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1 Summary

1.1 Introduction

The surface of a macroscopic object exposed to an ionised gas usually accumulates elec-

trons. The negative charge it thereby acquires stems from the higher electron flux com-

pared to the ion flux in the bulk of the discharge which is due to the higher temperature

and smaller mass of the electrons compared to the ions. After the object is brought into

contact with the plasma the electron influx exceeds the ion influx. The collection of elec-

trons then gives rise to a repulsive Coulomb potential which reduces the further influx of

electrons until—in quasi-stationarity—electron and ion flux onto the surface balance each

other. This charge transfer leads to the formation of a charge double layer at the plasma

wall. It consists of the plasma sheath, the electron depleted region adjacent to the wall,

and the electron adsorbate on the wall.

The traditional modelling of the plasma boundary has been focused on the plasma

sheath which is the macroscopic manifestation of the charge transfer at the plasma wall.

From the perspective of the sheath model the wall is the position where the boundary

conditions for the distribution functions of the charged plasma species are enforced. The

wall-bound electron adsorbate has no spatial extent and its main function is to regulate the

Coulomb barrier which confines the majority of electrons to the bulk of the plasma. The

time-scale of the microscopic processes responsible for the charge-up is usually assumed

to be too short to be of significance for the discharge development [1]. Instead, the wall is

considered a perfect absorber for the charged species of the plasma, that is, electrons and

ions are assumed to recombine instantly at the wall.

While this approach may be sufficient for large discharges with small surface to volume

ratios it becomes questionable for the modelling of small discharges with large surface to

volume ratios. Indeed, the nature and build-up of surface charges have received increasing

attention in theory [2] as well as in various novel set-ups of bounded plasmas, such as

dusty plasmas, dielectric barrier discharges and micro-plasmas (illustrated in Fig. 1).

In dusty plasmas [3–5], for instance, the charge the dust particles accumulate from

the plasma is a central quantity of interest. It controls the overall charge balance of the

discharge [6] as well as the coupling of the particles among each other and to external

electromagnetic fields. As a consequence, various methods have been devised to measure

the particle charge. For instance for particles trapped in the plasma sheath [7,8], the charge

can be inferred from a force balance which, however, requires the local plasma parameters.

Alternatively, the charge can be obtained from wave dispersion measurements [9], normal

mode analysis [10] or dust cluster rotation [11]. These methods are independent of the

plasma parameters but less accurate. Thus, the precise determination of the particle

charge remains a challenge.

In dielectric barrier discharges [12], where either one or both of the electrodes are covered

with a dielectric material, surface charges determine the spatio-temporal structure of the

discharge [13–15]. Surface charges, for instance, may pin the filaments in the filamentary

mode of a dielectric barrier discharge and give the discharge a memory across several cycles.
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1 Summary

Fig. 1: Three novel bounded plasmas where surface charges matter. Left: The particle charge
controls interactions between dust grains forming a spherical dust ball. Middle: Surface
charges (negative charges in blue over neutral background in red) pin the location of filaments
for a filamentary dielectric barrier discharge (courtesy of Robert Wild). Right: The plasma
serves as a collector in a plasma transistor (reproduced from [24]).

Important questions are thus how electrons are trapped and released and how mobile they

are in the lateral direction to the wall. Only recently, the experimental detection of surface

charges has made significant progress. Using the opto-electronic Pockels effect time and

spatially resolved studies of surface charges have become possible [16–19].

Lastly, in solid-state based microdischarges [20–23] the miniaturisation of the discharge

increases the surface to volume ratio to such an extent that the (biased) plasma wall

becomes an integral part of the discharge. For instance in the plasma transistor [22,24,25],

the charge transfer from the plasma into the solid and vice versa may even be used to lend

new functionality to electronic devices. Here, the field in the sheath can induce a bending

of the energy bands in the semiconductor while the control of the carrier density in the

semiconductor varies the effective secondary electron emission coefficient of the surface.

An improved modelling of the plasma boundary for discharges which are strongly influ-

enced by surface charges exceeds the scope of traditional sheath models. Instead, it has

to focus on the surface electrons, their distribution in the short-ranged surface potential

and the charge-transferring processes such as electron trapping and release (illustrated in

Fig. 2). A first step to a model for the surface electrons has been taken by Emeleus and

Coulter [26, 27] as well as Behnke and coworkers [13, 28] who envisaged a surface plasma

of ions and electrons coupled to the bulk plasma by phenomenological rate equations

characterised by sticking coefficients, residence times, and recombination coefficients.

Here, we consider the build-up, distribution and release of surface electrons from a

surface physics point of view quantum mechanically. The problem of wall charging then

separates into two parts: the classical kinetics on a macroscopic lengthscale until the elec-

tron hits the effective surface of the object and the microscopic charge transfer processes

which follow. Our focus lies on the microphysics of the surface electrons. For simplicity

we consider a floating wall exposed to a quasistationary plasma. Complications due to the

individual break-downs in a dielectric barrier discharge or due to peculiarities of the elec-

tron and ion kinetics around a dust particle (as for instance the effect of charge exchange

collisions [29, 30]) are not considered. In this work we study the surface electrons at the

plasma wall employing microscopic models. Specifically, we consider (i) the dependence of

trapping sites for surplus electrons on the type of dielectric, (ii) sticking and desorption of

electrons, and (iii) the surface charge effects on the scattering of light by a dust particle.

We begin with a model for the electron surface layer (ESL) which includes the Coulomb

as well as the short-range surface potential and complements the plasma sheath. In this

model we calculate the potential and charge distribution of a floating plasma wall in quasi-
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1.2 Electron surface layer — Article I
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Fig. 2: Illustration of the plasma and its boundary. The bulk plasma (left) is characterised by
quasi-neutrality. In the sheath (middle) ions outweigh electrons, quasi-neutrality does not hold
and a potential gradient is formed. Note that the bulk as well as the sheath have macroscopic
extent and can be described classically. The microscopic processes at the surface (right), for
instance electron reflection, sticking or desorption as well as electron-ion recombination occur
on a length scale smaller than the shortest collision length of the plasma and have to be
described by quantum mechanics.

stationarity. This gives us a framework for identifying trapping sites for electrons. They

depend on the potential offset between the plasma and the conduction band inside the

dielectric which is characterised by the electron affinity χ of the dielectric. Guided by the

ESL model we will then identify scenarios for the wall charge-up, which again depend on

χ. For the case where electron trapping takes place in the image states (χ < 0) we will

consider electron physisorption in detail and calculate sticking coefficients and desorption

times. Then we turn to an intrinsic property of the surface electrons: their effect on the

scattering of light by a dust particle. Surplus charges affect the scattering signal through

their electrical conductivity which, for a dielectric, is limited by the scattering with optical

phonons. Analysing the different scattering regimes we look for charge signatures in the

Mie signal. They could be used as a novel diagnostic for the charge of a dust particle in

a plasma.

This thesis is the first detailed microscopic study of the surface electrons at a dielectric

plasma wall. The starting point of our investigations was the electronic physisorption in

the image states. Later our work on the ESL showed us that this scenario applies only to

dielectrics with χ < 0. For reasons of clarity the material and corresponding manuscripts

in this thesis are not ordered chronologically but thematically starting with the ESL.

1.2 Electron surface layer — Article I

In this section we consider the surface electrons on a floating plasma wall in quasi-

stationarity. To capture the spatial extent of this interface-bound electron distribution

we introduce our concept of the electron surface layer (ESL). It describes the electron

distribution immediately at the plasma-solid interface and complements the modelling of

the sheath which gives the electron and ion density in the positive space charge region on

the plasma side of the interface. Together ESL and sheath give the spatial resolution of

both parts of the charge double layer at the plasma boundary.

Our model for the electron surface layer focuses on the interface-specific electron dis-

tribution which is supplied by the plasma but thermalised with the solid. Specifically,

we calculate the potential as well as the distribution of wall-bound electrons under the
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Fig. 3: Qualitative sketch of the charge double layer formed at a plasma wall. The electrons
depleted from the plasma sheath are accumulated in the ESL. Note that the boundary between
sheath and ESL is located in front of the crystallographic interface.

assumption that at quasi-stationarity they are thermalised with the wall. For this we use

a one-dimensional model of an ideal dielectric surface (sketched in Fig. 3). The crystal-

lographic interface is located at z = 0, the plasma occupies the half space z > 0, and the

dielectric occupies the half space z < 0. In the following, we will identify the boundary

position between the ESL and the sheath, relate the number of plasma-supplied charges

to a simple sheath model, construct a surface potential from a graded interface model [31],

and use concepts of density functional theory [32] to calculate the electron distribution in

the ESL (for details see Article I [E]).

The ESL is the region where electrons can be temporarily bound to the surface due to

the short-range surface potential. Its boundary with the sheath at z0 is located in front of

the crystallographic interface where the forces on the electron from the attractive surface

potential φsurf and the repulsive sheath potential φsheath compensate each other. Thus, z0

is given by the force balance

dφsurf

dz

∣∣∣∣
z0

+
dφsheath

dz

∣∣∣∣
z0

= 0 . (1)

For z < z0 an electron is attracted to the surface and thus contained in the ESL while for

z > z0 it is repelled back into the plasma. The position z0 is an effective wall for plasma

electrons and ions at which the flux balance between electron flux je and ion flux ji has

to be fulfilled. We use for simplicity the perfect absorber model je = ji. The effective

wall position also gives the distance to the surface at which the description of the plasma

sheath based on the long-range potential breaks down as the short-range surface potential

becomes dominant.

Within this quasi-static model for the ESL the number of plasma-supplied electrons at

the wall equals the number of electrons missing in the sheath. Thus, the surface density

of electrons in the ESL can be obtained from a model for the plasma sheath together with

a flux balance condition at z0.

For simplicity, we use a collision-less sheath model [1], more realistic sheath models [1,

33,34] make no difference in principle. In this model ions enter the sheath with a velocity

vi0. They satisfy a source-free continuity equation nivi = n0vi0 and an equation of motion

vi
dvi
dz

= − e

M

dφ

dz
, (2)
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1.2 Electron surface layer — Article I

with n0 the plasma density and ni the ion density (M is the ion mass and e the elementary

charge). Electrons are thermalised, that is their density ne = n0 exp(eφ/kBTe), with Te
the electron temperature. The potential φ satisfies Poisson’s equation which takes the

form
d2

dz2
φ = −4πen0

[
v0

vi
− exp

(
eφ

kBTe

)]
. (3)

Introducing dimensionless variables η = −eφ/(kBTe), ξ = z/λD and u = vi/cs, where

λD =
√
kBTe/4πn0e2 and cs =

√
kBTe/M , Eq. (2) becomes uu′ = η′. This can be

integrated and gives u = −
√

2η + u2
0, where u0 = vi0/cs is the reduced velocity of ions

entering the sheath. Then Eq. (3) becomes

η′′ = − u0√
2η + u2

0

− exp(−η) . (4)

The potential and the field vanish far inside the plasma, that is, η → 0 and η′ → 0 for

ξ →∞. Using this boundary condition Eq. (4) can be integrated once and we obtain

η′ = −
√
−2u0

√
2η + u2

0 + 2 exp(−η) + 2u0

√
u2

0 − 2 . (5)

For ions entering the sheath with the Bohm velocity u0 = −1. The field at the effective

wall as a function of the wall potential ηw = η(ξ0) is then given by

η′w = −
√

2
√

2ηw + 1 + 2 exp(−ηw)− 4 . (6)

The surface density of surplus ions in the sheath can be related by Poisson’s equation

to the field at the wall and reads

N =

∫ ∞

z0

dz(ni − ne) = −n0λDη
′
w . (7)

Combining Eqs. (7) and (6) gives the total surface density of electrons to be inserted into

the ESL as a function of the wall potential.

The wall potential itself is determined by the flux balance condition, je = ji, which, in

the ESL model, is assumed to be fulfilled at z = z0. Using the Bohm flux for the ions and

the thermal flux for the electrons,

ji = n0

√
kBTe
M

and je =
1

4
n0

√
8kBTe
πm

exp

(
eφ

kBTe

)
, (8)

(m is the electron mass) the wall potential is given by [1]

ηw =
1

2
ln

(
M

2πm

)
and φw = −kBTe

2e
ln

(
M

2πm

)
. (9)

In the collision-less sheath model the wall potential depends only on the electron tem-

perature and the ion to electron mass ratio. The surface density of electrons in the ESL

depends moreover on the plasma density.

We can now move on to the distribution of surplus electrons in the surface layer. It is

primarily determined by the potential in the interface region surrounding an ideal dielectric

interface. We first single out the relevant microscopic potentials at the interface (illustrated
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Fig. 4: Left: Microscopic potentials at the interface between a plasma and a dielectric wall.
The crystal potential merges continuously with the image potential and the sheath potential.
Inside the dielectric the crystal potential gives rise to a band structure. The electron affinity
χ gives the offset of the conduction band minimum to the long-range potential in front of the
surface which is given by the asymptote of the image potential (dashed line). Right: Effective
potential for the graded interface on which the model of an ESL is based. It encompasses the
image potential as well as the potential offset at the interface. The restoring force from the
positive charge in the sheath leads to the overall tilt of the potential (reproduced from Article
I).

on the left panel of Fig. 4) and then describe an effective model for them (sketched on

the right panel of Fig. 4).

Far away from the surface the potential is given by the repulsive sheath potential. Closer

to the surface an attractive surface potential, the image potential, which stems from the

dielectric mismatch at the interface, becomes dominant. Classically the image potential

is given by the expression [35]

φim(z) =
ε0 − 1

4(ε0 + 1)

e

z
, (10)

where ε0 is the static dielectric constant. This expression is valid far away from the wall.

Closer to the wall the 1/z shape is modified as the potential merges continuously with the

crystal potential in the bulk of the dielectric. Even more important inside the dielectric is

the band structure. For a dielectric the valence band is filled while the conduction band

is completely empty. Thus, surplus electrons can populate the conduction band and the

conduction band minimum acts as a long-range potential for the electrons. In addition to

the image potential, the surface potential comprises an offset due to a charge double layer

formed immediately at the surface. It is due to electron density leaking out of the solid—a

consequence of free energy minimisation—or to relaxation and polarisation of the atomic

bonds at the surface—a consequence of the truncation of the lattice. This offset of the

conduction band minimum at the surface to the potential in front of it is characterised by

the electron affinity of the solid χ. For χ < 0 the conduction band minimum lies above

the potential just in front of the solid, for χ > 0 it lies below it.

So far we have considered an uncharged surface. This raises the question whether the

electronic structure of the surface is changed by the surplus electrons from the plasma.

In comparison to the electrons responsible for the chemical binding within the dielectric

the additional electrons coming from the plasma are only a few. The available electronic

states and the offset of the energy bands in the bulk with respect to the potential outside

the dielectric will thus not be changed significantly by the presence of the wall charge.

Note however, that a chemical modification of the plasma wall can change the electronic

structure. In particular the electron affinity is susceptible to surface coating and ad-atoms.

6



1.2 Electron surface layer — Article I

Surface termination by elements with small electronegativity, for instance hydrogen, may

induce a negative electron affinity [36], while elements with larger electronegativity, for

instance oxygen, can lead to a positive electron affinity [37].

From these microscopic potentials we construct an effective surface potential. For this

we employ the model of a graded interface which gives a realistic image and offset potential

without performing an atomistically accurate calculation. This model is parametrised by

experimentally measured (or where not available theoretically calculated) values for the

electron affinity χ, the dielectric constant ε0, and the conduction band effective mass m.

First proposed by Stern [31] to remove the unphysical singularity of the image potential

at z = 0 and later extended to potential offsets at semiconductor heterojunctions [38] it

assumes the smooth variation of parameters that change abruptly at the interface over

a length on the order of the lattice constant. For our purposes we assume a sinusoidal

interpolation of the dielectric constant, the offset of the long-range potential and the

effective electron mass with a grading half-width of 5× 10−8cm. The details of this model

are found in Article I. It does not account for effects associated with intrinsic surface states

(Shockley or Tamm states [39]) or additional states which may arise from the short-range

surface potential. Nevertheless the graded interface model is a reasonable description of

the surface, suited for dielectrics with ionic bonds which typically have no intrinsic surface

states.

The total surface potential calculated with the graded interface model is continuous

across the crystallographic interface at z = 0 and enables us thereby to also calculate a

smoothly varying electron distribution in the ESL. The surface potential,

φsurf(z) = φim(z) + φoffset(z), (11)

includes the graded image and offset potentials. Using the force-balance condition Eq. (1)

we can now determine the effective wall position z0. As the field in the sheath is relatively

weak compared to the image force the boundary is so far away from the crystallographic

interface that φ′offset vanishes and the image potential obeys Eq. (10). Thus, the boundary

between the ESL and the plasma sheath is given by

z0 =

√
(ε0 − 1)e

4(ε0 + 1)φ′w
(12)

with φ′w = −(kBTeη
′
w)/(eλD) and η′w given by Eq. (6).

We now turn to the distribution of the plasma-supplied electrons in the ESL. For our

quasi-static model we assume that the wall-bound surplus electrons are in thermal equi-

librium with the wall. Thus, their distribution minimises the grand canonical potential

and satisfies Poisson’s equation. To minimise the grand canonical potential we apply,

inspired by Tkharev and Danilyuk [32], density functional theory [40, 41] to the graded

interface. For simplicity we will use density functional theory in the local approximation.

In our one-dimensional model the ground state electron density that minimises the grand

canonical potential satisfies

−eφ(z) + µh(z)− µ = 0, (13)

where µh(z) is the chemical potential of the homogeneous system. The electrostatic poten-

tial φ(z) = φsurf(z) + φC(z) consists of the potential of the bare surface given by Eq. (11)

and the internal Coulomb potential which satisfies Poisson’s equation

d

dz

(
ε(z)

d

dz
φC(z)

)
= 4πen(z) (14)
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Fig. 5: Plasma-supplied excess electron density n (upper panel) and the potential −φ (lower
panel) it gives rise to for a LiF (left) and an Al2O3 (right) surface in contact with a helium
discharge with n0 = 107 cm−3 and kBTe =2 eV. Note the different scales of the axes for the left
and right panels. On the scale where variations in the space charge for Al2O3 are noticeable
the electron distribution for LiF is basically a vertical line.

with the graded dielectric constant ε(z). The boundary conditions φC(z0) = φw and

φ′C(z0) = φ′w guarantee continuity of the potential at z0 and include the restoring force

from the positive charge in the sheath. As the electron density of the surplus electrons is

relatively small and the temperature of the surface is rather high, typically a few hundred

Kelvins, we can use for the chemical potential of the homogeneous electron system µh(z) ≡
µh(n(z), T ) the expression adequate for a homogeneous, non-interacting, non-degenerate

electron gas

n(z) =
1√
2

(
m(z)kBT

π~2

) 3
2

e
µh(z)
kBT , (15)

where m(z) is the graded effective electron mass and T the surface temperature.

For the calculation of the quasi-stationary distribution of surplus electrons Eqs. (13)

and (14) have to be solved iteratively (until µ is stationary) subject to the additional

constraint
∫ z0
zs

dz n(z) = N which guarantees charge neutrality between the ESL and the

plasma sheath. The position zs < 0 is a cut-off which has to be chosen large enough

in order not to affect the numerical results. In a more refined model for the ESL the

crossover of the wall charge to the neutral bulk of the dielectric can be taken into account

by splitting the ESL into an interface specific region and a space charge region. This

approach which turns zs from an ad-hoc cut-off into the boundary between two regions

is described in Article I. For the charge distribution at the interface the simple model is

however sufficient.

We now apply the ESL model to a helium discharge in contact with a LiF and Al2O3

surface and calculate the electron density and potential at the interface. Depending on

the electron affinity χ of the dielectric one of two scenarios for the distribution of surplus

electrons in the ESL may be realised.

For χ < 0 the conduction band lies above the potential in front of the surface. It is

energetically unfavourable for electrons to populate the conduction band. Instead, they

are bound in the image potential in front of the surface (see left panel of Fig. 5 for

LiF). As the image potential is very deep the plasma-supplied electrons form a quasi two-

8



1.2 Electron surface layer — Article I
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Fig. 6: Density of plasma-supplied surplus electrons trapped in the ESL, electron and ion
density in the plasma sheath, and electric potential for a LiF (left) and an Al2O3 surface (right)
in contact with a helium discharge with plasma parameters n0 = 107 cm−3 and kBTe =2 eV
(reproduced from [F]). The crystallographic interface is at z = 0. Note the different scales of
the two panels. The deep penetration of the Al2O3 wall charge is due to the neglect of defect
states and other collision centres.

dimensional electron gas in front of the crystallographic interface, similar to the surface

plasma anticipated by Emeleus and Coulter [26,27].

