fathom the prospects of parallelized DMRG on real applications, the
two-dimensional Hubbard model was chosen as a touchstone. With periodic boundary
conditions, it is quite easy to reach the limit even of the most powerful shared-memory
machines. While the periodic 4× 4 system (U = 4t) is easily solved to convergence with
reasonable memory and computing time resources, already the 6×6 case is beyond reach
and only allows a coarse estimate of the ground-state energy by mentioned extrapolation
procedure. Going beyond this testcase, the examination of stripe formation on doped
cylindrical 7r × 6 Hubbard ladders at hole dopings of 4r and 8r was the next target
and could be carried out, by use of massive compute resources, with as yet unmatched
system sizes of up to r = 4 (28×6 sites). Stripe formation in strongly correlated electron
systems has for some time been the object of intense interest, because the existence
of a transition to a striped state where holes arrange in homogeneous “rings” around
the periodic (rung) direction of the ladder could play a significant role in the physics
of layered cuprate compounds. After establishing connection with previous results by
White and Scalapino on 7×6 ladders, extrapolation to zero truncation error was possible
and a detailed finite-size analysis could be carried out. The central entity to consider
was the dominant Fourier component of the hole density modulation in the leg direction,
which showed, once the striped state had manifested itself, a systematic decrease in
amplitude with increasing m. It could be shown that stripes exist in the ground state of
infinitely long ladders for large, but not for small U , the transition depending on the hole
concentration. For a small doping of 9.5 %, stripes start to appear at a critical Uc ≈ 4t.
This point is shifted to larger Uc ≈ 6t at a doping of 19 %. At the same time, the number
of stripes is doubled and the transition is much smoother. At smaller hole doping, stripes
could not be found within the U range covered. It must be stressed that these DMRG
calculations do not use the spin symmetry inherent in the Hubbard Model, so any finite
magnetization could at best be used as a hint, but not as solid proof for the existence
of stripes. The fact that finite magnetization is an artefact of the numerical method
could indeed be substantiated by mentioned extrapolation procedures. Future work in
this field will encompass a more accurate tracking of the doping dependence, especially
for small dopings. It must, however, be stressed that the DMRG calculations presented
here lie at the very limit of the capabilities of modern shared-memory nodes, and that
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algorithmic advances seem to be in order before putting more and more compuational
effort into the problem.

Turning to strongly correlated electron-phonon systems, DMRG was used for a large-
scale finite-size analysis of structure factors and excitation gaps in the one-dimensional
Holstein model of spinless fermions (HMSF) and in the Holstein-Hubbard model, both
at half-filling, in order to test the phase structure in the thermodynamic limit. In the
case of the HMSF, the data reveals that in the adiabatic (low-ω0) limit, some Peierls
distortion shows up for all finite electron-phonon couplings g, even in the metallic (LL)
region. At large g, there is always a CDW phase with long-range order, but there is
also a transition from a bipolaronic insulator to a band insulator when going from the
antiadiabatic to the adiabatic regime. For the HHM, there is no metallic phase but a
Mott insulator with no long-range order for large u/λ. As in the HMSF, the Peierls phase
is divided into band (small ω0) and bipolaronic (large ω0) insulators. In the antiadiabatic
limit, DMRG supports the physical picture of almost stationary bipolarons with no spin-
charge separation and identifies the HHM as an effective Hubbard model with attractive
Coulomb interaction, for which the spin and charge gaps can be estimated by simple
arguments. It must be pointed out that DMRG with periodic boundary conditions at
large system sizes (some hundreds of sites) is subject to some peculiarities that emerge
because the outermost sites are not treated on an equal footing with the “bulk” system.