For χ > 0 the conduction band minimum is below the potential in front of the surface.

This changes the situation dramatically. Electrons now accumulate at the bottom of the

conduction band inside the dielectric where they form an extended space charge region

(see right panel of Fig. 5 for Al2O3). The deep electron penetration into the solid leads to

a bending of the energy bands close to the surface. Inside the dielectric the electrons are

confined close to the interface by the restoring force from the sheath. This force increases

when more electrons are removed from the sheath and accumulated in the ESL. Hence, a

higher surface density of electrons, due to a higher plasma density or electron temperature,

leads to an electron distribution which is more peaked at the interface (see Article I).

To conclude this exposition of the ESL we will compare the charge distribution in the

ESL with the ones in the sheath. The electrons in the ESL are the quasi-stationary

electron distribution in thermal equilibrium with the wall which balances the influx of

electrons and ions at the sheath-ESL boundary. On top of this wall-thermalised electron

distribution, the plasma sheath injects steady currents of electrons and ions into the ESL.

They emanate at z0 and persist up to the position where electron trapping or electron-ion

recombination takes place. These currents are relevant for the charge carrier concentration

between z0 and the crystallographic interface. As they are not encompassed by our ESL

model the electron and ion densities shown in Fig. 6 are discontinuous at z0. The neglect

of the charge densities associated with the electron and ion fluxes for 0 < z < z0 does,

however, not affect the potential because the densities are too small to cause a significant

potential variation over the short distance between z0 and the crystallographic interface.

Figure 6 compares the ESL and the plasma sheath for LiF (χ < 0, left) and Al2O3

(χ > 0, right). Far away from the surface the potential approaches the bulk plasma value

chosen to be zero. Closer to the surface it develops a Coulomb barrier and immediately at

the surface it follows the attractive image potential. For LiF the negative χ then leads to a

9



1 Summary

barrier at the crystallographic interface while for Al2O3 the positive χ induces a potential

well inside the dielectric. For LiF the electrons are bound in the image potential, where

they form a two-dimensional electron gas, while for Al2O3 they form a space charge in the

conduction band. The sheath is in both cases a space charge region.

Our model for the ESL captures the plasma-supplied but wall-thermalised electrons at

the plasma boundary. They are separated from the bulk plasma by the plasma sheath but

coupled to the discharge by a flux balance condition. Thus, the ESL should be considered

as the ultimate part of the plasma boundary.

1.3 Electron physisorption — Articles II, III, and IV

We can now turn to the electron kinetics in the ESL. Depending on the electron affinity

χ two distinct scenarios for electron trapping emerge which are schematically shown in

Figs. 7 and 8. For χ < 0 (see Fig. 7) electrons that overcome the sheath potential do

not penetrate into the solid as their energy falls in the band gap where no internal states

are available. Instead, they are trapped in the image potential in front of the surface.

Transitions between unbound and bound electronic states are due to surface vibrations

associated with a bulk longitudinal acoustic phonon. Due to the large depth of the image

potential compared to the energy of this phonon mode and as the wave-functions of the

unbound states are suppressed close to the surface the probability for sticking is small.

The calculation of sticking coefficients and desorption times for this scenario, which we

have investigated in detail, will be outlined below.

For χ > 0 (see Fig. 8) electrons that overcome the sheath potential penetrate into the

solid. There they initially occupy high-lying states of the conduction band. Subsequent

electron energy relaxation is due to scattering with bulk phonons of the dielectric and the

plasma-supplied electrons are eventually trapped at the bottom of the conduction band

in the potential well created by the restoring force from the plasma. Due to the high-

density of states in the conduction band and an efficient scattering mechanism we expect

the sticking coefficient to be much larger in this case. However, a detailed analysis of this

scenario still remains to be done.

We now turn to the physisorption of an electron in the image potential in front of a

dielectric with χ < 0. This scenario is studied in Articles II, III, and IV [A-C]. (There we

applied it to several dielectrics also with χ > 0. With hindsight of the ESL model this

approach should be only applied to dielectrics with χ < 0.) The image potential supports

a series of bound states. Electrons that are thermalised with the solid predominantly

occupy the lowest bound state. Electron trapping is due to a transition from an unbound

continuum state to any of the bound states. This is followed by a series of transitions

within the image states until the electron reaches the lowest state or makes its way back

into the continuum. This sequence of transitions within a manifold of surface states points

to a similarity to neutral particle physisorption. In this case the series of transitions in

the surface potential, modelled for instance by a Morse potential, can be described with

a rate equation with quantum mechanically calculated transition rates [42, 43]. Such a

rate equation captures all three characteristic stages of physisorption: initial trapping,

subsequent relaxation and desorption [44,45].

Following Gortel and Kreuzer [42,43], the time-evolution of the bound state occupation

10



1.3 Electron physisorption — Articles II, III, and IV

Eg

c<0

-efsurf

-efsheath
-efw

t,s

conduction band

valence band

fe(E)

E

electron surface layer plasma sheath

hw

z0

Fig. 7: Electron trapping in the ESL in front of a dielectric with χ < 0.

is described by the rate equation,

d

dt
nn(t) =

∑

n′
[Wnn′nn′(t)−Wn′nnn(t)]−

∑

k

Wknnn(t) +
∑

k

τtWnkjk(t) , (16)

where Wn′n is the transition rate from a bound state n to another bound state n′. Wkn

and Wnk are the transition rates from the bound state n to the continuum state k and

vice versa, and τt = 2L/vz is the transit time through the surface potential of width L,

which, in the limit L → ∞, can be absorbed into the transition probability. We rewrite

the rate equation as

d

dt
nn(t) =

∑

n′
Tnn′nn′(t) +

∑

k

τtWnkjk(t) , (17)

where the matrix Tnn′ , defined implicitly by the above equation, subsumes all transi-

tions originating from a bound state. The last term in Eqs. (16) and (17), respectively,

represents transitions of incoming electrons into bound states.

The initial trapping is characterised by the prompt energy-resolved sticking coefficient

sprompt
e,k = τt

∑

n

Wnk , (18)

which gives the probability for an approaching electron in state k to make a transition to

any of the bound states.

To describe relaxation following the initial trapping as well as desorption we follow

Brenig [45] and solve Eq. (16) treating the incident electron flux as an externally specified

parameter. Then,

nn(t) =
∑

κ

e−λκt
∫ t

−∞
dt′eλκt

′
e(κ)
n

∑

kl

ẽ
(κ)
l τtWlkjk(t

′) , (19)

where e
(κ)
n and ẽ

(κ)
n are the right and left eigenvectors to the eigenvalue −λκ of the matrix

Tnn′ . If the modulus of one eigenvalue, λ0, is considerably smaller than the moduli of

the other eigenvalues λκ we can distinguish between a slow and a fast component of the

11
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Fig. 8: Electron trapping in the ESL in a dielectric with χ > 0.

electron kinetics in the image states. In this case λ0 governs the long-time behaviour of

the equilibrium occupation of the bound states, neq
n ∼ e−En/kBTs , and its inverse can be

identified with the desorption time, λ−1
0 = τe. The bound state occupancy nn(t) splits

into a slowly varying part n0
n(t) given by the κ = 0 summand in Eq. (19) and a quickly

varying part nfn(t) given by the sum over κ 6= 0 in Eq. (19).

The electron adsorbate is given by the slowly varying part n0(t) =
∑

n n
0
n(t). It remains

in the surface states for about as long as the desorption time. Differentiating n0(t) with

respect to the time,
d

dt
n0(t) =

∑

k

skinetic
e,k jk(t)− λ0n

0(t) , (20)

we can identify the kinetic energy-resolved sticking coefficient

skinetic
e,k = τt

∑

n,n′
e

(0)
n′ ẽ

(0)
n Wnk (21)

which captures the probability for both, initial trapping and subsequent relaxation [45].

If the incident unit electron flux corresponds to an electron with Boltzmann distributed

kinetic energy, the prompt or kinetic energy-averaged sticking coefficient is given by

s...e =
∑

k

s...e,kke
−βeEk/

∑

k

ke−βeEk , (22)

where β−1
e = kBTe is the mean electron energy.

The transition rates required for the kinetic equations have to be calculated from a

microscopic model for the electron surface interaction. Transitions between image states

are due to dynamic perturbations of the surface potential. The image potential is very

steep near the surface. A particularly strong perturbation arises therefore from the surface

vibrations induced by the longitudinal acoustic (LA) bulk phonon perpendicular to the

surface. We describe this phonon using a Debye model: the maximum phonon energy is

the Debye energy ~ωD.

The depth of the image potential can be classified with respect to the Debye energy.

For this we measure energies in units of ~ωD and introduce the parameters εn = En/~ωD
and ∆nn′ = (En − En′)/~ωD , where En < 0 is the energy of the nth bound state. If

12
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Fig. 9: Schematic representation of the se-
ries of image states in the image potential.
For typical dielectrics the lowest bound state
lies very deep and is connected to a group of
upper bound states only by two- or three-
phonon processes. The upper bound states
are connected by one-phonon processes to
the unbound states.

ε1 > −1 we call it shallow. For a shallow potential the lowest bound state is coupled by a

one-phonon transition to the continuum. If −n+ 1 > ∆12 > −n, we call the potential n-

phonon deep. If the potential is n-phonon deep a n-phonon process links the lowest bound

state to the second bound state, which is linked by one-phonon transitions either directly

or via intermediates to the continuum. For the dielectrics we consider, the potential is

two-phonon (MgO) or three-phonon deep (LiF). A schematic representation of the image

states is given in Fig. 9.

To calculate the transition probabilities for the rate equation, we need a microscopic

model for the image potential and the electron-surface vibration interaction. From a

macroscopic point of view the image potential ensues from the dielectric mismatch at the

interface. On a microscopic level it arises from the coupling of the electron to a polarisable

surface mode of the solid. For a dielectric this is a surface phonon. For LiF and MgO the

low-frequency dielectric function is dominated by a transverse optical (TO) phonon with

frequency ωTO. It can be approximated by

ε(ω) = 1 + (ε0 − 1)
ω2
TO

ω2
TO − ω2

, (23)

where ε0 is the static dielectric constant [46]. The bulk TO-phonon gives rise to a surface

phonon. Its frequency ωs = ωTO
√

(1 + ε0)/2 is determined by the condition ε(ωs) = −1.

The electron couples to this surface phonon according to

Hint = − ~2

2m
∆ +

∑

Q‖

~ωsa†Q‖aQ‖ +
∑

Q‖

(
φQ‖(x‖)aQ‖ + φ∗Q‖(x‖)a

†
Q‖

)
(24)

with φQ‖(x‖) = 2
√
πωsΛ0~ee−Q‖|z|eiQ‖x‖/

√
Q‖A where Λ0 = (ε0 − 1)/(4(ε0 + 1)) [46,47].

The subscript ‖ denotes vectors parallel to the surface, and a
(†)
Q‖

are annihilation (creation)

operators for surface phonons.

The simplest way to extract the image potential from this coupling is by means of

a unitary transformation [47]. It separates the coupling into a static part which takes

the classical form of the image potential ∼ 1/z and a dynamic part of the electron-surface

phonon coupling, which encodes recoil effects and encompasses momentum relaxation par-

allel to the surface. While the classical image potential allows a simple description of the

image states which captures their properties fairly well it is not sufficient for the calcu-

lation of probabilities for transitions induced by surface vibrations, as they perturb the

electronic states most strongly close to the surface where the image potential is steepest.

Unfortunately, in this region the classical image potential has an unphysical divergence.

To obtain a potential without this divergence we use a variational procedure to extract

the static image potential [46]. Thereby, we keep some recoil effects which make the
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Fig. 10: Left: Inverse desorption time τ−1e in the two-phonon approximation for TD/T = 5
as a function of the Debye temperature TD. Data for TD = 2500 K apply to graphite. Right:
Prompt energy-resolved sticking coefficient as a function of the electron energy for a two-
phonon deep potential (TD = 2500 K and Ts = 357 K). The contribution of one-phonon
processes (red) far outweighs the contribution from two phonon processes (blue).

recoil-corrected image potential ∼ 1/(z + zc) with a cut-off parameter zc =
√

~/2mωsπ2

divergence free (see Article II).

Transitions between the eigenstates of the recoil-corrected image potential are due to the

LA bulk phonon perpendicular to the surface which is responsible for surface vibrations.

This coupling is given by the Hamiltonian H = H0
e +H0

ph+Hdyn
e−ph where H0

e =
∑

q Eqc
†
qcq

describes the electron in the recoil-corrected image potential, H0
ph =

∑
Q ~ωQb†QbQ the free

dynamics of the LA phonon, and Hdyn
e−ph =

∑
q,q′〈q′|Vp(u, z)|q〉c

†
q′cq the dynamic coupling

of the electron to the LA phonon. The perturbation Vp(u, z) can be identified as the

difference between the displaced surface potential and the static surface potential. It

reads, after the transformation z → z − zc,

Vp(u, z) = − e
2Λ0

z + u
+
e2Λ0

z
, (25)

where u is the displacement due to the LA phonon.

In general, multi-phonon processes can arise both from the nonlinearity of the electron-

phonon coupling Hdyn
e−ph as well as from the successive actions of Hdyn

e−ph encoded in the

T-matrix equation,

T = Hdyn
e−ph +Hdyn

e−phG0T , (26)

where G0 =
(
E −H0

e −H0
ph + i0+

)−1
. The transition rate from an electronic state q to

an electronic state q′ encompassing both types of processes is given by

Wq′q =
2π

~
∑

s,s′

e−βsEs∑
s′′ e
−βsEs′′

∣∣〈s′, q′|T |s, q〉
∣∣2 δ(Es − Es′ + Eq − Eq′) , (27)

where βs = (kBTs)
−1, with Ts the surface temperature, and where we have averaged over

initial and final phonon states [48].

In principle, multi-phonon transition rates can be obtained by iterating the T-matrix

and evaluating Eq. (27). Up to O(u3), for instance, the T-matrix reads

T = V1 + V2 + V3 + V1G0V1 + V2G0V1 + V1G0V2 + V1G0V1G0V1 , (28)

where the Vi ∼ ui originate from expanding Eq. (25) in the displacement u. The T-matrix

enters as 〈T 〉〈T ∗〉 into the transition probability. The term 〈V1〉〈V ∗1 〉 can be identified as
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Fig. 11: Energy-resolved
prompt sticking coefficient
for MgO (left) and schematic
representation of the bound
and continuum wavefunc-
tions (right). The suppres-
sion of the amplitude of
the continuum wave-function
close to the surface for small
electron energies leads to the
small sticking coefficient.
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the Golden Rule transition probability. Proportional to u2 it is a one-phonon process.

Two-phonon processes, proportional to u4, are represented by the terms

〈V1〉〈V ∗3 〉, 〈V3〉〈V ∗1 〉, 〈V1〉〈V ∗2 G∗0V ∗1 〉, 〈V1G0V2〉〈V ∗1 〉, 〈V1〉〈V ∗1 G∗0V ∗2 〉 ,
〈V2G0V1〉〈V ∗1 〉, 〈V1〉〈V ∗1 G∗0V ∗1 G∗0V ∗1 〉, 〈V1G0V1G0V1〉〈V ∗1 〉 , (29)

and

〈V2〉〈V ∗2 〉, 〈V1G0V1〉〈V ∗1 G∗0V ∗1 〉, 〈V2〉〈V ∗1 G∗0V ∗1 〉, 〈V1G0V1〉〈V ∗2 〉 . (30)

A complete two-phonon calculation would take all these processes into account as they

stand. This is however not always necessary. A closer analysis (see Article II) of the

first group of terms reveals that they are two-phonon corrections to transitions already

enabled by a one-phonon process. We assume that theses corrections are small and evaluate

only the second group for transitions where they enable two-phonon transitions which are

not merely corrections to one-phonon transitions. The details of the evaluation of the

transition probabilities, including a regularisation of divergences by taking a finite phonon

lifetime into account, can be found in Article II and III.

The expansion of the T-matrix allows the calculation of transition probabilities for the

two-phonon deep potentials of graphite and MgO. However, for a three-phonon deep po-

tential, for instance for LiF and CaO, this approach is no longer feasible. In the Articles

II and III we qualitatively assess the relevance of different types of multi-phonon pro-

cesses. For continuum to bound state transitions, for instance, one-phonon processes are

sufficient at low electron energies. We will therefore compute the transition probabilities

between bound and continuum states in the one-phonon approximation. For transitions

between bound states, we found that multi-phonon processes due to the nonlinearity of

the electron-phonon coupling tend to be more important than the multi-phonon processes

due to the iteration of the T-matrix. Hence, we expect that an approximation which takes

only the nonlinearity of the electron-phonon interaction nonperturbatively into account

to be sufficient for the identification of the generic behaviour of multi-phonon-mediated

adsorption and desorption. This approach is described in Article IV.

We now turn to results for the desorption time and the sticking coefficient for physisorp-

tion in image states. Before showing results for MgO and LiF, we consider the dependence

of the electron kinetics on the potential depth and the relevance of one or two-phonon pro-

cesses. For this, we show in the left panel of Fig. 10 the inverse of the desorption time

as a function of the Debye temperature TD = ~ωD/kB which sets the energy scale of the

acoustic phonons. While the absolute depth of the potential remains constant, varying

the phonon energy tunes the effective potential depth. Figure 10 reveals that for a shallow
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Fig. 12: Inverse desorption time τ−1e (left), prompt energy-resolved sticking coefficient (mid-
dle) and prompt as as well as kinetic energy-averaged sticking coefficient (right) for MgO and
LiF.

potential desorption is most efficient while for a one-phonon deep potential it gradually

becomes less efficient. When the potential becomes two-phonon deep desorption sud-

denly becomes even slower which reflects the small magnitude of two-phonon transitions

compared to one-phonon transitions. This justifies our approximation of neglecting two-

phonon corrections to transitions already enabled by a one-phonon process. For a Debye

temperature TD = 2500K the results apply to graphite.

The energy-resolved prompt sticking coefficient, plotted in the right panel of Fig. 10

for graphite, shows that also for bound state-continuum transitions one-phonon processes

far outweigh two-phonon processes. Thus, sticking is mainly due to one-phonon processes.

Moreover, we find that the sticking coefficient drops sharply at specific energies (see also

Fig. 11). These accessibility thresholds occur whenever one bound state becomes no longer

accessible from the continuum because the energy difference exceeds one Debye energy.

The sticking coefficient takes relatively small values—on the order of 10−3. This is

due to the small matrix elements between bound and continuum states. Fig. 11 shows

the wave functions of representative bound and continuum states for MgO. For large en-

ergies the continuum wave functions have a sinusoidal shape whereas for small energies

their amplitude is significantly suppressed close to the surface. These two behaviours

correspond to two limits for the wave function. For simplicity we discuss this for a 1/x po-

tential without cut-off. The continuum wave functions read φk(x) ∼M−i
k
, 1
2

(2ikΛ0x) /
√
k

where x = z/aB (Mk,m(z) is the confluent hypergeometric function [49]). For x → ∞
we obtain φk(x) ∼ sin(Λ0kx) which also holds for large k while for k → 0 we obtain

φk(x) ∼
√
k
√

2Λ0xJ1(
√

8Λ0x) (Jn(z) is the Bessel function). The proportionality to
√
k

entails a strong suppression of the wave function for low energy.

Electron physisorption at a dielectric surface with negative electron affinity is an intrigu-

ing phenomenon due to the interplay of potential depth, magnitude of matrix elements and

surface temperature. Initial trapping of an electron, characterised by the prompt sticking

coefficient, occurs in the upper bound states by one-phonon transitions. Relaxation after

initial trapping depends on the strength of transitions from the upper bound states to the

lowest bound states. If the lowest bound state was linked to the second bound state by

a one-phonon process the electron would relax for all surface temperatures. If these two

states are linked by a multi-phonon process relaxation takes place only for low tempera-

ture. At room temperature a relaxation bottleneck ensues as the electron desorbs from the
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upper bound states before it drops to the lowest bound state. This leads to a severe re-

duction of the kinetic sticking coefficient compared to the prompt sticking coefficient. The

dominant desorption channel depends also on the depth of the potential. For a shallow

potential desorption occurs directly from the lowest bound state to the continuum. For

deeper potentials desorption proceeds via the upper bound states. Desorption occurs then

via a cascade in systems without and as a one-way process in systems with a relaxation

bottleneck.

An overview of results for the desorption time as well as prompt and kinetic sticking

coefficients for MgO and LiF is given by Fig. 12. Most important for the plasma context

is that se � 1 and τ−1
e 6= 0, implying that a dielectric surface with a negative electron

affinity is not a perfect absorber for electrons.

1.4 Mie scattering by a charged dielectric particle —

Articles V and VI

Light scattering by small particles is both a fundamental problem of electromagnetic theory

as well as an important diagnostic for dust particles in space, the atmosphere or the

laboratory [50]. For spherical particles Mie’s theory [51] gives an exact solution which

encompasses a wealth of phenomena. The scattering behaviour of an uncharged particle

is determined by the size of the particle and the frequency-dependent dielectric constant

ε(ω) of the particle material. For a dielectric particle ε(ω) depends on the phonon modes

of the solid. In this section we turn to the influence of plasma-supplied surplus electrons

on the scattering of light by small particles. Our aim is to identify the charge signatures

in the Mie signal and to assess whether they could be used as an optical measurement of

the charge on a dust particle in a plasma.

Surplus electrons can influence the scattering behaviour of the particle through their

electrical conductivity which either modifies the boundary conditions for the electromag-

netic fields at the surface of the sphere or gives rise to an additional polarisability of the

particle [52–54]. However, at which frequencies surplus charges affect the Mie signal and

how strong their effect is has remained an open question. To answer it, we calculate the

electrical conductivity from a microscopic model and analyse its effect on the different

scattering regimes of the particle (details in Articles V and VI [G,I]).

Dust particles immersed in a plasma can be considered as internal plasma walls. Hence,

to set up a model for the calculation of the electrical conductivity of the surplus electrons,

we turn to the ESL model. For χ < 0 surplus electrons are bound in the image potential

in front of the surface, where they form a spherical two-dimensional electron gas around

the particle. This electron film on the particle may sustain a surface current K = σsE‖
which is proportional to the surface conductivity in the image states σs and is induced by

the in-plane electric field. This changes the boundary condition for the magnetic field to

êr × (Hi + Hr −Ht) = 4πK/c = τE‖ (i denotes the incident, r the reflected, and t the

transmitted field), where

τ(ω) = 4πσs(ω)/c , (31)

is the dimensionless surface conductivity (c is the velocity of light).

For χ > 0 surplus electrons are trapped inside the particle. The space charge they

form in the conduction band is relatively wide. Hence, for micron-sized particles we can

assume a homogeneous distribution in the bulk. The bulk conductivity σb of electrons in
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Fig. 13: Dimensionless surface conductivity τ = τ ′ + iτ ′′ for LiF (left) for ns = 1013 cm−2

and polarisability of excess electrons α = α′ + iα′′ for Al2O3 (right) for nb = 3× 1017 cm−3,
which corresponds to ns = 1013 cm−2 for a micron-sized particle, as a function of the inverse
wavelength λ−1 (adapted from Article V). At T = 0K light absorption is only possible above
the surface or LO phonon frequency which leads to τ ′ = 0 for λ−1 < λ−1s = 675 cm−1 and
α′′ = 0 for λ−1 < λ−1LO = 807 cm−1.

the conduction band gives rise to an additional polarisability

α = 4πiσb/ω , (32)

which modifies the refractive index N =
√
ε+ α of the particle.

The dominant mechanism at room temperature which limits the electrical conductivity

of the surplus electrons is electron-phonon scattering. To calculate the surface conductivity

in the image states for χ < 0 we use a planar model. The interaction of the electron with

the surface phonon comprises a static part, which gives rise to the image potential, and

a dynamic part, which is responsible for momentum relaxation parallel to the surface

and thereby limits the surface conductivity. The calculation of transition rates between

image states was very sensitive to the potential close to the surface so that we could

not use the classical image potential. For the calculation of the surface conductivity the

divergence of the classical image potential is less problematic. Thus, to separate static and

dynamic part of the electron-surface phonon coupling we apply the unitary transformation

H → UHU−1 with U = eiS , S = (i/~ωs)
∑

Q‖
[aQ‖φQ‖ − a

†
Q‖
φ∗Q‖ ] [47]. The static image

potential, V = −Λ0e
2/z with Λ0 = (ε0 − 1)/(4(ε0 + 1)) supports a series of bound states

whose wave functions read

φnk(x, z) =
1√
A
eikx

√
Λ0

aBnn!2
Wn,1/2

(
2Λ0z

naB

)
(33)

with aB the Bohr radius, k = (kx, ky), x = (x, y), A the surface area and Wn,m Whittaker’s

function [49]. Electrons that are thermalised with the surface occupy the lowest image

band n = 1. For a surface electron with energy Ekin/kB = 300 K the de Broglie wavelength

λdB ≈ 8 × 10−7 cm. Thus, for particle radii a > 10 nm the plane-surface approximation

is justified. The dynamic coupling in the lowest image band which limits σs is given by

Hint =
1√
A

∑

k,Q

Mk,Qc
†
k+Q

(
aQ − a†−Q

)
ck , (34)

where the matrix element, calculated with the wave function given by Eq. (33), is

MkQ =
2e
√
πΛ0~3

m
√
ωsQ

(
2Λ0

QaB + 2Λ0

)3 [
Q · k +

Q2

2

]
(35)
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Fig. 14: Top: Extinction ef-
ficiency for a LiF particle as
a function of the inverse wave-
length λ−1 and the particle ra-
dius a. The labels indicate
the four characteristic scattering
regimes: low frequencies (A), or-
dinary resonances (B), anoma-
lous resonances (C), and in-
terference and ripple structure
(D). Bottom: Dielectric constant
ε = ε′ + iε′′ and refractive index
N = n+ ik for LiF as a function
of λ−1. Note that ε′ is large and
positive below the TO phonon
resonance at λ−1TO =306 cm−1

(not shown).
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(m is the electron mass). Within the memory function approach [55] the surface conduc-

tivity can be written as

σs(ω) =
e2ns
m

i

ω +M(ω)
(36)

with ns the surface electron density. The memory function is then evaluated up to second

order in the electron-phonon coupling. As M(ω) does not depend on ns the surface

conductivity is proportional to the surface density of electrons ns (see Article V for details).

For χ > 0 the interaction of the electron with a longitudinal optical (LO) bulk phonon

limits the bulk conductivity. The coupling of the electron to this mode with frequency ωLO

is given by Hint =
∑

k,qMc†k+qck

(
aq + a†−q

)
/
√
V q, where M =

√
2πe2~ωLO

(
ε−1
∞ − ε−1

0

)

[56]. For the calculation of σb we employ again the memory function approach. The bulk

conductivity is proportional to the bulk electron density nb.

The scattering behaviour of the particle is controlled by the scattering coefficients arn and

brn. To determine them, we expand the incident plane wave, Ei = E0e
ikz−iωtêx, in spherical

vector harmonics—the solutions of the vector wave equation in spherical coordinates—and

match reflected and transmitted partial waves. Following Bohren and Hunt [52] this gives

the scattering coefficients

arn = − jn(Nρ) [ρjn(ρ)]′ − [Nρjn(Nρ)]′ jn(ρ) + iτρjn(Nρ)jn(ρ)

jn(Nρ)
[
ρh

(1)
n (ρ)

]′
− [Nρjn(Nρ)]′ h

(1)
n (ρ) + iτρjn(Nρ)h

(1)
n (ρ)

(37)

and

brn = − jn(ρ) [Nρjn(Nρ)]′ −N2jn(Nρ) [ρjn(ρ)]′ − iτ [Nρjn(Nρ)]′ [ρjn(ρ)]′ /ρ

h
(1)
n [Nρjn(Nρ)]′ −N2jn(Nρ)

[
ρh

(1)
n (ρ)

]′
− iτ [Nρjn(Nρ)]′

[
ρh

(1)
n (ρ)

]′
/ρ

(38)

where ρ = 2πa/λ is the size parameter and a the radius. For χ < 0 surplus charges enter

through the dimensionless surface conductivity τ and the refractive index N =
√
ε. For

χ > 0 charges enter through N =
√
ε+ α and τ = 0. In Eqs. (37) and (38) jn and h

(1)
n
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Fig. 15: Middle panel: Extinction efficiency Qt as a function of the inverse wavelength λ−1

and the radius a for a LiF particle with ns = 5× 1012 cm−2 (left) and an Al2O3 particle with
nb = 3ns/a (right) for T =300 K (adapted from Article VI). The dotted lines indicate the
extinction maximum for ns = 0 (black), 1012 (green), 2×1012 (red), and 5×1012 cm−2 (blue).
Top and bottom panel: Extinction efficiency Qt for different electron densities as a function
of λ−1 and two radii a = 0.2µm (top) and a =0.05 µm (bottom). For LiF a secondary phonon
mode at 503 cm−1 distorts the Lorentzian line-shape.

are the spherical Bessel and Hankel function of the first kind. As for uncharged particles

the scattering (s) and extinction (t) efficiencies are

Qs =
2

ρ2

∞∑

n=1

(2n+ 1)
(
|arn|2 + |brn|2

)
, Qt = − 2

ρ2

∞∑

n=1

(2n+ 1) Re (arn + brn) . (39)

The absorption efficiency is given by Qa = Qt − Qs. For small particles compared to

the wavelength ρ� 1. Expanding the scattering coefficients in ρ the leading coefficient is

b1 ∼ O(ρ3), which corresponds to the electrical dipole oscillation. The extinction efficiency

in this limit is given by

Qt =
12ρ (ε′′ + α′′ + 2τ ′/ρ)

(ε′ + α′ + 2− 2τ ′′/ρ)2 + (ε′′ + α′′ + 2τ ′/ρ)2 . (40)

The effect of surplus charges is encoded in the dimensionless surface conductivity τ =

τ ′+iτ ′′ or the polarisability α = α′+iα′′. They are shown in Fig. 13 for MgO and Al2O3 as

a function of the inverse wavelength λ−1. Both are small even for a highly charged particle

and, at room temperature, decrease slowly with increasing frequency. For λ−1 → 0 the

bulk and surface conductivities tend to a small real static value which implies τ ′ > τ ′′ and

α′′ > −α′ for small λ−1. For larger λ−1 we find τ ′′ > τ ′ and −α′ > α′′.

We now turn to the scattering behaviour of an uncharged particle (for details see Article

VI). The particles we consider have a strong TO phonon resonance in the infra-red which
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1.4 Mie scattering by a charged dielectric particle — Articles V and VI

Fig. 16: Position of
the extinction reso-
nance depending on
the surface charge ns
(or equivalent bulk
charge nb = 3ns/a)
for PbS, LiF, MgO,
and Al2O3 particles
with different radii a
(adapted from Arti-
cle VI).
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controls the dielectric constant ε = ε′+ iε′′. Such particles have four characteristic scatter-

ing regimes (see Fig. 14 for LiF). For low frequencies extinction is small as ε′′ � 1. Below

the TO phonon mode ε′ is large which gives rise to ordinary optical resonances. Above it

ε′ < 0 which leads to a series of anomalous optical resonances. Far above the TO phonon

mode the scattering behaviour is dominated by an interference and ripple structure. It

turns out, that surplus electrons affect only the low-frequency regime and the anomalous

optical resonances significantly.

In the low-frequency regime extinction is for micron-sized particles mainly due to ab-

sorption. As ρ � 1 the extinction efficiency is approximately given by Eq. (40). In the

static limit the dielectric constant is real. As a consequence, its imaginary part ε′′ is small

at low frequencies. This implies that absorption, which is proportional to ε′′, is small for

uncharged particles. For charged particles, the real part of the electrical conductivity of

the surplus electrons offers an additional channel for energy relaxation on the particle.

This leads for charged particles to an increase in absorption which is proportional to the

particle charge (for details see Article VI).

The most prominent effect of surplus electrons on light scattering is found at the anoma-

lous optical resonances which appear where ε′ < 0 and ε′′ � 1. They correspond to the

resonant excitation of transverse surface modes of the sphere [57] and their location is

very sensitive to small changes of ε′. For metallic particles the anomalous resonances have

recently been identified by Tribelsky et al. [58,59]. In this case they are tied to a plasmon

mode and lie in the ultra-violet. For a dielectric they are induced by the TO phonon and

lie above the TO phonon frequency in the infra-red.

The location of the anomalous resonances is sensitive to small changes in τ or α and thus

to surface or bulk surplus electrons (for details see Article V and VI). Surplus charges lead

to a blue-shift of the resonances. This effect is most significant for particles with radii a < 1

µm. Figure 15 shows this blue-shift for the small-particle tail of the lowest resonance for

submicron-sized LiF and Al2O3 particles. For small particles ρ� 1 so that the extinction

efficiency is well approximated by Eq. (40). The extinction resonance is located where

ε′ + 2 − 2τ ′′/ρ = 0 for χ < 0 or ε′ + α′ + 2 = 0 for χ > 0. For an uncharged particle the

resonance condition is ε′ = −2. Provided ε′ can be approximated linearly and ε′′ does not

vary strongly close to ε′ = −2 the resonance has a Lorentzian line shape which follows

from Eq. (40). Figure 15 confirms this for Al2O3 though not for LiF, where a secondary

TO phonon leads to a distortion of the line-shape.

In Fig. 16 we compare the resonance shift for LiF, MgO, PbS and Al2O3 particles.

Qualitatively both bulk and surface electrons lead to a similar resonance shift. In the

resonance condition surface electrons enter by τ/ρ and bulk electrons by α. As they enter
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Fig. 17: Left: Schematic representation of the scattering geometry and polarisation ellipsis
of the reflected wave in the direction θ = π/2, φ = π/4. This direction is perpendicular to
the z axis along which the incident wave propagates and at 45◦ to the x direction in which
the incident light is polarised. Right: Ellipsometric angles ψ and ∆φ for scattering by an
Al2O3 particle with a = 0.5 µm in the direction θ = π/2 and φ = π/4 for different bulk
electron densities nb = 3ns/a (adapted from Article VI). The annotated values at the base
point give the wave-number. From there the electron density increases counter-clockwise along
the branches.

on the same footing we conclude that the resonance shift is primarily an electron density

effect on the polarisability of the particle. The shift is larger for Al2O3 and PbS (χ > 0)

than for MgO and LiF (χ < 0). This is due to the small conduction band effective mass

for Al2O3 and PbS which benefits the electrons’ mobility in the bulk. Moreover for PbS

the resonance is located at a low frequency where the conductivity is particularly large.

Finally, we turn to the polarisation of scattered light. While the extinction efficiency

only contains information about the amplitude of the scattering coefficients, the polar-

isation of scattered light includes the phase information of the scattering coefficients.

Whenever one of the scattering coefficients becomes resonant the phase of this coefficient

varies rapidly by π. Hence, the phase information should be particularly useful at optical

resonances. Writing the reflected electric field in one particular scattering direction as

Er ∼ E0
e−iωt+ikr

ikr

(
A2e

iφ2 êθ +A3e
iφ3 êφ

)
(41)

with the amplitudes A2, A3 and the phases φ2, φ3 we can introduce the ellipsometric

angles ∆φ = φ2 − φ3 and tanψ = A2/A3. The ratio of the amplitudes is given by the

angle ψ. The phase difference ∆φ determines the opening of the polarisation ellipsis. For

∆φ = 0,±π the reflected light is linearly polarised while for ∆φ = ±π/2 the opening of

the polarisation ellipsis is maximal.

In the following, we will consider light that is scattered in a direction characterised by

the angles θ = π/2 and φ = π/4. This configuration (illustrated in Fig. 17) is already

used for the determination of the size of nanodust from the Mie signal [60]. We focus on

the scattering at the anomalous resonances for ε′ < 0. For small particles we take only

the scattering coefficients ar1, br1 and br2 up to order O(ρ3) into account. Then the reflected

electric field is given by

Er ∼ E0
eikr−iωt

ikr

[(
3

2
√

2
ar1 −

5

2
√

2
br2

)
êθ −

3

2
√

2
br1êφ

]
. (42)
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Fig. 18: Conventional charge measurement in the sheath (left) and proposed optical charge
measurement by Mie scattering (right). The conventional charge measurement relies on trap-
ping the particle in the sheath and exploiting a force balance between gravity and the electric
force on the particle. The knowledge of the plasma parameters is required to infer the particle
charge. The optical measurement does not require the knowledge of plasma parameters.

The anomalous resonances are linked to resonances in the coefficients brn. At the resonance

of br1, located at ε′ = −2 for ρ� 1, the phase φ2 varies by π and at the resonance of br2 at

ε′ = −3/2 the phase φ3 varies by π. Due to the proximity of these resonances the phase

variations of φ2 and φ3 overlap and ∆φ decreases and increases by about π/2 over the

anomalous resonances (see right panel of Fig. 17 for Al2O3).

Surplus electrons shift the resonances in the scattering coefficients to higher frequencies.

As a consequence, the increase and decrease of ∆φ by about π/2 also takes place at higher

frequencies. This can also be seen Fig. 17. For a fixed wavelength on the descending or

ascending branch of the loop in ∆φ this results in a linear shift of ∆φ with the density of

surplus electrons.

Our study of light scattering by a charged particle has revealed three charge-dependent

features in the Mie signal: Surplus charges lead to (i) increased extinction at low frequen-

cies, (ii) a blue-shift of an extinction resonance in the infra-red, and (iii) an opening and

closing of the polarisation ellipsis which is shifted to higher frequencies. We suggest to

try these effects experimentally as a charge diagnostic for dust particles in a plasma. The

resonance shift would require a frequency-dependent extinction measurement while the

low-frequency extinction measurement and the polarisation measurement of the reflected

light could be performed at fixed wavelength.

An optical charge measurement would, unlike many traditional methods (see Fig. 18),

not require the knowledge of the plasma parameters and it could be used for nanodust

where conventional techniques are not applicable at all. Eventually the optical mea-

surement could be combined with a traditional force balance method using suitable test

particles as minimally invasive probes. The Mie signal would give the particle charge while

the force measurement could be used to obtain the local electron temperature or density.

1.5 Conclusions

The concept of the electron surface layer introduced in this thesis provides a framework

for the description of the microphysics of the surplus electrons immediately at the wall and

thereby complements the modelling of the plasma sheath. In this work we have considered

from a surface physics perspective the distribution and build-up of an electron adsorbate

on the wall as well as the effect of the negative charge on the scattering of light by a

spherical particle immersed in a plasma.

In our ESL model we treat the wall-bound electrons as a wall-thermalised electron

distribution minimising the grand canonical potential and satisfying Poisson’s equation.
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The boundary between the ESL and the plasma sheath is determined by a force balance

between the attractive image potential and the repulsive sheath potential and lies in front

of the crystallographic interface. Depending on the electron affinity χ, that is the offset

of the conduction band minimum to the potential in front of the surface, two scenarios

for the wall-bound electrons are realised. For χ < 0 (e.g. MgO, LiF) electrons do not

penetrate into the solid but are trapped in the image states in front of the surface where

they form a quasi two-dimensional electron gas. For χ > 0 (e.g. SiO2, Al2O3) electrons

penetrate into the conduction band where they form an extended space charge.

These different scenarios are also reflected in the electron kinetics at the wall which

control the sticking coefficient and the desorption time. If χ < 0 electrons from the

plasma cannot penetrate into the solid. They are trapped in the image states in front

of the surface. The transitions between unbound and bound states are due to surface

vibrations. Trapping of electrons is mediated by one-phonon transitions and takes place

in the upper bound states. Owing to the large binding energy of the lowest bound state

transitions from the upper bound states to the lowest bound state are due to multi-

phonon processes. For low surface temperatures relaxation to the lowest bound state

takes place while for higher temperature a relaxation bottleneck emerges. Desorption

occurs in cascades for systems without relaxation bottleneck and as a one-way process in

systems with a relaxation bottleneck. From the perspective of plasma physics the most

important result is that the sticking coefficient for electrons is relatively small, typically

on the order of 10−3. For χ > 0 electron physisorption takes place in the conduction band.

For this case sticking coefficients and desorption times have not been calculated yet but

in view of the more efficient scattering with bulk phonons, responsible for electron energy

relaxation in this case, we expect them to be larger than for the case of χ < 0.

Finally, we have studied the effects of surplus electrons on the scattering of light by a

spherical particle. For χ < 0 the electrons form a spherical electron gas around the particle

and their electrical conductivity modifies the boundary condition for the magnetic field.

For χ > 0 the electrons in the bulk of the particle modify the refractive index through

their bulk electrical conductivity. In both cases the conductivity is limited by scattering

with surface or bulk phonons. Surplus electrons lead to an increase of absorption at low

frequencies and, most notably, to a blue-shift of an extinction resonance in the infrared.

This shift is proportional to the charge and is strongest for submicron-sized particles. The

particle charge is also revealed in a blue-shift of the rapid variation of one of the two

polarisation angles of the reflected light.