Finally, DMRG was applied to the frustrated magnetoelastic Heisenberg spin chain
model. In a finite-size analysis, contact was first established with the Bethe ansatz
solution of the (no-phonon) antiferromagnetic Heisenberg model, which served as a test
case for the basic operability of DMRG and the implementation used in this context. In
contrast to the frustrated Heisenberg spin chain, in which dimerization is forced by an
artificial term and phonon dynamics is ruled out, the magnetoelastic model is supposed
to yield a spin-Peierls (SP) transition to a dimerized ground state beyond a critical
frustration parameter due to nonadiabatic spin-phonon interactions. It could be shown
that previous attempts (using ED) to numerically determine the singlet-triplet gap of the
model have failed because of insuffiently large accessible system sizes. A reliable finite-
size analysis of the singlet-triplet gap and the dynamic dimerization was performed for
overcritical frustration, showing that there is a finite gap for zero spin-phonon coupling
even in the thermodynamic limit. Moreover, in order to get finite dynamic dimerization,
non-zero coupling is required. The connection between gap and dimerization was for the
first time determined in the thermodynamic limit. Further work in this field will include
a detailed analysis of the phase diagram of the model, helping to resolve a long-standing
discrepancy between ED and QMC data regarding the position of the boundary between
gapped and ungapped states [112, 113, 114].

Using the DMRG almost always requires working with code of some kind, be it to
parallelize, optimize, implement or just study “inner workings”. Now that the algorithm
has established itself in many fields of quantum and even classical physics, a combined
effort to generate a standardized, efficient, stable and, first and foremost extensible
codebase seems in order, so that unnecessary parallel development is avoided. The
ALPS project [115] has set out to provide a common framework for numerical codes in
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the field of strongly correlated systems, including DMRG. Hopefully, ALPS will help to
make application of DMRG easier for the scientist who wants to apply this interesting
method as a tool but not as an object of research.
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dimensional Hubbard model (Cambridge University Press, Cambridge), 2005.

[63] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis and R. T.
Scalettar. Numerical study of the two-dimensional Hubbard model. Phys. Rev. B
40, (1989) 506.

[64] E. Dagotto. Correlated electrons in high-temperature superconductors. Rev. Mod.
Phys. 66, (1994) 763.

[65] S. R. White and D. J. Scalapino. Energetics of domain walls in the 2d t-J model.
Phys. Rev. Lett. 81, (1998) 3227.

[66] C. S. Hellberg and E. Manousakis. Stripes and the t-J model. Phys. Rev. Lett.
83, (1999) 132.

[67] S. R. White and D. J. Scalapino. Comment on “Stripes and the t-J model”. Phys.
Rev. Lett. 84, (2000) 3021.

[68] C. S. Hellberg and E. Manousakis. Hellberg and Manousakis reply. Phys. Rev.
Lett. 84, (2000) 3022.

[69] S. R. White and D. J. Scalapino. Stripes on a 6-leg Hubbard ladder. Phys. Rev.
Lett. 91, (2003) 136403.



Bibliography 95

[70] S. R. White and D. J. Scalapino. Ground-state properties of the doped three-leg
t-J ladder. Phys. Rev. B 57, (1998) 3031.

[71] S. R. White and D. J. Scalapino. Ground states of the doped four-leg t-J ladder.
Phys. Rev. B 55, (1997) 14701.

[72] S. R. White. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett. 69, (1992) 2863–2866.
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wirkung” der Universitäten Erlangen-Nürnberg und
Regensburg

April 2000–Dezember 2001 Mitarbeiter im KONWIHR-Projekt “cxHPC” (Center
of Excellence for High Performance Computing) in der
Gruppe für High Performance Computing (HPC) des
Regionalen Rechenzentrums Erlangen (RRZE), Pro-
jektleiter Dr. Gerhard Wellein

2002–2004 Mitarbeiter im KONWIHR-Projekt “HQS@HPC”
(Hochkorrelierte Quantensysteme auf Hochleistungs-
rechnern), Projektleiter Prof. Dr. H. Fehske

Seit Januar 2005 Wissenschaftlicher Angestellter in der HPC-Gruppe
des RRZE

99



Lehrtätigkeit
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