This thesis gives the first detailed microscopic model for the surface electrons at a di-

electric plasma wall. The results we have presented on the charge distribution, the sticking

coefficient and the desorption time or the charge effects on Mie scattering exemplify how

the microphysics of the surface electrons can be modelled. In the ESL model we outline

how the microscopic potentials can be cast into an effective model, which we applied to

an ideal dielectric surface without intrinsic band bending or surface states. Nevertheless,

following the same strategy our model can be extended to encompass intrinsic band bend-

ing or impurities and doping. Furthermore, our ESL model could provide the potential

landscape for modelling the electron kinetics at biased or driven plasma walls. Another

continuation of this work would be the calculation of sticking coefficients for dielectrics

with positive χ, where electron trapping takes place in the conduction band.

From our work we conclude that the electron affinity is an important parameter of the

surface which should affect the charge distribution as well as the charge-up. Therefore,

we encourage experimentalists to study the charging of surfaces or dust particles as a
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function of χ. Interesting in this respect is also if or under what conditions the electron

affinity of a surface exposed to a plasma remains stable. Moreover, we suggest to use the

charge signatures in Mie scattering to measure the particle charge optically. This would

allow a charge measurement independent of the plasma parameters and could be applied

to nano-dust where conventional methods cannot be applied.

25





2 Thesis Articles

Author Contribution

Article I:
“Electron surface layer at the interface of a plasma and a dielectric wall”

R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 85, 075323 (2012)

R. L. Heinisch, F. X. Bronold and H. Fehske outlined the scope and strategy of the cal-

culation. The calculation was performed by R. L. Heinisch. R. L. Heinisch wrote the

manuscript which was edited by all authors.

Article II:
“Phonon-mediated desorption of image-bound electrons from dielectric surfaces”

R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 81, 155420 (2010)

F. X. Bronold and H. Fehske outlined the scope and strategy of the calculation. The

calculation was performed by R. L. Heinisch. R. L. Heinisch wrote the manuscript which

was edited by all authors.

Article III:
“Phonon-mediated sticking of electrons at dielectric surfaces”

R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 82, 125408 (2010)

F. X. Bronold and H. Fehske outlined the scope and strategy of the calculation. The

calculation was performed by R. L. Heinisch. R. L. Heinisch wrote the manuscript which

was edited by all authors.

Article IV:

“Physisorption of an electron in deep surface potentials off a dielectric surface”

R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 83, 195407 (2011)

R. L. Heinisch, F. X. Bronold and H. Fehske outlined the scope and strategy of the cal-

culation. The calculation was performed by R. L. Heinisch. R. L. Heinisch wrote the

manuscript which was edited by all authors.

Article V:

“Mie scattering by a charged dielectric particle”

R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. Lett. 109, 243903 (2012)

R. L. Heinisch, F. X. Bronold and H. Fehske outlined the scope and strategy of the cal-

culation. The calculation was performed by R. L. Heinisch. R. L. Heinisch wrote the

manuscript which was edited by all authors.

27



2 Thesis Articles

Article VI:
“Optical signatures of the charge of a dielectric particle in a plasma”

R. L. Heinisch, F. X. Bronold, and H. Fehske, accepted for publication in Phys. Rev. E

R. L. Heinisch, F. X. Bronold and H. Fehske outlined the scope and strategy of the cal-

culation. The calculation was performed by R. L. Heinisch. R. L. Heinisch wrote the

manuscript which was edited by all authors.

Confirmed:

(PD Dr. Franz Xaver Bronold) Greifswald, 19 August 2013

28



PHYSICAL REVIEW B 85, 075323 (2012)

Electron surface layer at the interface of a plasma and a dielectric wall

R. L. Heinisch, F. X. Bronold, and H. Fehske
Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany

(Received 7 October 2011; revised manuscript received 1 February 2012; published 29 February 2012)

We study the plasma-induced modifications of the potential and charge distribution across the interface of a
plasma and a dielectric wall. For this purpose, the wall-bound surplus charge arising from the plasma is modeled
as a quasistationary electron surface layer in thermal equilibrium with the wall. It satisfies Poisson’s equation and
minimizes the grand canonical potential of wall-thermalized excess electrons. Based on an effective model for
a graded interface taking into account the image potential and the offset of the conduction band to the potential
just outside the dielectric, we specifically calculate the modification of the potential and the distribution of the
surplus electrons for MgO, SiO2, and Al2O3 surfaces in contact with a helium discharge. Depending on the
electron affinity of the surface, we find two vastly different behaviors. For negative electron affinity, electrons
do not penetrate into the wall and a quasi-two-dimensional electron gas is formed in the image potential, while,
for positive electron affinity, electrons penetrate into the wall and a negative space-charge layer develops in the
interior of the dielectric. We also investigate how the non-neutral electron surface layer—which can be understood
as the ultimate boundary of a bounded gas discharge—merges with the neutral bulk of the dielectric.

DOI: 10.1103/PhysRevB.85.075323 PACS number(s): 52.40.Hf, 73.30.+y, 52.80.Tn

I. INTRODUCTION

Macroscopic objects in contact with an ionized gas acquire
a negative charge because the influx of electrons from the
plasma outruns the influx of ions. The collection of electrons
at the wall (the boundary of the object) gives rise to a repulsive
Coulomb potential which reduces the electron influx until the
wall charge reaches a quasistationary value. As a consequence
of the electron accumulation at the wall, an electron depleted
region, the plasma sheath, is formed adjacent to the wall.

Most of the voltage driving the discharge drops across the
sheath. Wall charges may however affect not only the spatial
structure of the plasma but also surface-supported elementary
processes such as electron-ion recombination and secondary
electron emission, which are particularly important in dusty
plasmas,1–3 dielectric barrier discharges,4–6 and solid-state-
based microdischarges.7–11 A macroscopic description of the
plasma-induced wall charge, sufficient for the modeling of
the plasma sheath,12 is clearly insufficient for quantifying
the effect wall charges might have on these processes. A
microscopic description of the plasma-induced wall charge
and the potential across the plasma-wall interface it leads to is
required.

Traditionally, plasma walls are treated as perfect
absorbers.12–14 Irrespective of the microscopic interaction, all
electrons and ions impinging on the wall are assumed to
recombine instantly. From this model, only the wall potential
just outside the wall can be obtained. This is the potential
that balances the electron and ion influx at the wall. A
first, qualitative step going beyond this model was taken by
Emeleus and Coulter,15,16 who envisaged the wall charge
as a two-dimensional surface plasma coupled to the bulk
plasma via electron-ion wall recombination. No attempt was
however made to put this appealing idea onto a formal basis.
Later the notion of a two-dimensional surface charge was
developed further by Behnke and coworkers17–19 utilizing
phenomenological rate equations for the electron and ion
surface densities. In these equations, the microphysics at the

wall is encapsulated in surface parameters, such as electron
and ion sticking coefficients, electron and ion desorption
times, and an electron-ion wall recombination coefficient.
In principle these parameters can be calculated. Assuming,
for instance, plasma electrons to adsorb and desorb in the
long-range image potential of the wall, we calculated in
our previous work electron sticking coefficients and electron
desorption times for uncharged metallic20 and dielectric
surfaces.21–23 We also made a first attempt to estimate these two
quantities for charged dielectric plasma walls24 and proposed
a physisorption-inspired microscopic charging model for dust
particles in a gas discharge.25

In this work, we shift gears and focus on the potential
and charge distribution across the plasma-wall interface after
the quasistationary wall charge (the electron adsorbate in the
notation of our previous work20–25) has been established.
In other words, we extend the modeling of the plasma
sheath12–14 to the region inside the solid and calculate the
plasma-induced modifications of the potential and charge
distribution of the surface. Although knowing the potential and
charge distribution across the interface may not be of particular
importance for present day technological plasmas, it is of
fundamental interest from an interface physics point of view. In
addition, considering the plasma wall as an integral part of the
plasma sheath may become critical when the miniaturization
of solid-state-based plasma devices7–11 continues.

In the model outlined below we specifically consider a
dielectric wall and treat the plasma-induced quasistationary
wall charge, that is, the surplus charge on top of the charge
distribution of the bare, free-standing surface, as an electron
surface layer (ESL) of a certain extent, which is trapped
by and in thermal equilibrium with the wall. In order to
determine the chemical potential, width, and spatial position
(relative to the crystallographic interface) of the electron
surface layer, which depend on surface as well as plasma
parameters, we employ a one-dimensional model for a graded
interface between a collisionless plasma sheath and a dielectric
surface which is assumed to be a perfect absorber; that is,
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the wall potential balances at a certain distance from the
crystallographic interface the electron and the ion influx from
the plasma.

The model of a graded interface encompasses two important
ingredients: the surface dipole of the bare surface responsible
for the offset of the conduction-band minimum to the potential
just outside the dielectric and the long-range image potential.
The former accounts for the charge redistribution of the
free-standing, uncharged surface arising from the truncation
of the crystal, and the latter supports polarization-induced
external surface states (image states), first predicted for liquid
helium26 and later studied for metallic and dielectric surfaces
with negative electron affinity,27–32 which may trap the electron
surface layer in front of the crystallographic interface.

Originally proposed by Stern for the interface between
two dielectrics,33 and later used by others for semiconduc-
tor heterojunctions34 and electron trapping in nanopores,35

the graded interface model also guarantees continuity of the
electrostatic potential across the plasma-wall interface. The
model thus allows us to study the spatial distribution of the
plasma-induced wall charge across the interface. To insert
the surplus charge into the interface we follow Tkharev and
Danilyuk36 and minimize, in the spirit of density-functional
theory,37–39 the grand canonical potential of wall-thermalized
excess electrons. We also investigate how the electron surface
layer merges with the neutral bulk of the dielectric which we
describe with the model of an intrinsic semiconductor.

Various improvements of the model are conceivable but the
increased mathematical complexity would mask the general
ideas we would like to convey. For instance, the model of
a collisionless sheath could be replaced by more realistic
models.12–14 Going beyond the perfect absorber model, on
the other hand, is an unsolved problem. It would require
the inclusion of electron desorption, electron sticking, and
electron-ion recombination, with the respective coefficients to
be self-consistently calculated for the quasistationary electron
adsorbate at the wall. Replacing the graded interface by an
ab initio theory for the surface, for instance, along the lines
given in Refs. 27,28,40 and 41, possibly taking adlayers of
the host gas’s atoms or molecules as well as impurities and
imperfections into account, is desirable but at the present stage
of the investigation impractical. It would require an expensive
atomistic characterization of the plasma-wall interface, either
experimentally via various surface diagnostics or theoretically
via ab initio simulations. As long as the atomistic details
affect however only the offsets of the dielectric constant,
the electron affinity, and the effective mass, the graded
interface model already incorporates these details by a suitable
parametrization. What is not well described is the nonuniversal
region a few atomic units below and above the crystallographic
interface. In particular, intrinsic surface states (Shockley and
Tamm states42) and additional surface states which may arise
from the short-range surface potential due to impurities,
imperfections, and adlayers are not included. If unoccupied
these states could trap the electron surface layer in the vicinity
of the interface, even for surfaces with positive electron affinity
where image states are absent and cannot trap the surplus
charge in front of the surface.

The remaining paper is structured as follows. In Sec. II we
first construct a crude model for the plasma-induced electron

surface layer at the interface between a plasma and a dielectric
wall. It does not account for the merging of the electron surface
layer with the bulk of the dielectric. As long as the primary
interest is in the region close to the crystallographic interface
and the band gap of the dielectric is large enough, the crude
model is sufficient. Section III describes a refinement of the
model which enables one to also investigate the crossover of
the electron surface layer to the bulk of the dielectric. This is
particularly important for dielectrics with small energy gaps.
Numerical results for the potential and the electron distribution
are given in Sec. IV, and a short summary is formulated in
Sec. V.

II. CRUDE ELECTRON SURFACE LAYER

As depicted in Fig. 1, we consider an ideal, planar interface
at z = 0 with the dielectric occupying the half space z < 0
and the discharge occupying the half space z > 0. Chemical
contamination and structural damage due to the burning
gas discharge are discarded. At the moment we focus on
the physical principles controlling the electronic properties
of the plasma-wall interface. In the model we propose the
plasma-induced wall charge to be treated as an ESL, which is
an interface-specific electron distribution on top of the charge
redistribution due to the truncation of the solid. The ESL is
assumed to be thermalized with the solid and to stretch from
the plasma sheath over the crystallographic interface to the
bulk of the dielectric.

The boundary between the ESL and the plasma sheath is
located in front of the surface at z = z0. It is the position where
the attractive force due to the surface potential φsurf and the

−χ

valence band

conduction band

FIG. 1. (Color online) Qualitative sketch of an interface between a
plasma and a dielectric wall. Upper panel: band structure, microscopic
crystal potential merging with the image potential, and sheath
potential. Lower panel: effective potential for the graded interface
on which the model of an electron surface layer is based.
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repulsive force due to the sheath potential φsheath balance each
other. Thus, z0 is given by

φ′
surf(z0) + φ′

sheath(z0) = 0. (1)

It gives the position of an effective wall for plasma electrons
and ions at which, for instance, the flux balance condition of the
perfect absorber model, je = ji , with je and ji , respectively,
being the electron and ion flux toward the dielectric surface,
has to be fulfilled. For z < z0 an electron is attracted to the
surface and thus contained in the ESL, while for z > z0 it is
repelled back into the plasma. On the solid side, for z < 0, the
ESL is bounded because of the shallow potential well formed
by the restoring force from the positive charge in the plasma
sheath.

In this section we will outline the essential building blocks
of the ESL model. Putting together concepts from plasma
as well as surface physics, a detailed, self-contained account
seems to be helpful.

A. Plasma sheath

In the traditional view, electrons missing in the positive
space-charge region (SCR) in front of the plasma wall
accumulate on the wall and give rise to a wall potential. For
the construction of our one-dimensional interface model we
need the total number per unit area of missing sheath electrons
(that is, the total surface density of missing sheath electrons)
as a function of the wall potential because it is this number of
electrons which can be distributed across the ESL. Hence, we
require a model for the plasma sheath.

For simplicity, we use a collisionless sheath;12 more
realistic sheath models12–14 make no difference in principle.
In the collisionless sheath, electrons are thermalized, that
is, the electron density ne = n0 exp(eφ/kBTe), with φ being
the potential, n0 being the plasma density, and Te being the
electron temperature. The ions enter the sheath with a directed
velocity vi0 and satisfy a source-free continuity equation,
d(nivi)/dz = 0, implying nivi = n0vi0, and an equation of
motion M(vi

d
dz

vi) = −e d
dz

φ, with ni being the ion density
and M being the ion mass. The potential φ satisfies Poisson’s
equation d2φ/dz2 = −4πe(ni − ne). Thus, the governing
equations for the collisionless plasma sheath are12

vi

dvi

dz
= − e

M

dφ

dz
and (2)

d2

dz2
φ = −4πen0

[
v0

vi

− exp

(
eφ

kBTe

)]
. (3)

Using dimensionless variables

η = − eφ

kBTe

, ξ = z

λD

, and u = vi

cs

, (4)

where

λD =
√

kBTe

4πn0e2
and cs =

√
kBTe

M
, (5)

Eqs. (2) and (3) become

uu′ = η′ and (6)

η′′ = u0

u
− exp(−η). (7)

In the ESL model the plasma occupies not the whole half
space z > 0 but only the portion z > z0 (see Fig. 1). The

integration of the first equation gives u = −
√

2η + u2
0, where

u0 = vi0/cs is the reduced velocity of ions entering the sheath,
so that the second equation becomes

η′′ = − u0√
2η + u2

0

− exp(−η). (8)

Using the boundary condition that the potential and the field
vanish far inside the plasma, that is, η → 0 and η′ → 0 for
ξ → ∞, Eq. (8) can be integrated once and we obtain

η′ = −
√

−2u0

√
2η + u2

0 + 2 exp(−η) + 2u0

√
u2

0 − 2. (9)

For ions entering the sheath with the Bohm velocity, u0 = −1.
The field at the wall as a function of the wall potential ηw =
η(ξ0) is then given by

η′
w = −

√
2
√

2ηw + 1 + 2 exp(−ηw) − 4. (10)

The total surface density of electrons in the ESL equals
the total surface density of missing sheath electrons, in other
words, the total surplus surface density of positive ions in the
sheath N which can be calculated from the electric field at the
wall. Integrating Poisson’s equation yields

N =
∫ ∞

z0

dz(ni − ne) = − 1

4πe

∫ ∞

z0

dz
d2φ

dz2

= 1

4πe

dφ

dz
(z0) = −n0λDη′

w. (11)

Combing Eqs. (11) and (10) gives the total surface density of
electrons to be inserted into the ESL as a function of the wall
potential.

The wall potential itself is determined by the flux balance
condition, je = ji , which, in the ESL model, is assumed to be
fulfilled at z = z0. Using the Bohm flux for the ions and the
thermal flux for the electrons,

ji = n0

√
kBTe

M
and je = 1

4
n0

√
8kBT

πme

e
eφ

kB Te , (12)

the wall potential is given by12

ηw = 1

2
ln

(
M

2πme

)
, (13)

that is,

φw = −kBTe

2e
ln

(
M

2πme

)
. (14)

In the collisionless sheath model the wall potential depends
only on the electron temperature and the ion to electron mass
ratio.

B. Surface dipole

We now turn to the interface region in which the missing
sheath electrons will be inserted. This region is absent in
the traditional modeling of plasma walls. In our model it is
an extended region surrounding an ideal dielectric surface.
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In comparison to the electrons responsible for the chemical
binding within the dielectric the additional electrons coming
from the plasma are only a few. The electronic structure of
the surface, in particular, the charge redistribution due to
truncation of the solid and the offset of the energy bands in the
bulk with respect to the potential outside the dielectric, will
not be changed significantly by the presence of the surplus
electrons comprising the wall charge.

In order to quantify the above statement let us first consider
the electrostatic potential and the electronic structure of a free-
standing, uncharged dielectric surface. According to Tung,43

it has to minimize the thermodynamical potential and satisfy
Poisson’s equation, implying that the potential is continuous
across the surface. Strictly speaking, the continuity of the
potential only applies to the microscopic crystal potential
which has to merge continuously with the surface potential
outside the crystal. The averaged long-range potential, in
contrast, can be discontinuous at the interface. It is this offset
which is encoded in the surface dipole.

The energy of an electronic state in the bulk of the dielectric
can be referenced to the vacuum level V (∞) = 0, that is, the
potential far outside the crystal, in the following way:43

Eik(�r) = εik − eV̄cell − eVs(�r), (15)

where εik is the quantum-mechanical contribution to the
energy, V̄cell is the averaged potential of a cell due to the
charge distribution within the same cell, and Vs(�r) is the
long-range potential due to the surface dipole, space charges,
and external fields. In the simple two-band model depicted in
Fig. 1, i = v,c. Vs(�r) contains the surface dipole arising from
the truncation of the solid and responsible for the potential
offset at the surface and a slowly varying component due to
external fields and internal and plasma-induced space charges.
External fields and internal space charges will be neglected
in the following, and plasma-induced space charges will be
accounted for by Poisson’s equation (see below).

In order to judge whether the surplus charge arising from
the plasma affects the surface dipole it is useful to consider
first the typical strength of the surface dipole of a free-standing,
uncharged dielectric surface. It results from a charge double
layer in immediate proximity to the surface. Depending on
the material it can have various origins. For an ionic crystal,
for example, it is the lattice relaxation at the surface which
makes anions or cations protrude and the other species retract
(e.g., protruding oxygen and retracted cations for magnesium
oxide27), while for semiconductors it is the regrouping of
covalent bonds which leads to charge redistribution at the
surface. Even in the absence of these effects the minimization
of the thermodynamic potential of the surface’s electrons leads
already to an electron density leaking out into the vacuum.
This is particularly important for metals. As a result a charge
double layer is formed over a length on the order of a lattice
constant.

The dipole layer is usually characterized by a dipole
strength:

eD = eVs(�r−
s ) − eV (�r+

s ), (16)

where Vs(�r−
s ) is the limit of the long-range potential just inside

the crystal at the surface position �rs and V (�r+
s ) is the limit of

the potential at that position just outside the surface. Usually
these two potentials, which characterize the discontinuity of
the long-range potential at the surface, are termed the potential
just inside and the potential just outside, respectively.43,44

Here, just outside denotes a distance that is small compared
to variations of the long-range potential due to external fields
or space charges but large compared with the width of the
charge double layer. Note also that, in the definition of the
potential just outside the image potential is assumed to have
already decreased to zero.44 This point will be important
later.

The strength of the dipole layer is a microscopic property of
the surface which is relatively insensitive against the additional
charges from the plasma. The reason for this lies in the small
number of additional electrons from the plasma compared to
the number of displaced electrons involved in the formation of
the dipole layer. To prove this statement we give a simple
estimate. Typical surface dipoles eD are on the order of
electron volts. For a double layer of 1 Å to each side of
the crystallographic interface a potential difference of 1 V
requires a surface charge density of 5.5 × 1013cm−2. The
surface charge density at the wall of a helium discharge
with plasma density n0 = 107cm−3 and electron temperature
kBTe = 2 eV amounts, however, only to 4.4 × 106 cm−2. For
typical plasma densities, the number of additional electrons
is thus far too small to lead to a change of the surface
dipole. Even for semiconductor-based microdischarges,8,10

which can have much higher plasma densities, we expect the
surface dipole of the plasma wall not to be modified by the
plasma.

In view of the preceding estimate, we have to revise an
assumption in our previous work,23 where we assumed the
surface charge accumulating on the wall would increase the
dipole energy eD by eφw, leading to the image states being
pushed from the band gap into the energy region of the
conduction band. The numbers given in the previous paragraph
indicate, however, that the band lineup of the conduction band
and the potential just outside the solid will not be affected
much by the wall charge. Hence, if a negative electron affinity
supports image states in front of the uncharged surface, these
states remain in the band gap for the charged surface. Electron
trapping as investigated in Refs. 21 and 22 is thus possible
even for charged plasma walls.

Instead of the dipole strength eD which cannot be measured
directly, it is more convenient to characterize the dipole layer
by the electron affinity χ which is a measurable quantity
for a dielectric surface.44 The electron affinity is the energy
released when an electron is moved from just outside the
surface to the bottom of the conduction band. It accounts for
charge redistribution in the vicinity of the surface due to the
truncation of the crystal. While many surfaces have positive
electron affinity such as Al2O3 or SiO2, there are also materials
with negative electron affinity, for instance, diamond,45 boron
nitride,46 or the alkaline earth oxides.27,28 The electron affinity
depends also on adatoms. In some cases this is even used
to control the electron affinity of a surface. Terminating,
for instance, a surface with weakly electronegative elements
such as hydrogen induces a negative electron affinity,47 while
termination with strongly electronegative elements can lead to
a positive electron affinity.48
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From Eq. (15) it is clear that χ equals eD plus a bulk
contribution:

χ = −eVs(�r+
s ) − Eck(�r−

s ) = eD − EC + eV̄cell, (17)

where EC = εcm denotes the minimum of the conduction band.
We can thus use χ to characterize the potential offset at the
surface. There is however a caveat. The long-range potential
inside the solid is only specified up to a constant.43 Typical
choices are the cell-averaged potential or the intersphere
potential of the muffin-tin approximation. For our purpose
it will be however more convenient to take the conduction-
band minimum as the long-range potential inside the solid.
This choice is motivated as follows. We are considering
a dielectric with a large energy gap. The valence band is
thus fully occupied and the conduction band is essentially
empty. Hence, only the conduction band can be populated by
additional electrons coming from the plasma, and referencing
the electrostatic potential inside the solid to the conduction-
band minimum allows us to relate the total surplus electron
density in the interface region to the potential in the interface
region, in analogy to what we have done for the plasma sheath
in the previous subsection.

Adopting the above discussion to the one-dimensional
model shown in Fig. 1 and assuming a quadratic dispersion
for the conduction band, the energy of an electron in the
conduction band is given by

Ek(z) = h̄2k2

2m∗
C

− eφsurf(z), (18)

where φsurf(z) is the total surface potential to be determined in
the next subsection, and the offset of the electrostatic potential
at the surface,

eφsurf(0
−) − eφsurf(0

+) = χ, (19)

encompasses the surface dipole as well as the unspecified bulk
contribution.

C. Image potential

The surface potential of the bare, uncharged surface com-
prises at least the surface dipole and a long-range contribution,
the image potential, resulting from the mismatch of the
dielectric constants at the surface. Far away from the surface
the image potential is given by49

φim(z) = ε − 1

4(ε + 1)

e

z
. (20)

But this expression cannot be employed for our purpose
because the singularity at z = 0 prohibits a smooth electron
distribution across the interface. In reality the image poten-
tial has to continuously merge with the crystal potential.
Equation (20) is thus also unphysical.

To obtain a realistic image potential without performing an
atomistically accurate calculation we employ the model of a
graded interface. It also has the virtue of being parameterizable
with experimentally measured values for the electron affinity,

the dielectric mismatch, and the mismatch between effective
electron masses. The model incorporates therefore important
properties of a surface; most importantly, it accounts for the
charge redistribution due to the truncation of the solid.

Initially proposed by Stern33 to remove the unphysical
singularity of the image potential at the interface of two
dielectrics, the graded interface model assumes the dielec-
tric constant ε to vary over a distance on the order of a
lattice constant. Later the model was extended to variations
of other physical quantities and applied to semiconductor
heterostructures and nanopores.34,35 Clearly, because of the
interpolation the model cannot account for effects associated
with intrinsic surface states (Shockley and Tamm states42) and
additional surface states which may arise from the short-range
surface potential. Nevertheless, the graded interface model is
a reasonable description of a surface.

In the spirit of a graded interface, we assume the dielectric
constant ε, the electron mass m, and the potential offset at the
surface to vary smoothly according to the grading function

gc−,c+ (z) =
⎧⎨
⎩

c− z < −a
c−+c+

2 − c−−c+
2 sin

(
πx
2a

) −a < z < a,

c+ z > a

(21)

where a is the half width of the graded interface and c∓
stands for the quantity that varies across the interface. We
use the value a = 5 Å, which is an estimate used in previous
applications of the graded interface.33–35 While the grading
parameter a is not based on definite experimental or theoretical
results it is motivated by the assumption that the bonding and
the electron density at the surface change over one to two
lattice constants, implying a transition layer for the effective
potential and the dielectric constant that is somewhat larger.
Hence, across the interface the electron mass, the dielectric
constant, and the offset potential are given by

m(z) = gm∗
C,me

(z), ε(z) = gε,1(z), (22)

and

φoffset(z) = 1

e
gχ,0(z), (23)

respectively, with m∗
C being the effective mass of the conduc-

tion band.
Within the model of the graded interface, the image

potential is the change in the self-energy of an electron due
to the proximity of the dielectric mismatch. Positioning the
electron at �r0 it is given by33

φim(�r0) = 1
2 [φm(�r0) − φ0(�r0)], (24)

where φm(�r) is the potential in the medium with dielectric
mismatch arising from the electron at �r0 and φ0(�r) is the same
quantity in a homogeneous medium with dielectric constant
ε(z0). Hence, φm(�r) is the solution of

∇[ε(z)∇φm(�r)] = 4πeδ(�r − �r0), (25)

while φ0(�r) is the solution of

∇2φ0(�r) = 4πe

ε(z0)
δ(�r − �r0). (26)
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To solve Eqs. (25) and (26) we follow Stern33 and make the
ansatz

φm,0(z,ρ,φ) = 1

2π

∞∑
l=−∞

∫ ∞

0
dqqJl(ρq)Jl(ρ0q)

× eil(φ−φ0)Am,0
q (z). (27)

Placing the electron on the z axis, ρ0 = 0, which implies
J0(ρ0q) = 1 and Jl(ρ0q) = 0 for l > 0. Hence, we need to
keep only the l = 0 term, so that

φm,0(z,ρ,φ) = 1

2π

∫ ∞

0
dqqJ0(ρq)Am,0

q (z), (28)

where A0
q(z) is given by

A0
q(z) = −2πe

ε(z0)q
e−q|z−z0| (29)

and Am
q (z) is the solution of

Am′′
q (z) + ε′(z)

ε(z)
Am′

q (z) − q2Am
q (z) = 4πe

ε(z)
δ(z − z0), (30)

which has to be obtained numerically. The image potential is
then given by

φim(z0) = 1

4π

∫ ∞

0
dqq

[
Am

q (z0) − A0
q(z0)

]
. (31)

In contrast to Eq. (20) it is now smoothly varying across the
interface with a deep well on the low-ε side and a small bump
on the high-ε side.

The total surface potential comprises the graded offset
potential Eq. (23) and the graded image potential. Hence,

φsurf(z) = φim(z) + φoffset(z). (32)

It is continuous across the crystallographic interface at z = 0
and enables us thereby to also calculate a smoothly varying
electron distribution in the ESL. The band structure and the
total surface potential at the graded interface are visualized in
the lower panel of Fig. 1.

Using Eq. (1) we can now determine the position z0 of
the effective wall, that is, the maximum extent of the ESL on
the plasma side. The derivative of the bare surface potential
is φ′

surf = φ′
offset + φ′

im. Due to the relatively weak field in the
sheath compared to the image force, the boundary z0 will be so
far away from the interface that φ′

offset vanishes and the image
potential obeys Eq. (20). Thus, the boundary between the ESL
and the plasma sheath is given by

z0 =
√

(ε − 1)e

4(ε + 1)φ′
w

, (33)

with φ′
w = −(kBTeη

′
w)/(eλD) and η′

w given by Eq. (10).

D. Electron distribution

The plasma-induced wall charge is assumed to be in thermal
equilibrium with the wall. Hence, the distribution of the excess
electrons in the ESL has to minimize the excess electron’s
grand canonical potential in the external potential due to the
surface. The coupling to the sheath is maintained by the
constraint that only as many electrons can be filled into the

ESL as are missing in the sheath and the boundary conditions
to the Poisson equation, which links the electron distribution
in the ESL to the (internal) electrostatic potential.

To minimize the grand canonical potential of the surplus
electrons we follow Tkharev and Danilyuk36 and apply
density-functional theory37,38 to the graded interface. While
more refined schemes of density-functional theory39 could, in
principle, be employed, we will use for the purpose of this
exploratory calculation density-functional theory in the local
approximation. Quite generally, the grand canonical potential
of an electron system in an external potential V (�r) is given in
the local approximation by

� =
∫

V (�r)n(�r)d�r − e

2

∫
φC(�r)n(�r)d�r

+G[n] − μ

∫
n(�r)d�r, (34)

where G[n] is the grand canonical potential of the homoge-
neous system with density n(�r) and the Coulomb potential is
determined by

∇[ε(�r)∇φC(�r)] = 4πen(�r). (35)

The ground-state electron density minimizes �; that is, it
satisfies

V (�r) − eφC(�r) + μh(n) − μ = 0, (36)

where μh(n) = δG[n]/δn is the chemical potential for the
homogeneous system.

Specifically for the excess electrons in the one-dimensional
graded interface Eq. (36) reduces to

−eφ(z) + μh(z) − μ = 0, (37)

where μh(z) ≡ μh[n(z),T ] and the electrostatic potential,

φ(z) = φsurf(z) + φC(z), (38)

consists of the potential of the bare surface given by Eq. (32)
and the internal Coulomb potential which satisfies Poisson’s
equation:

d

dz

[
ε(z)

d

dz
φC(z)

]
= 4πen(z), (39)

with the graded dielectric constant ε(z) given by Eq. (22)
and the boundary conditions φC(z0) = φw and φ′

C(z0) = φ′
w to

guarantee continuity of the potential at z0 and to include the
restoring force from the positive charge in the sheath. Note that
the Coulomb potential derived from this equation includes the
attraction of an electron to the image of the charge distribution.

For the functional relation μh(z) ≡ μh[n(z),T ] we take
the expression adequate for a homogeneous, noninteracting,
nondegenerate electron gas:

n(z) = 1√
2

[
m(z)kT

πh̄2

] 3
2

e
μh(z)
kB T . (40)

This is justified because the density of the excess electrons is
rather low and the temperature of the surface is rather high,
typically a few hundred Kelvins.

In order to calculate the quasistationary distribution of
the surplus electrons, Eqs. (37) and (39) have to be solved
self-consistently with the additional constraint that the total
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electron surface density in the ESL equals the total surface
density of electrons missing in the sheath, that is,∫ z0

zs

dzn(z) = N, (41)

with N given by Eq. (11). In the above equation we introduced
a cutoff zs < 0 at which the ESL terminates inside the
dielectric. As long as |zs | is chosen large enough it does not
affect the numerical results close to the surface. An improved
treatment of the ESL, avoiding the ad hoc cutoff, is given in
the next section.

Within the crude ESL model developed in this section the
computation is performed iteratively in the interval zs < z <

z0 according to the following scheme:
(i) We start with the potential of the empty surface given by

Eq. (38) with φC(z) obtained from Eq. (39) with n(z) = 0 but
with the boundary conditions at z0 as specified.

(ii) We integrate both sides of Eq. (40) over z with μh(z)
given by Eq. (37). Enforcing the constraint (41) determines μ.

(iii) Using μ we calculate from Eq. (37) a new μh(z) which
gives with Eq. (40) a new electron density n(z).

(iv) Lastly, we determine from Eq. (39) the electrostatic
potential associated with the updated n(z).

Steps (ii)–(iv) are iterated until μ, which is far below the
conduction-band edge because of the nondegeneracy of the
excess electrons, converges.

III. REFINED ELECTRON SURFACE LAYER

In the previous section we have taken into account only
the electron concentration in the conduction band of the
dielectric due to the electrons coming from the plasma. For
wide band-gap materials this is justified, especially near the
surface, as their concentration is much larger than the intrinsic
carrier concentration. Deep inside the dielectric, however,
charge neutrality is not enabled by a vanishing electron density
but by the electron density decreasing to its intrinsic value,
which is then balanced by the intrinsic hole concentration in
the valence band.

To take this effect into account, which is particularly
important when the additional electrons accumulate deep
inside the bulk of the dielectric, we divide the ESL into
two regions: a very narrow interface-specific region (ISR)
and a wide space-charge region (SCR) in the bulk of the
dielectric. The parameter zs denotes now no longer an ad
hoc cutoff but the boundary between the two regions. It has
to be chosen so that the ISR includes the major effect of
the image potential in the dielectric implying zs < −z0. The
electron distribution and the potential in the ISR are calculated
using the density-functional approach outlined in the previous
section. In the SCR we use for simplicity the model of an
intrinsic semiconductor to describe electron and hole densities
as well as the long-range potential. As the energy bands in
the dielectric follow the long-range potential the refined ESL
also captures the band bending which might be induced by
the presence of the wall charge. It is however only significant
when most of the excess electrons are trapped in the SCR and
not in the ISR.

Figure 2 schematically shows the electron and hole densities
for the refined ESL model. The boundary between the plasma

ni

en

electron surface layer

0zsz 0

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnniiiiiiiii

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

electron surface layer

0zsz 0

FIG. 2. (Color online) Sketch of the refined model of the interface
between a plasma and a dielectric wall. In the plasma, equal densities
of electrons and ions ensure quasineutrality. The positive space charge
in front of the effective wall defines the plasma sheath. The ESL
contains a very narrow interface-specific region (ISR), where the
model of the graded interface is used, and a wide space-charge region
(SCR), which allows a continuous merging with the neutral bulk of
the dielectric, where intrinsic electrons and holes balance each other
to guarantee charge neutrality. Note that the widths of the various
regions are not to scale.

sheath and the ESL is still located at z0. As our model does
not encompass the electron and ion flux from the plasma for
z < z0, the densities ne and ni are discontinuous at z0. This is
obvious for the ions which are not allowed to enter the solid.
The discontinuity of the electron density, in contrast, arises
because we ensure only the total number of missing sheath
electrons per unit area to be conserved. This global constraint
cannot guarantee continuity of the electron density at z0. At
the boundary between the ISR (zs < z < z0) and the SCR
(z < zs) the electron density and the potential are continuous.
In principle, also the hole density p should be continuous. As
p(zs) � n(zs) for the materials we are considering, we can
however neglect holes in the ISR.

For the modeling of the SCR it is convenient to use ψ(z) =
φ(z) − φbulk for the long-range potential, which vanishes for
charge neutrality in the bulk. Here, φbulk = φ(−∞) (see below
for an explicit relation for φbulk). Then, Poisson’s equation is
given by

d2ψ(z)

dz2
= −4π

ε
[−en(z) + ep(z)] , (42)

where the electron and hole densities for an intrinsic semi-
conductor with parabolic bands whose extremal points are,
respectively, EC and EV are given by50

n(z) = 1√
2

(
m∗

CkBT

πh̄2

) 3
2

e
1

kB T
[ν−EC+eψ(z)]

, (43)

p(z) = 1√
2

(
m∗

V kBT

πh̄2

) 3
2

e
− 1

kB T
[ν−EV +eψ(z)]

. (44)

From a comparison of the exponents in Eqs. (43) and (40),
where μh is given by Eq. (37), we find

ν = μ + EC + eφbulk. (45)
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Far from the surface, ψ = 0 and n = p = nb. This gives the
chemical potential

ν = EV + EC

2
+ 3

4
kBT ln

(
m∗

V

m∗
C

)
(46)

and the bulk carrier concentration

nb = 1√
2

(
kBT

πh̄2

) 3
2

(m∗
Cm∗

V )
3
4 exp

(
− Eg

2kBT

)
, (47)

where Eg = EC − EV . Hence, Poisson’s equation becomes

d2ψ(z)

dz2
= 4πe

ε
nb

[
e

eψ(z)
kB T − e

− eψ(z)
kB T

]
, (48)

and using dimensionless variables

η = eψ

kBT
and ξ = z − zs

LD

(49)

with LD =
√

εkBT /4πe2nb we obtain

η′′ = eη − e−η. (50)

This equation can be integrated once, which gives

(η′)2 = 4 cosh(η) + C. (51)

The boundary conditions in the bulk η = 0 and η′ = 0 for
ξ → −∞ imply C = −4 so that Eq. (51) becomes

η′ =
√

8 sinh
(η

2

)
. (52)

Integration with the boundary condition at zs , that is, at ξ = 0,
η(0) = ηs and requiring η → 0 for ξ → −∞ gives

η±(ξ ) = ∓2 ln

[
± tanh

(∓ξ√
2

+ c±

2

)]
, (53)

with

c± = ±2artanh

[
exp

(∓ηs

2

)]
, (54)

where the upper sign is for ηs > 0 and the lower sign is for
ηs < 0.

In analogy to what we have done at the boundary of the ESL
with the plasma sheath at z = z0 we relate the potential ηs to the
total electron surface density in the space-charge region. From
Poisson’s equation we obtain for the total electron surface
density in the SCR

NSCR =
∫ zs

−∞
dz(n − p) = L2

Dnb

dη

dz

∣∣∣∣
zs

−∞
= LDnbη

′(0), (55)

where η′ is given by Eq. (52), so that

NSCR =
√

8LDnb sinh
(ηs

2

)
(56)

or

ηs = 2arsinh

(
NSCR

√
8LDnb

)
. (57)

For a negative space charge ηs > 0, so that the potential is
given by ψ(z) = (kBT /e)η+[(z − zs)/LD] and the electron
and hole densities are given by n(z) = nbe

η+[(z−zs )/LD] and
p(z) = nbe

−η+[(z−zs )/LD], respectively. The relation between

ψ and φ is given by φbulk = φ(z) − ψ(z). Since ψ(zs) =
(kT /e)ηs we obtain φbulk = φ(zs) − (kT /e)ηs .

Now, quite generally, the excess electrons in the ESL are
distributed over the ISR and SCR according to

N = N ISR(μ) + NSCR(μ), (58)

where N ISR is the surface density of electrons in the ISR, μ is
the chemical potential in both regions, and N is the total surface
density of missing sheath electrons given by Eq. (11). The
total surface density in the ISR is given by N ISR = ∫ z0

zs
dzn(z),

where n(z) is calculated with the density-functional approach
for the graded interface. Requiring continuity of the electron
density at zs ,

1√
2

(
m∗

CkBT

πh̄2

) 3
2

e
1

kB T
[μ+eφ(zs )] = nbe

ηs (59)

gives ηs as a function of μ. From ηs we finally obtain, using
Eq. (56), NSCR(μ).

For the calculation of the electron distribution and the
potential in the refined ESL we use the iteration cycle described
in the last section with one modification. In step (ii) we solve
Eq. (58) instead of Eq. (41) to fix μ. From μ we obtain, using
Eq. (59), ηs , which in turn determines the electron distribution
and the potential in the SCR. This gives for each iteration step a
continuous potential and electron distribution at zs . As before,
the steps (ii)–(iv) are iterated until μ converges.

At the end of this section let us finally mention two
simplifications of the refined ESL model, which could be
used, respectively, for large band-gap dielectrics irrespective
of the electron affinity and dielectrics with small band-gap and
positive electron affinity. In the former case the intrinsic carrier
concentration nb is very low and the merger with the bulk
occurs very deep in the dielectric. Almost all surplus electrons
are however much closer to the surface where the holes can be
neglected. This can be seen from the differential equation for
η. For small nb Eq. (57) gives a large ηs . As η satisfies a highly
nonlinear differential equation (50), a large ηs implies a steeper
gradient of η near the surface so that almost all electrons are
concentrated close to the surface where neglecting the holes
has little effect. Hence, for large band-gap dielectrics surplus
electrons can be filled into a sufficiently large ISR for which
the crude ESL model of the previous section will be sufficient
provided the cutoff zs is large enough. The merger with the
bulk is of course not correctly captured by such an approach.

For dielectrics or semiconductors with small energy gaps
and positive electron affinity, on the other hand, almost all
surplus electrons are deep inside the material. It is thus a good
approximation to neglect the ISR and to fill all electrons in
a SCR. Neglecting the surface potential has little effect in
this case and using the SCR already for z � 0 gives a good
description of the electron distribution inside the ESL. The
electron density and potential at the surface and in front of
it can of course not be captured by such an approach. As
before ψ(z) = φ(z) − φbulk with φbulk = φ(zs) − (kBT /e)ηs

where φ(zs) is now the limit of the long-range potential just
inside the dielectric given by φ(zs) = φw + χ/e.
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IV. RESULTS

We now use the ESL model to calculate for a helium
discharge in contact with a MgO, Al2O3, and SiO2 surface
the potential and the density of excess electrons across the
plasma wall. Our main focus lies in the identification of
generic types of electron distributions in the ESL depending
on plasma and surface parameters. Unless otherwise stated,
we use for the plasma density n0 = 107 cm−3 and for the
electron temperature kBTe = 2 eV. The parameters of the
dielectric surfaces are given in Table I. Preferentially we
used experimental data for the various quantities; only if not
available, we employed theoretical values.28,51–60

First we give typical values for z0, the position where
the ESL merges with the plasma sheath. It is calculated
from Eq. (1) and should thus depend not only on plasma
but also on surface parameters. Our results for MgO (z0 =
6.08 × 10−5 cm), Al3O3 (z0 = 6.09 × 10−5 cm), and SiO2

(z0 = 5.14 × 10−5 cm) indicate however that z0 is relatively
insensitive to ε, which is the only surface parameter affecting
z0 when the sheath is assumed to be collisionless. Even the
significantly smaller ε of SiO2 does not alter z0 considerably.
For the helium discharge considered z0 is irrespective of the
dielectric always on the order of a micron.

Of particular importance for the distribution of the excess
electrons in the ESL is the electron affinity χ , characterizing
the offset of the conduction band to the potential just outside.
For χ < 0 (MgO) the conduction-band minimum lies above
the potential just outside. It is thus energetically favorable
for electrons to be located in the image potential in front of
the surface. Figure 3, showing the electron density and the
potential in the ESL of MgO, verifies this. The energy of an
electron in the image potential −eφ indeed reaches a minimum
just in front of the surface at the beginning of the graded
interface. For negative electron affinity, the excess electrons
coming from the plasma thus form an external surface charge
in the image potential in front of the crystallographic interface.
The band bending associated with it is negligible. The external
surface charge is very narrow; it can thus be considered as
a quasi-two-dimensional electron gas, similar to the surface
plasma anticipated by Emeleus and Coulter.15,16

For χ > 0, on the other hand, the conduction-band mini-
mum is below the potential just outside. It is thus energetically
favorable for electrons to accumulate inside the dielectric. This
can be seen in Fig. 4, which shows the electron density and
the potential in the refined ESL (red line) and simplified ESL
(open green circles and blue triangles) for an Al2O3 surface.
The surface potential consists of an attractive well in front of

TABLE I. Material parameters for the dielectrics considered in
this work: dielectric constant εs , electron affinity χ , conduction-band
effective mass m∗

C , valence-band effective mass m∗
V , and band

gap Eg .

εs χ (eV) m∗
C (me) m∗

V (me) Eg (eV)

MgO 9.8 [51] −0.4 [28] 0.4 [52]
Al2O3 9.9 [53] 2.5 [54] 0.4 [55] 4.0 [55] 8.8 [56]
SiO2 3.78 [57] 1.3 [54] 0.5 [58] 0.58 [59] 9.2 [54]
GaAs 13.1 [60] 4.07 [60] 0.067 [60] 0.45 [60] 1.42 [60]
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FIG. 3. (Color online) Plasma-supplied excess electron density n

(upper panel) and the potential −φ (lower panel) it gives rise to, for a
MgO surface in contact with a helium discharge with n0 = 107 cm−3

and kBTe = 2 eV calculated without accounting for a SCR in the
dielectric (crude ESL model). The cutoff of the interface region is
zs = −z0. As can be seen, almost all of the plasma-induced wall
charge is located in the well of the image potential in front of the
surface.

the surface, but the minimum potential energy for electrons
−eφ is reached inside the dielectric. Excess electrons coming
from the plasma are thus mostly located inside the wall and the
electron distribution extends deep into the bulk. This extended
negative space charge also leads to a band bending near the
surface. Note the different scales of the axes for the left and
right panels of Fig. 4. On the scale where variations in the SCR
are noticeable the ISR is basically a vertical line.

If one neglects the SCR and fills all excess electrons into the
ISR (the crude ESL), the potential and the electron distribution
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FIG. 4. (Color online) Plasma-supplied excess electron density
n (upper panel) and the potential −φ (lower panel) it gives rise
to, for an Al2O3 surface in contact with a helium discharge with
n0 = 107 cm−3 and kBTe = 2 eV. The red lines show data obtained
from the refined ESL model accounting for an ISR and a SCR, the
boundary between the two was put at zs = −3z0, the green circles
show data for a model which consists only of an ISR with cutoff
zs = −0.9cm (crude ESL model), and the blue triangles show data
for a model consisting only of a SCR for z < 0. Irrespective of the
approximation, the plasma-induced wall charge extends deep into the
bulk. Note the different scales of the axes for the left and right panels.
On the spatial scale of the SCR shown in the left panels the ISR of
the right panels becomes a vertical line.
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FIG. 5. (Color online) Electron density n and hole density p at a
GaAs surface in contact with a helium discharge with n0 = 107cm−3

and kBTe = 2 eV calculated with the refined ESL model without
ISR. The plasma-induced wall charge sits inside the GaAs wall. Deep
inside the bulk charge neutrality is achieved by an equal density of
electrons and holes.

are correctly described at and close to the surface but not far
inside the dielectric (open green circles) because the ad hoc
cutoff zs of the crude ESL leads to an unphysical pileup of
electrons near zs . Hence, only if zs is large enough does the
crude ESL model give reliable results for the electron density
and potential in the vicinity of the surface. Filling all electrons
in the SCR, on the other hand, cannot describe the immediate
vicinity of the surface correctly, which is however on the scale
of the SCR an infinitesimally narrow region. It gives only for
z < −z0 a good description, that is, in the region where for
χ > 0 indeed most of the electrons are located (blue triangles).

While the crude ESL model containing only an ISR gives
the correct electron density near the surface provided zs is
large enough, the merger of the ESL with the bulk can only be
described with the refined ESL model including the SCR. This
is particularly relevant for materials with smaller band gaps
and larger intrinsic carrier concentrations than MgO, Al2O3,
and SiO2. To exemplify this we show in Fig. 5 the electron
and hole densities (upper panel) as well as the potential
−ψ (lower panel) for a GaAs plasma wall, calculated for
an ESL containing only a SCR. At the surface the electron
density is about three orders of magnitude larger than the hole
concentration. Thus, the gas phase plasma offers the possibility
to manipulate the electron-hole plasmas by controlling the
charge-carrier density—tantamount to doping—in the near
surface region of a semiconductor. Deep inside the material,
electron and hole concentrations are equal, leading to charge
neutrality and a constant potential. The band bending due to
the extended space charge in the ESL is about 0.09 eV.

Our results for the electron and hole densities and the
potential in the dielectric depend of course on the model
for the SCR. We have used for simplicity the model of an
intrinsic semiconductor which is appropriate for an undoped
semiconductor without impurities. Depending on doping or
impurities a variety of models42 could be used to take material-
specific aspects into account. In our exploratory calculation we
obtain a rather wide SCR. Including the effect of impurities,
acting as trapping sites in the band gap would probably reduce
the depth of the SCR considerably.
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FIG. 6. (Color online) Center of gravity z̄ of the plasma-supplied
excess electron distribution at a MgO surface (upper panel) and
the z90% value for the electron distribution at an Al2O3 and a
SiO2 surface (lower panel), all in contact with a helium discharge
with n0 = 107cm−3 and kBTe = 2 eV, as a function of the surface
temperature TS . The data shown in the upper and lower panel were
obtained, respectively, from the crude ESL model and the refined ESL
model without an ISR.

To summarize our results up to this point, we find that
for negative electron affinity the plasma-induced electronic
surface charge is located in front of the surface forming a
quasi-two-dimensional electron gas, while for positive electron
affinity the surplus electrons form a space-charge layer in the
dielectric leading to a small bending of the energy bands.

The two distinct types of charge distributions in the ESL
are also reflected in the dependence of the width of the plasma-
supplied electron distribution on the surface temperature.
Figure 6 shows the center of gravity z̄ of the electron
distribution for the MgO surface (χ < 0) and the z90% value
for the surfaces of Al2O3 and SiO2 (χ > 0), where z90% is
implicitly defined by∫ 0

z90%

dz[n(z) − p(z)] = 0.9N. (60)

We use the z90% value because it captures the depth of the SCR
better than z̄, which depends too strongly on the few electrons
that penetrate very deep into the bulk.

For negative electron affinity (MgO, shown in the upper
panel of Fig. 6) the external surface charge is strongly trapped
in the deep image potential so that z̄ changes very little with
surface temperature. The width of the internal surface charge
for dielectrics with positive electron affinity (Al2O3 and SiO2,
lower panel), however, increases dramatically with surface
temperature. This can be understood as follows. The restoring
force from the positive ions in the sheath binds internal surface
charges only weakly to the surface. With increasing surface
temperature, however, high-lying states in the conduction band
get more and more populated. Hence, some electrons have
rather high kinetic energies, are thus less confined near the
surface by the weak restoring force, and penetrate therefore
deeper into the bulk. As a result, the z90% value decreases
strongly with surface temperature.

Let us now turn to the discussion of the influence of the
electron temperature kBTe and the plasma density n0 on the
properties of the ESL. These two parameters enter through
the total surface density of electrons N depleting the sheath
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TABLE II. Surface density of electrons in the ESL N , wall
potential φW , plasma sheath ESL boundary z0, and the z90% value
for SiO2 in contact with a helium discharge with kBTe = 2 eV for
different values of the plasma density n0.

n0 (106cm−3) N (106cm−2) φW (V ) z0 (10−5cm) z90% (cm)

10 4.38 −7.07 5.14 −0.222
20 6.20 −7.07 4.32 −0.157
50 9.80 −7.07 3.44 −0.099
100 13.9 −7.07 2.89 −0.070

and accumulating in the ESL. How kBTe and n0 affect the
interface depends therefore on the sheath model and the model
used for the interaction between plasma particles and the
surface. For simplicity we have used a collisionless sheath
model and assumed the surface to be a perfect absorber for
plasma electrons and ions. The results for the properties of
the ESL as a function of the plasma parameters are thus to be
taken as only indicative.

The effect of a variation of n0 and kBTe is most significant
for surfaces with positive electron affinity. Table II shows
the effect of the plasma density n0 for a SiO2 surface. If n0

increases, the boundary z0 between sheath and ESL moves
closer to the surface. This, however, does not affect the charge
distribution much as most of the electrons occupy the SCR
inside the dielectric (as shown in Fig. 4 for Al2O3). More
important is the fact that an increase in n0 leads to an increase
of the total surface electron density N . This entails a stronger
restoring force from the plasma sheath so that the potential
well confining the space charge inside the dielectric becomes
steeper and the electrons in the SCR of the ESL are shifted
toward the surface; in other words, the z90% value increases
with n0. Mathematically, the steeplelike shape of the electron
distribution arises because a larger N leads through Eq. (57) to
a larger ηs which makes the potential steeper at the surface so
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FIG. 7. (Color online) Plasma-supplied surplus electron density
n at a SiO2 surface in contact with a helium discharge as a function of
the electron temperature (upper panel, n0 = 107cm−3) and the plasma
density (lower panel, kBTe = 2 eV) for TS = 300 K. The refined ESL
model without an ISR was employed to produce the data.

TABLE III. Surface density of electrons in the ESL N , wall
potential φW , plasma sheath ESL boundary z0, and the z90% value
for SiO2 in contact with a helium discharge at n0 = 107cm−3 for
different values of the electron temperature kBTe.

kBTe (eV) N (106cm−2) φW (V ) z0 (10−5cm) z90% (cm)

0.5 2.19 −1.77 7.27 −0.444
1 3.10 −3.53 6.11 −0.314
2 4.38 −7.07 5.14 −0.222
5 6.93 −17.7 4.086 −0.140

that the electron distribution is more peaked there. This trend
can be seen in the lower panel for Fig. 7.

A variation of the electron temperature kBTe has similar
effects as the variation of the plasma density. If kBTe increases,
the total surface density of electrons increases also, as can be
seen from Table III. As shown in the upper panel of Fig. 7,
this leads again to a steeplelike electron distribution which
is more concentrated at the surface the higher the electron
temperature is.

For a surface with negative electron affinity (MgO) the
surplus electrons are strongly bound in the image potential.
While a variation of kBTe or n0 changes the total number of
surplus electrons per unit area in the same way as for a surface
with positive electron affinity, the distribution of the surplus
electrons within the ESL is not affected significantly because
of the strong image interaction.

So far we have shown the potential and the electron
distribution in the ESL. Now, we will compare potential
and charge distribution in the ESL with the ones in the
plasma sheath. The electron distribution at the interface is the
quasistationary electron gas on top of the charge redistribution
due to the truncation of the solid that guarantees flux equality
at the sheath-ESL boundary z0. As already mentioned, not
included in this simple model is the flux of plasma electrons
and ions in the ESL before the electrons are trapped at
the surface and the ions recombine with the negative wall
charge. The electron and ion densities in this model are
thus discontinuous at z0. The potential, however, which has
been obtained from the integration of Poisson’s equation is
continuous and differentiable everywhere. Between the well
of the image potential and z0 the electron and ion flux from
the sheath would be important. The neglect of the charge
densities associated with these fluxes does however not affect
the potential because they are too small to have a significant
effect.

Figure 8 shows the ESL and the plasma sheath in front
of a MgO surface. Due to the negative electron affinity, the
plasma-supplied surface electrons are bound by the image
potential in front of the surface. In Fig. 8, we plot the electron
and ion density (upper panel), as well as the electric potential
(lower panel) over the distance from the surface z. Far from
the surface, the potential approaches the bulk plasma value
chosen to be zero. In the sheath the potential develops a
Coulomb barrier and reaches the wall potential φw at z0,
the distance where the sheath merges with the surface layer
(vertical dotted line). The wall potential is the potential just
outside to which the energies of the bulk states are referenced.
Closer to the surface the potential follows the attractive image
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FIG. 8. (Color online) Density of plasma-supplied surplus elec-
trons trapped in the ESL as well as electron and ion density in
the plasma sheath (upper panel) and potential (lower panel) for a
MgO surface in contact with a helium discharge (n0 = 107cm−3 and
kBTe = 2 eV). The data were obtained from the crude ESL model.

potential while at the surface the repulsive potential due to the
negative electron affinity prevents the electron from entering
the dielectric (only scarcely seen on the scale of the figure).

In Fig. 9 we finally plot the electron and ion densities (upper
panel) as well as the electric potential (lower panel) for SiO2.
Note the linear z axis in contrast to the logarithmic z axis of
Fig. 8. Due to the positive electron affinity, the excess electrons
constituting the wall charge penetrate deep into the dielectric
and occupy therefore the SCR of the ESL. Compared to the
variation of the electric potential in the sheath the band bending
in the dielectric induced by the wall charge is rather small, as
indicated by the variation of φ inside the dielectric. This is
because ε is large and the width of the SCR is narrow on the
scale of the sheath. Only on the scale of the ISR (a vertical line
at z = 0), the SCR of the ESL is wide.
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FIG. 9. (Color online) Density of plasma-supplied excess elec-
trons in the ESL as well as electron and ion density in the plasma
sheath (upper panel) and potential (lower panel) for a SiO2 surface in
contact with a helium discharge (n0 = 107cm−3 and kBTe = 2 eV).
The refined ESL model without an ISR was employed to produce the
data.

V. CONCLUSIONS

We have studied the potential and the charge distribution
across the interface of a plasma and a dielectric wall, treating
the plasma-induced wall charge as a quasistationary electron
gas trapped by and in thermal equilibrium with the dielectric.
Our approach is based on a model for a graded surface
including the offset between the potential just outside the
dielectric and the conduction-band minimum arising from the
redistribution of charge due to the truncation of the solid as
well as the image potential due to the dielectric mismatch at
the boundary. The missing electrons from the sheath populate
the interface potential and thereby form an electron surface
layer (ESL) which minimizes the grand canonical potential
of wall-thermalized excess electrons and satisfies Poisson’s
equation.

Within this model the boundary between the plasma sheath
and the ESL is given by the distance from the crystallographic
interface where the potential for the excess electrons turns
from the repulsive sheath potential into the attractive surface
potential. This distance is typically on the order of a micron. It
gives the position of an effective wall for plasma electrons and
ions and thus of the portion of the ESL which lays in front of
the surface. Most of the surplus electrons trapped in the ESL,
that is, the plasma-induced wall charge, will be, however, much
closer to the surface or even inside the dielectric depending on
the electron affinity.

We presented numerical results for the potential and the
distribution of the plasma-supplied surplus electrons at the
interface between a helium discharge and the surfaces of MgO,
Al2O3, and SiO2, respectively. The electron distribution within
the ESL strongly depends on the electron affinity. For negative
electron affinity, the conduction-band minimum is above the
potential just outside the dielectric. Hence, it is energetically
unfavorable for electrons to penetrate into the bulk and the
surface electrons are bound in the image potential in front of
the surface. In this case, their spatial profiles change little
over a variation of the surface temperature or the plasma
parameters. For positive electron affinity the conduction-band
minimum is below the potential just outside the dielectric and
the surface-bound electrons accumulate inside the wall. The
space charge in the bulk broadens if the surface temperature
is increased and becomes more peaked if the total surface
density of the electrons missing in the sheath is raised through
an increase in either the plasma density or the electron
temperature.

Separating the ESL into an interface-specific and a space-
charge region and modeling the bulk of the dielectric as an
intrinsic semiconductor, we also investigated how the ESL
merges with the bulk of the dielectric. This is particularly
important for dielectrics with small energy gaps and posi-
tive electron affinities, where excess electrons coming from
the sheath accumulate not in the image potential in front of the
surface but deep inside the wall. In this case the wall charge
may also induce a significant band bending.

Whereas the crude ESL model we proposed neglects the
space charge deep inside the bulk of the wall and is thus
only applicable to large band-gap dielectrics with negative
electron affinity, where basically the whole plasma-induced
wall charge is trapped in the image potential in front of the
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surface, the refined ESL model, keeping the interface-specific
region as well as the space-charge region of the ESL, provides
a quantitative description of the whole spatial structure of
the extended charge double layer which forms at a dielectric
plasma wall as a result of the electrons in the ESL and the
positive space charge in the plasma sheath.

The ESL can be regarded as that part of the plasma sheath
which is inside the plasma wall. It is thus the ultimate boundary
of a bounded gas discharge and constitutes, depending on

the electron affinity, either a quasi-two-dimensional electron
plasma in front of the wall or an electron(-hole) plasma inside
the wall.
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Phonon-mediated desorption of image-bound electrons from dielectric surfaces
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A complete kinetic modeling of an ionized gas in contact with a surface requires the knowledge of the
electron desorption time and the electron sticking coefficient. We calculate the desorption time for phonon-
mediated desorption of an image-bound electron as it occurs, for instance, on dielectric surfaces where de-
sorption channels involving internal electronic degrees of freedom are closed. Because of the large depth of the
polarization-induced surface potential with respect to the Debye energy, multiphonon processes are important.
To obtain the desorption time, we use a quantum-kinetic rate equation for the occupancies of the bound-
electron surface states, taking two-phonon processes into account in cases where one-phonon processes yield a
vanishing transition probability as it is sufficient, for instance, for graphite. For an electron desorbing from a
graphite surface at 360 K, we find a desorption time of 2�10−5 s. We also demonstrate that depending on the
potential depth and bound-state level spacing, the desorption scenario changes. In particular, we show that
desorption via cascades over bound states dominates unless direct one-phonon transitions from the lowest
bound state to the continuum are possible.

DOI: 10.1103/PhysRevB.81.155420 PACS number�s�: 52.40.Hf, 73.20.�r, 68.43.Nr

I. INTRODUCTION

Whenever at the surface of a solid the vacuum level falls
inside an energy gap, that is, whenever the electron affinity
of the surface is negative, polarization-induced external
surface states �image states� exist as it is known from
macroscopic electrodynamics.1 Originally predicted2 for
the surfaces of liquid and solid He, Ne, H2, and D2,
the existence of image states has by now been exper-
imentally verified for a great number of metallic3–11 as well
as insulating12–14 surfaces. In addition, there exist a variety
of dielectric materials, for instance, diamond,15–17 boron
nitride,18 and alkali-earth metal oxides,19–21 which have sur-
faces with a negative electron affinity. They should thus sup-
port image states. Interesting in this respect are also elec-
tronegative dielectric structures used in electron emitting
devices such as cesium-doped silicon oxide films22–24 and
GaAs-based heterostructures.25–27

In contrast to intrinsic surface states,28 originating either
from the abrupt disappearance of the periodic lattice poten-
tial or unsaturated bonds at the surface, image states are not
localized at the edge but typically a few Å in front of the
solid. An external electron approaching the solid from the
vacuum with a kinetic energy below the lowest unoccupied
intrinsic electron state of the surface may thus get trapped
�adsorbed� in these states provided it can get rid of its excess
energy. Once it is trapped, it may detrap again �desorb� if it
gains enough energy from the solid. Hence, in addition to
elastic and inelastic scatterings, the interaction of low-energy
electrons with surfaces may encompass physisorption—the
polarization-induced temporary binding of an electron to the
surface.

Unlike physisorption of neutral atoms and molecules,
which has been studied in great detail ever since the seminal
works of Lennard-Jones and collaborators,29–38 physisorption
of electrons has been hardly investigated. It is only until
recently that we pointed out39,40 that the charging of surfaces
in contact with an ionized gas, as it occurs, for instance, in

the interstellar medium,41–43 in the upper atmosphere,44 in
dusty laboratory plasmas,45,46 and in dielectrically bounded
low-temperature plasmas,47–52 could be perhaps microscopi-
cally understood as an electronic physisorption process.

Parameters characterizing physisorption of electrons at
surfaces are the electron sticking coefficient se and the elec-
tron desorption time �e. Little is quantitatively known about
these parameters, although they are rather important for a
complete kinetic description of bounded gas discharges �as it
is in fact also the case for the sticking coefficient and desorp-
tion time of neutral particles which play a central role for the
kinetic modeling of bounded neutral gases53–55�. Very often,
se and �e are simply used as adjustable parameters.

In view of the importance of se and �e for bounded plas-
mas, we adopted in Ref. 40 the quantum-kinetic approach
originally developed for the theoretical description of phys-
isorption of neutral particles37,38 to calculate se and �e for a
metallic surface. Neglecting crystal-induced surface states
and describing the metal within the jellium model, we ob-
tained for an ideal surface with a classical image potential
se�10−4 and �e�10−2 s. Although se seems to be rather
small, the product se�e�10−6 s, which is the order of mag-
nitude we expected from our study of charging of dust par-
ticles in low-temperature plasmas.39

Physisorption of an external electron implies energy ex-
change between the electron and the electronic and/or vibra-
tional elementary excitations of the surface. For a metallic
surface, creation and annihilation of internal electron-hole
pairs seem to be the main reason for electron energy relax-
ation at the surface.56,57 For a dielectric surface, however, the
typical energy of an internal electron-hole pair is of the order
of the energy gap, that is, for the dielectrics we are interested
in, a few electron volts. For typical surface temperatures, this
is way too large for electron-hole pairs to cause energy re-
laxation at the surface. At dielectric surfaces, it has to be
rather the creation and annihilation of phonons which lead to
electron energy relaxation.

For dielectrics with a large dielectric constant and a large
energy gap, the level spacing of the two lowest states in the
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�polarization-induced� surface potential turns out to exceed
the maximum phonon energy, which is, within the Debye
model, the Debye energy. Hence, in contrast to physisorption
of neutral particles, which typically involves a few bound
states with energy spacings not exceeding the Debye
energy,37 physisorption of electrons at �this type of� dielectric
surfaces takes place in a deep potential supporting deep
bound states whose energy spacings may be larger than the
Debye energy. Relaxation channels involving internal elec-
tronic degrees of freedom being closed, because of the large
gap, electron energy relaxation, and hence sticking and de-
sorption of electrons have to be controlled by multiphonon
processes.

Typical dielectric plasma boundaries are, in dusty
plasmas,45,46 graphite and melamine-formaldehyde and in di-
electric barrier discharges47–52 Duran glass, silicon dioxide,
and aluminum oxide. We suspect on empirical grounds that
plasma boundaries always support image states, if not intrin-
sically then due to chemical contamination from the dis-
charge. Based on this hypothesis, we investigate in the fol-
lowing, employing a simple model for the polarization-
induced interaction between an electron and a dielectric
surface,58,59 the desorption of an image-bound electron from
a dielectric surface. We are particularly interested in how
multiphonon processes affect the competition between direct
desorption, that is, the direct transition between bound and
unbound surface states, and cascading desorption,35 that is,
the successive climbing up of the ladder of bound surface
states until the continuum is reached.

For the plasma boundaries just mentioned, image states
have been so far only observed for graphite13 �see Table I for
the relevant material parameters�. Surprisingly, the measured
binding energy of the lowest image state, E1

exp�−0.85 eV, is
lower than the energy of the lowest bound state in the clas-
sical image potential, which should be in fact a lower
bound.2 Indeed, for �s=13.5, the dielectric constant of graph-
ite, E1

cl�−0.63 eV. Taking either E1
exp or E1

cl in conjunction
with ��D�0.22 eV, the Debye energy for graphite, 3.9 or
2.9 phonons would be required for a direct transition to the
continuum. The probability for an electron to detrap from the
lowest image state of graphite via such a transition would be
accordingly small. Cascades using higher-lying bound states
as intermediaries should therefore become rather important.
Indeed, for neutral particles, the enhancement of the desorp-
tion rate via cascades has been investigated by Gortel et al.35

for phonon-mediated desorption from a physisorbed state
and by Misewich et al.60 for desorption from a chemisorbed
state via repetitive electronic transitions.

In the case of a cascade, the largest energy difference an
image-bound electron has to overcome is the one between

the two lowest bound states. Using the classical image po-
tential for graphite, this difference would be 0.47 eV, imply-
ing that at most 2.35 phonons are required for getting a cas-
cade running from the lowest level. Hence, for graphite, with
its rather high Debye energy, the number of phonons in-
volved in physisorption of electrons is small enough to use it
as an expansion parameter for the transition probability. Tak-
ing moreover the recoil energy into account, the dipole-
active elementary excitation responsible for the polarization-
induced surface potential imparts onto the external
electron,59 two-phonon processes even turn out to suffice.
The other dielectrics have a much smaller Debye energy. The
number of phonons involved is thus much larger. Instead of a
brute force expansion, other approaches seem to be more
suitable in these cases.61–65

The outline of the remaining paper is as follows. First, in
Sec. II, we set up the quantum-kinetic rate equation for the
occupancies of bound surface states and introduce a classifi-
cation scheme for the depth of the surface potential. In Sec.
III, we describe the microscopic model for the electron-
surface interaction, including the static part which provides
the surface states involved in physisorption and the dynamic
part which drives the transitions between these states and is
thus responsible for desorption. In Sec. IV, we calculate the
transition probability up to fourth order in the displacement
field, thereby taking one- and two-phonon processes into ac-
count, which we believe to be sufficient for graphite. This
calculation is very lengthy66 and cannot be totally repro-
duced here. Appendixes A–C provide the required math-
ematical details. Finally, in Sec. V, we present and discuss
our results before we conclude in Sec. VI.

II. DESORPTION FROM MANY BOUND STATES

Following Gortel et al.,35 the kinetics in a manifold of
bound surface states can be described by a quantum-kinetic
rate equation. Assuming that once the electron is in an un-
bound surface state, it is immediately pushed away from the
surface, which is reasonable if we consider the electron as a
test electron desorbing from a negatively charged surface
�see Ref. 40 for more details�. The time evolution of the
occupancies of the bound surface states for the �test� electron
is given by35

d

dt
nq�t� = �

q�

�Wqq�nq��t� − Wq�qnq�t�� − Wcqnq�t� , �1�

where Wqq� is the probability for a transition from state q� to
state q and Wcq=�kWkq is the probability for a transition
from the bound state q to the continuum. In compact matrix
notation, Eq. �1� may be rewritten as

d

dt
n = Tn , �2�

where n is the N-dimensional column vector of the occupan-
cies of the bound surface states and T is the matrix of the
transition probabilities.

To determine the formal solution of this equation,

TABLE I. Material parameters for graphite.

Debye temperature TD 2500 K

Dielectric constant �s 13.5

TO phonon energy ��T 170 meV

Grüneisen parameter �G 1.7

Shear modulus � 5 GPa
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n�t� = exp�Tt�n�0� , �3�

the eigenvalue equation for the matrix T has to be solved. In
general, T is not symmetric. Thus, there are right and left
eigenvectors,35 e	 and ẽ	, respectively, which can be chosen
to be orthogonal to each other. In terms of the right eigen-
vectors of T,

n�t� = �
	

f	e−
	te	, �4�

where the coefficients f	 are determined by decomposing the
initial distribution into eigenfunctions according to

n�0� = �
	

f	e	. �5�

Due to the losses to the continuum all eigenvalues, −
	 turn
out to be negative.35 Hence, for sufficiently long times, the
image-bound electron escapes into the continuum and the
bound-state occupation vanishes, i.e., nq�t→��=0 ∀q. If
the transitions leading to losses to the continuum are much
slower than the transitions between bound states, i.e., Wcq
�Wqq�, the bound electron evaporates slowly into the con-
tinuum. One eigenvalue, 
0, is then considerably smaller
than all the others and its right eigenvector corresponds to
the equilibrium distribution nq

eq=eq
0. The general solution �4�

can then be split into two terms35

nq�t� = f0eq
0e−
0t + �

	0
f	eq

	e−
	t, �6�

where the first term gives the time evolution for an equilib-
rium occupation of the bound states whereas the second term
describes the fast equilibration of a distortion of the equilib-
rium occupation at the beginning of the desorption process.
It is subject to much faster transitions which will be com-
pleted soon after the beginning of the desorption process.
Since the fate of the electron for long times depends only on
the equilibrium occupation, we identify the inverse of the
desorption time with the lowest eigenvalue

�e
−1 = 
0. �7�

This conceptual framework of desorption requires surface
states and transition probabilities between them as input. For
dielectric surfaces, the transitions are driven by phonons
whose energy scale, within the Debye model, is the Debye
energy. It is therefore natural to measure energies in units of
the Debye energy ��D=kBTD. Important parameters charac-
terizing the potential depth are then

�q =
Eq

��D
and �qq� =

Eq − Eq�

��D
, �8�

where Eq�0 denotes the energy of the qth bound state. We
call the surface potential shallow if the lowest bound state is
at most one Debye energy beneath the continuum, i.e., �1
−1, one-phonon deep if the energy difference between the
lowest two bound states is less than one Debye energy, i.e.,
�12−1, and two-phonon deep if the energy difference be-
tween the lowest two bound states is between one and two
Debye energies, i.e., −1�12−2.

Shallow and one-phonon-deep potentials are typical for
physisorption of neutral atoms and molecules. Because of the
strong polarization-induced interaction between an external
electron and a surface, physisorption of electrons, however,
typically takes place in at least two-phonon-deep surface po-
tentials. Multiphonon processes should thus play an impor-
tant role.

III. ELECTRON-SURFACE INTERACTION

An electron in front of a solid surface feels a polarization-
induced attraction to the surface because of the coupling to
dipole-active excitations of the solid. Leaving aside inter-
band electronic excitations, which primarily affect the static
dielectric constant, the relevant modes for a dielectric mate-
rial are optical surface phonons.58,59

If, for a dielectric solid with negative electron affinity, the
kinetic energy of an external electron is less than the nega-
tive of the electron affinity, the electron cannot enter the
solid, which, for the purpose of the calculation, we assume to
fill the whole left half space �z�0�, being terminated at z
=0 with a surface whose lateral extension A is eventually
made infinitely large. Evans and Mills59 studied this situation
by variational means. They found that far from the surface,
the interaction potential is the classical image potential
known from elementary electrostatics but close to the sur-
face, the interaction potential is strongly modified by the
recoil energy resulting from the momentum transfer parallel
to the surface when the electron absorbs or emits a �dipole-
active� surface phonon.

The recoil energy makes the interaction potential not only
nonlocal for distances less than the bulk polaron radius zs

=�� /2m�s, where m is the mass of the electron, �s is the
static dielectric constant, and �s=�T

��1+�s� /2 is the fre-
quency of the surface phonon ��T is the TO-phonon fre-
quency�. Most importantly, it makes the interaction potential
finite at the surface, in contrast to the singular behavior of
the classical image potential. Denoting the lateral two-
dimensional momentum transfer by K� , the simplest regular
local approximation to the true interaction potential is59

V�z� = − e2�s − 1

�s + 1

�

A
�
K�

1

K

e−2K�z�

1 + �
2m�s

K2
, �9�

where K is the magnitude of the vector K� . It can be consid-
ered as a dynamically corrected classical image potential.
Indeed, neglecting in the denominator the recoil energy,
�K2 /2m, the integral over K� can be easily performed and
leads to

Vcl�z� = −
e2

4

�s − 1

�s + 1

1

z
, �10�

which is the classical image potential.
The dynamically corrected image potential �9� is attrac-

tive. The solution of the corresponding Schrödinger equation
will thus yield bound and unbound surface states. To make
an analytical solution feasible, we fit the dynamically cor-
rected image potential �9� to a 1 /z potential that is shifted
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along the z axis. Forcing the two potentials to coincide at the
surface, that is, at z=0, we obtain

V�z� � −
e2

4

�s − 1

�s + 1

1

z + zc
, �11�

with zc=zs /�. After the transformation z→z−zc, the
Schrödinger equation corresponding to the shifted surface
potential reads, in dimensionless variables x=z /aB and �
=2�2E /me4,

���x� + 	2�0

x
+ �
��x� = 0, �12�

where aB=�2 /me2 is the Bohr radius and �0= ��s−1� /4��s
+1�. Assuming that electrons cannot enter the dielectric sur-
face, we solve Eq. �12� with the boundary condition ��xc�
=0, where xc=zc /aB. The wave functions and energies for
bound and unbound surface states, together with the addi-
tional boundary conditions we have to impose on them, are
given in Appendix A.

Transitions between the eigenstates are due to dynamic
perturbations of the surface potential. The surface potential is
very steep near the surface. A strong perturbation arises
therefore from the longitudinal-acoustic phonon perpendicu-
lar to the surface which causes the surface plane to oscillate.

Including this type of surface vibrations and using the
eigenstates of Eq. �12� as a basis, the Hamiltonian for the
surface electron can be split into three parts

H = He
static + Hph

0 + He-ph
dyn , �13�

where the first term is the Hamiltonian for the electron in the
static surface potential,

He
static = �

q

Eqcq
†cq, �14�

the second term is the Hamiltonian of the free acoustic
phonons,

Hph
0 = �

Q

��QbQ
† bQ, �15�

where Q denotes a one-dimensional perpendicular wave vec-
tor, and the last term is the dynamic perturbation due to
surface vibrations. Denoting for simplicity both bound and
unbound eigenstates of the surface potential by �q�, it is
given by

He-ph
dyn = �

q,q�

�q��Vp�u,z��q�cq�
† cq. �16�

The displacement of the surface u is related to the phonon
creation and annihilation operators in the usual way

u = �
Q

� �

2��QNs
�bQ + b−Q

† � , �17�

with � the mass of the unit cell of the lattice. The perturba-
tion Vp�u ,z� can be identified as the difference between the
displaced shifted surface potential and the static shifted sur-
face potential. Recalling Eq. �11� and the transformation z
→z−zc, it reads

Vp�z,u� = −
e2�0

z + u
+

e2�0

z
, �18�

which, gearing toward a multiphonon calculation,35 we ex-
pand in a Taylor series in u,

Vp�z,u� =
e2�0

z2 u −
e2�0

z3 u2 +
e2�0

z4 u3 + O�u4� . �19�

IV. TRANSITION PROBABILITIES

A. Preparatory considerations

We intend to calculate the desorption time taking one- and
two-phonon processes into account. Hence, we need to
evaluate the transition probabilities Wqq� for one- and two-
phonon processes. In general, multiphonon processes have
two possible origins:32 �i� multiphonon terms in the pertur-
bation of the surface potential �19� and �ii� multiple actions
of the perturbation as it is encoded in the T-matrix corre-
sponding to He-ph

dyn .
Using expansion �19�, the dynamic perturbation He-ph

dyn can
be classified by the order in u. Up to third order,

He-ph
dyn = V1 + V2 + V3 + O�u4� , �20�

where in second-quantized form

V1 = �
Q

�
q,q�

Gq,q�
1 �Q��bQ + b−Q

† �cq
†cq�, �21�

V2 = − �
Q1,Q2

�
q,q�

Gq,q�
2 �Q1,Q2��bQ1

+ b−Q1

† ��bQ2
+ b−Q2

† �cq
†cq�,

�22�

V3 = �
Q1,Q2,Q3

�
q,q�

Gq,q�
3 �Q1,Q2,Q3��bQ1

+ b−Q1

† ��bQ2
+ b−Q2

† �

��bQ3
+ b−Q3

† �cq
†cq�. �23�

The matrix element of the electron-phonon interaction,

Gq,q�
n �Q1, . . . ,Qn� = 	 �

2�Ns

n/2 e2�0Zq,q�

n+1

��Q1
¯ �Qn

, �24�

involves the electronic matrix element

Zq,q�
n = �q�

1

zn �q�� , �25�

whose evaluation is sketched in Appendix B.
Quite generally, the transition probability from an elec-

tronic state �q� to an electronic state �q�� is given by32

R�q�,q� =
2�

�
�
s,s�

e−�Es

�
s�

e−�Es�
��s�,q��T�s,q��2

���Es − Es� + Eq − Eq�� , �26�

where �= �kBTs�−1, with Ts the surface temperature and �s�
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and �s�� are initial and final phonon states. We are only in-
terested in the transition between electronic states. It is thus
natural to average in Eq. �26� over all phonon states. The
delta function guarantees energy conservation.

The T matrix describing the interaction between the ex-
ternal electron and the acoustic phonons obeys the operator
equation

T = He-ph
dyn + He-ph

dyn GHe-ph
dyn , �27�

where G satisfies

G = G0 + G0He-ph
dyn G �28�

and G0 is given by

G0 = �E − H0 + i��−1, �29�

with H0=He
static+Hph

0 .
For a two-phonon process we need ��s� ,q��T�s ,q��2 in

fourth order in u. We thus iterate T up to third order in u,

T = V1 + V2 + V3 + V1G0V1 + V1G0V2 + V2G0V1

+ V1G0V1G0V1 + O�u4� , �30�

and write for the transition probability �26�

R�q�,q� = �
n=1

17

Rn�q�,q� , �31�

where the individual transition probabilities Rn�q� ,q� can be
classified by their order in u. The term of O�u2�,

R1:�s�,q��V1�s,q��s,q�V1
��s�,q�� , �32�

gives rise to the standard golden rule approximation.
Transition probabilities of O�u3� vanish as the expectation

value of an odd number of phonon creation or annihilation
operators is zero. We can thus drop from the calculation the
terms

R2:�s�,q��V1�s,q��s,q�V2
��s�,q�� , �33�

R4:�s�,q��V1�s,q��s,q�V1
�G0

�V1
��s�,q�� , �34�

R8:�s�,q��V2�s,q��s,q�V1
��s�,q�� , �35�

R12:�s�,q��V1G0V1�s,q��s,q�V1
��s�,q�� . �36�

The remaining transition probabilities are of O�u4� and de-
scribe two-phonon processes

R3:�s�,q��V1�s,q��s,q�V3
��s�,q�� , �37�

R5:�s�,q��V1�s,q��s,q�V2
�G0

�V1
��s�,q�� , �38�

R6:�s�,q��V1�s,q��s,q�V1
�G0

�V2
��s�,q�� , �39�

R7:�s�,q��V1�s,q��s,q�V1
�G0

�V1
�G0

�V1
��s�,q�� , �40�

R9:�s�,q��V2�s,q��s,q�V2
��s�,q�� , �41�

R10:�s�,q��V2�s,q��s,q�V1
�G0

�V1
��s�,q�� , �42�

R11:�s�,q��V3�s,q��s,q�V1
��s�,q�� , �43�

R13:�s�,q��V1G0V1�s,q��s,q�V2
��s�,q�� , �44�

R14:�s�,q��V1G0V1�s,q��s,q�V1
�G0

�V1
��s�,q�� , �45�

R15:�s�,q��V1G0V2�s,q��s,q�V1
��s�,q�� , �46�

R16:�s�,q��V2G0V1�s,q��s,q�V1
��s�,q�� , �47�

R17:�s�,q��V1G0V1G0V1�s,q��s,q�V1
��s�,q�� . �48�

A complete two-phonon calculation would take all these
transition probabilities into account as they stand. This is
however not always necessary. In the next section, we show
that the two-phonon transition probabilities contain terms
which are merely corrections to the one-phonon transition
probability �32�. Thus, for transitions already triggered by a
one-phonon process, it may in some cases be reasonable to
neglect, in a first approximation, these correction terms.

B. Calculation of the transition probabilities

The one-phonon transition probability R1�q� ,q� can eas-
ily be brought into the form of the golden rule35

R1�q�,q� =
2�

�
�
Q

Gq,q�
1 �Q��Gq,q�

1 �Q���nB���Q���Eq − Eq�

+ ��Q� + �1 + nB���Q����Eq − Eq� − ��Q�� ,

�49�

where the two terms in the curly brackets describe, respec-
tively, the absorption and emission of a phonon.

To evaluate transition probabilities numerically, we as-
sume the phonon spectrum to be adequately represented by
the Debye model. Sums over phonon wave numbers can thus
be transformed into integrals according to

�
Q

¯ =
3Ns

�D
3 �

0

�D

d��2. . . . �50�

Formula �C6� in gives the one-phonon transition probability
in compact form as used in the numerical calculation.

The manipulation of the two-phonon transition probabili-
ties is rather involved and cannot be reproduced entirely. In
order to illustrate the necessary steps, we take

R10�q�,q� =
2�

�
�
s,s�

e−�Es

�
s�

e−�Es�
�s�,q��V2�s,q�

��s,q�V1
�G0

�V1
��s�,q����Es − Es� + Eq − Eq��

�51�

as a representative example. It contains both types of inter-
actions: a simultaneous two-phonon interaction V2 and two
successive one-phonon interactions V1 linked by a virtual
intermediate state arising from the iteration of the T matrix.
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We begin the calculation with inserting into Eq. �51� the expressions for V1, V2, and G0 as given by Eqs. �21�, �22�, and
�29�, respectively. Inserting, furthermore, the resolution of the identity over electron and phonon states,

R10�q�,q� = −
2�

�
�
s,s�

e−�Es

�s�e
−�Es�

�
q1,q2

�
s1,s2

�s�� �
Q1,Q2

Gq�,q
�2� �Q1,Q2��bQ1

+ b−Q1

† ��bQ2
+ b−Q2

† ��s��s��
Q3

�Gq,q1

�1� �Q3���

��bQ3

† + b−Q3
��s1��s1,q1�

1

Es + Eq − H0 − i�
�s2,q2��s2��

Q4

�Gq2,q�
�1� �Q4����bQ4

† + b−Q4
��s����Es − Es� + Eq − Eq�� . �52�

Using the two identities

��x� =
1

2�
�

−�

�

eixtdt and
1

x − i�
= i�

−�

0

ei�x−i���d� �53�

and the fact that the free resolvent is diagonal with respect to the electron-phonon states �q ,s�, we obtain

R10�q�,q� = −
2�

�
�
q1

�
Q1,Q2,Q3,Q4

1

2�
�

−�

�

dt/� ei�Eq−Eq��t/� i�
−�

0

d�/� ei�Eq−Eq1
−i���/�Gq�,q

�2� �Q1,Q2��Gq1,q
�1� �Q3�Gq�,q1

�1� �Q4���

�

�
s,s�,s1

e−�Es

�
s�

e−�Es�
�s���bQ1

+ b−Q1

† ��bQ2
+ b−Q2

† ��s��s�eiEs�t+��/��bQ3

† + b−Q3
�e−iEs1

�/��s1��s1��bQ4

† + b−Q4
�e−iEs�t/��s�� , �54�

where all exponential factors containing electron energies have been placed in front of the phonon average. Employing

�s�eiEst/�= �s�eiHph
0 t/� and introducing vQ=bQ+b−Q

† , the above expression becomes

R10�q�,q� = −
2�

�
�
q1

�
Q1,Q2,Q3,Q4

1

2�
�

−�

�

dt/�ei��q−�q��ti�
−�

0

d�/�ei��q−�q1
−i���Gq�,q

�2� �Q1,Q2��Gq�,q1

�1� �Q3�Gq1,q
�1� �Q4���

���vQ3

† �t + ��vQ4

† �t�vQ1
vQ2

�� , �55�

where �� . . . ��=�se
−�Es�s� . . . �s� /�s�e

−�Es� is the average over phonon states. The operator vQ�t� evolves in time according to
Hph

0 . Hence, the four-point phonon correlation function appearing in Eq. �55� may be rewritten as

��vQ3

† �t + ��vQ4

† �t�vQ1
vQ2

�� = ei�Q3
�t+��ei�Q4

t��bQ3

† bQ4

† bQ1
bQ2

�� + ei�Q3
�t+��e−i�Q4

t��bQ3

† b−Q4
bQ1

b−Q2

† ��

+ ei�Q3
�t+��e−i�Q4

t��bQ3

† b−Q4
b−Q1

† bQ2
�� + e−i�Q3

�t+��ei�Q4
t��b−Q3

bQ4

† bQ1
b−Q2

† ��

+ e−i�Q3
�t+��ei�Q4

t��b−Q3
bQ4

† b−Q1

† bQ2
�� + e−i�Q3

�t+��e−i�Q4
t��b−Q3

b−Q4
b−Q1

† b−Q2

† �� �56�

and further evaluated by forming all possible contractions. Using

��bQ1

† bQ2
�� = �Q1,Q2

nB���Q1
� and ��bQ1

bQ2

† �� = �Q1,Q2
�1 + nB���Q1

�� �57�

and integrating over the times t and � finally yields

R10�q�,q� = −
2�

�
�
q1

�
Q1,Q2

Gq�,q
2 �Q1,Q1��Gq1,q

1 �Q2�Gq�,q1

1 �Q2���	2nB���Q1
�nB���Q2

�
��Eq − Eq� + ��Q1

+ ��Q2
�

Eq − Eq1
+ ��Q1

− i�

+ �2nB���Q1
�nB���Q2

� + nB���Q1
��

��Eq − Eq��

Eq − Eq1
+ ��Q1

− i�
+ 2nB���Q1

��1 + nB���Q2
��

��Eq − Eq� + ��Q1
− ��Q2

�

Eq − Eq1
+ ��Q1

− i�

+ �2nB���Q1
�nB���Q2

� + 2nB���Q2
� + nB���Q1

� + 1�
��Eq − Eq��

Eq − Eq1
− ��Q1

− i�

+ 2�1 + nB���Q2
��nB���Q1

�
��Eq − Eq� + ��Q1

− ��Q2
�

Eq − Eq1
− ��Q2

− i�

+ 2�1 + nB���Q1
���1 + nB���Q2

��
��Eq − Eq� − ��Q1

− ��Q2
�

Eq − Eq1
− ��Q1

− i�

 . �58�
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Similar expressions can be obtained for the other transition
probabilities.66 The formulas are all quite long. To gain more
insight, we classify two-phonon processes by the energy dif-
ference they can bridge. As can be seen in the above ex-
ample, this is controlled by delta functions which, quite gen-
erally, appear in two-phonon transition probabilities with
four different arguments: ��Eq−Eq��, ��Eq−Eq����Q�,
��Eq−Eq�� ���Q1

−��Q2
��, and ��Eq−Eq�� ���Q1

+��Q2
��.

For the calculation of the transition probabilities, we can
drop all contributions proportional to ��Eq−Eq�� because in
the one-dimensional model we are considering it implies no
transition.

In the Debye model, the maximum phonon energy is the
Debye energy ��D. Hence for terms in the transition prob-
abilities that are proportional to ��Eq−Eq����Q�, the maxi-
mal energy difference between the initial and final states of
the electron cannot exceed one Debye energy. The two-
phonon transition probabilities R3, R5, R6, R7, R11, R15,
R16, and R17 have only contributions of this type. They are
thus only corrections to the one-phonon transition probability
R1.

Next, we consider terms proportional to ��Eq
−Eq�� ���Q1

−��Q2
��. The energies of the two phonons

��Q1
and ��Q2

are both between zero and the Debye energy
��D. As they appear with different signs in the delta func-
tion, the energy difference between the initial and final states
of the electron can range from −��D to ��D. Thus these
contributions do not allow to bridge levels that are farther
apart than one Debye energy and are thus again merely cor-
rections to the one-phonon transition probability R1.

Finally, we look at the contributions to the transition prob-
abilities proportional to ��Eq−Eq�� ���Q1

+��Q2
��. The en-

ergy difference that can be bridged by this type of process is
between zero and two Debye energies. Up to an energy dif-
ference of one Debye energy, these processes are again cor-
rections to the one-phonon transition probability. But for en-
ergy differences between one and two Debye energies, these
are the only processes that contribute to the transition prob-
ability.

This analysis leads us to divide the two-phonon processes
into two groups, one-Debye-energy transitions and two-
Debye-energy transitions. One-Debye-energy transitions en-
able transitions between states that are at most one Debye
energy apart, i.e., −1��q,q��1. Two-Debye-energy transi-
tions enable transitions between states that are between one
and two Debye energies apart, i.e., −2��q,q��−1 and 1
��q,q��2.

All the transition probabilities in the two-phonon approxi-
mation contribute to one-Debye-energy transitions, but only
the transition probabilities R9, R10, R13, and R14 contribute
to two-Debye-energy transitions. Among the contributions to
the one Debye energy transitions, the golden rule transition
probability is the only “true” one-phonon process.

In the following, we assume that for one-Debye-energy
transitions, the one-phonon transition probability �49� domi-
nates the corrections from the two-phonon transition prob-
abilities. Only when the one-phonon transition probability is
zero, which is the case for two-Debye-energy transitions, we
will take two-phonon processes into account. Hence, in our

numerical calculation, we use for one-Debye-energy transi-
tions the one-phonon transition probability,

Wq�q = R1�q�,q� , �59�

and for two-Debye-energy transitions the two-phonon transi-
tion probability

Wq�q = R̃9�q�,q� + 2 Re R̃10�q�,q� + R̃14�q�,q� , �60�

where the transition probabilities R̃9, R̃10, and R̃14 denote
those parts of R9, R10, and R14 which give rise to two-
Debye-energy transitions. They are given by Eqs.

�C9�–�C11�. The transition probability R̃13 does not appear

explicitly. It is the complex conjugate to R̃10 and thus sub-
sumed in the second term on the right-hand side of Eq. �60�.

C. Regularization

The transition probabilities for the two-phonon processes
contain, in the present form, divergences. Specifically within
the two-Debye-energy approximation, which takes two-
phonon processes into account only for transitions connect-
ing �bound and unbound� surface states which are between
one and two Debye energies apart, the transition probabilities

R̃10 and R̃14 make trouble.
The divergences are artifacts of our one-dimensional

model. They arise from the quantization of the electron mo-
tion perpendicular to the surface in conjunction with the har-
monic approximation for the lattice. The former gives rise to
arbitrarily sharp electronic energy levels for the bound states
while the latter leads to infinite phonon lifetimes. Some di-
vergent terms, for instance, I�2�

3 �2,1 ;2� and I�2�
6 �2,1 ;2 ,2� ap-

pearing, respectively, in the transition probabilities R̃10�2,1�
and R̃14�2,1� �see Appendix C�, can be traced back to the
diagonal matrix element of the linear electron-phonon inter-
action �21� and could thus be eliminated with a dressing
transformation of the type used by Gortel and co-workers.36

But other divergences, for instance, the one in the integral

I�2�
6 �k� ,q ;q1 ,q1� which appears in the rate R̃14�k� ,q�, cannot

be removed in that manner. We decided therefore to regular-
ize the divergences of the transition probabilities by taking a
finite phonon lifetime into account which works in all cases.
The drawback of this procedure is that it turns divergences
only into resonances, whose width is set by the phonon life-
time, which thus becomes an important additional material
parameter.

In order to see how a finite phonon lifetime regularizes
the transition probabilities, we recall bringing the transition
probabilities into a numerically feasible form required to
evaluate time integrals over products of time-dependent pho-

non two-point functions. For the transition probability R̃10,
we showed this explicitly �cf. Eq. �54� and the text which
followed� but the same manipulations are necessary for the
other transition probabilities.66 Throughout, we assumed that
the time evolution of the phonons is governed by the free
phonon Hamiltonian Hph

0 . As a result, the two-point functions
acquired an undamped time dependence. In general, how-
ever, phonons interact because of the anharmonicities in the
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lattice potential. A more realistic model would thus lead to
phonon two-point functions whose time dependences are
damped. Ultimately, the damping leads to divergence-free
transition probabilities.

To account for the damping of phonons, we imagine the
retarded and advanced phonon Green’s functions to be given
by

GR,A�Q,�� =
1

� − �Q � i�Q
, �61�

where �Q is a decay constant arising from the phonon-
phonon interaction and the upper �lower� sign corresponds to
the retarded �advanced� Green’s function. Since the phonon
four-point functions appearing in the two-phonon transition
probabilities can be linked to these two functions, �Q can be
incorporated into the expressions for the transition probabili-
ties. Unfortunately, for the surfaces we are interested in, little
is known about the microphysics of phonons. We suggest
therefore to use a phenomenological estimate for �Q which
utilizes material parameters which, at least in principle,
could be measured67

�Q =
1

�
=

v
l

=
2�G

2 �Q
2 kBT

�V�D
, �62�

with �G the Grüneisen parameter, V the volume per atom,
and � the shear modulus.

In order to demonstrate how our regularization procedure
works, we consider, again as an example, a four-point func-
tion of the type appearing in Eq. �55�,

��vQ1

† �t1�vQ2

† �t2�vQ3
�t3�vQ4

�t4���

= ��bQ1

† �t1�bQ2

† �t2�bQ3
�t3�bQ4

�t4���

+ ��bQ1

† �t1�b−Q2
�t2�bQ3

�t3�b−Q4

† �t4���

+ ��bQ1

† �t1�b−Q2
�t2�b−Q3

† �t3�bQ4
�t4���

+ ��b−Q1
�t1�bQ2

† �t2�bQ3
�t3�b−Q4

† �t4���

+ ��b−Q1
�t1�bQ2

† �t2�b−Q3

† �t3�bQ4
�t4���

+ ��b−Q1
�t1�b−Q2

�t2�b−Q3

† �t3�b−Q4

† �t4��� . �63�

First, the four-point functions have to be broken up into two
point functions. For the first term, e.g., this means

��bQ1

† �t1�bQ2

† �t2�bQ3
�t3�bQ4

�t4���

= ��bQ1

† �t1�bQ3
�t3�����bQ2

† �t2�bQ4
�t4���

+ ��bQ1

† �t1�bQ4
�t4�����bQ2

† �t2�bQ3
�t3��� . �64�

Because of translational invariance, the two-point functions
are proportional to �Q1,Q2

even in the interacting case. The
diagonal elements of the expectation values in Eq. �64� can
be evaluated using the spectral theorem

��bQ
† �t��bQ�t��� =

1

2�
�

−�

�

Jb†b���e−i��t−t��d� �65�

and

��bQ�t�bQ
† �t���� =

1

2�
�

−�

�

Jb†b���e��e−i��t−t��d� , �66�

with the spectral function

Jb†b��� =
i�GR��� − GA����

e�� − 1
, �67�

which contains the damping factor �Q via the retarded and
advanced phonon Green’s functions. Note that we neglect in
the spectral function the contribution proportional to ����.
Since the formulas as they stand reproduce in the limit �Q
→0 the correct expressions for infinite phonon lifetime, we
conclude that the neglect of the ���� term is in this case
justified. After integration, Eqs. �65� and �66� reduce, respec-
tively, to

��bQ
† �t��bQ�t��� = nB��Q�e−i�Q�t−t��−�Q�t−t�� �68�

and

��bQ�t�bQ
† �t���� = �1 + nB��Q��e−i�Q�t−t��−�Q�t−t��. �69�

Because of the damping factors, the phonon four-point func-
tion in Eq. �55� becomes

��vQ1

† �t + �2�vQ2

† �t�vQ3
vQ4

��

= 2nB��Q1
�nB��Q2

�ei�Q1
�t+�2�−�Q1

�t+�2�ei�Q2
�t�−�Q2

�t�

+ 2�1 + nB��Q1
���1 + nB��Q2

��

�e−i�Q1
�t+�2�−�Q1

�t+�2�e−i�Q2
t−�Q2

�t� + ¯ , �70�

where the ellipsis stands for terms that do not allow for two-
Debye-energy transitions. Performing finally in Eq. �55� the
integral over t and �, with the phonon four-point function
replaced by Eq. �70�, the dominant contribution, that is, the
term giving rise to two-Debye-energy transitions only, can be
identified as

1

�

��Q1
+ �Q2

�

��Q1
+ �Q2

�2 + ��q − �q� � ��Q1
+ �Q2

��2

�q − �q1
� �Q1

��q − �q1
� �Q1

�2 + �Q1

2 �71�

and, for small decay constants �Q, approximated by
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���q − �q� � ��Q1
+ �Q2

��

�
�q� − �q1

� �Q2

��q� − �q1
� �Q2

�2 + �2�Q1
+ �Q2

�2 . �72�

Putting finally everything together, the corrected,

divergence-free transition probability R̃10 becomes

R̃10�q�,q�

= −
2�

�
�
q1

�
Q1,Q2

Gq�,q
�2� �Q1,Q1��Gq1,q

�1� �Q2�Gq�,q1

�1� �Q2���

�2nB���Q1
�nB���Q2

���Eq − Eq� + ��Q1
+ ��Q2

�

�g�Eq� − Eq1
− ��Q2

,2��Q1
+ ��Q2

�

+ 2�1 + nB���Q1
���1 + nB���Q2

��

���Eq − Eq� − ��Q1
− ��Q2

�

�g�Eq� − Eq1
+ ��Q2

,2��Q1
+ ��Q2

�� , �73�

where we have used the abbreviation

g�a,�a� =
a

a2 + �a
2 . �74�

A similar analysis can be performed for the transition prob-

ability R̃14. Introducing the function

f�a,b,�a,�b� =
ab + �a�b

�a2 + �a
2��b2 + �b

2�
, �75�

the corrected, divergence-free transition probability R̃14 is
then given by

R̃14 =
2�

�
�

q1,q2

�
Q1,Q2

Gq,q1

�1� �Q1�Gq1,q�
�1� �Q1��Gq,q2

�1� �Q2�Gq2,q�
�1� �Q2���nB���Q1

�nB���Q2
���Eq − Eq� + ��Q1

+ ��Q2
�

�f�Eq2
− Eq� + ��Q2

,Eq1
− Eq� + ��Q1

,2��Q1
+ ��Q2

,��Q1
+ 2��Q2

� + nB���Q1
�nB���Q2

���Eq − Eq� + ��Q1
+ ��Q2

�

�f�Eq2
− Eq� + ��Q2

,Eq1
− Eq� + ��Q2

,2��Q1
+ ��Q2

,2��Q1
+ ��Q2

� + �1 + nB���Q1
���1 + nB���Q2

��

���Eq − Eq� − ��Q1
− ��Q2

�f�Eq2
− Eq� − ��Q2

,Eq1
− Eq� − ��Q1

,2��Q1
+ ��Q2

,��Q1
+ 2��Q2

�

+ �1 + nB���Q1
���1 + nB���Q2

����Eq − Eq� − ��Q1
− ��Q2

�

�f�Eq2
− Eq� − ��Q2

,Eq1
− Eq� − ��Q2

,2��Q1
+ ��Q2

,2��Q1
+ ��Q2

�� . �76�

The transition probability R̃9 has no divergence and hence
requires no regularization. Equations �C20� and �C21� give
the final expressions for the corrected, divergence-free two-
phonon transition probabilities as used in the numerical cal-
culation.

V. RESULTS

We now insert the one- and �regularized� two-phonon
transition probabilities into the rate Eq. �1� to investigate
phonon-induced desorption for an electron image bound to a
dielectric surface. The two-phonon approximation is of
course only applicable to dielectrics which have a two-
phonon deep potential, for instance, graphite �see discussion
in Sec. I�. For graphite, the material parameters required for
a calculation of the desorption time are summarized in Table
I. Apart from the Debye temperature, which we varied to
study the dependence of the desorption time on the potential
depth, all numerical results were obtained for these param-
eters.

A. One-phonon transition probability

To set the stage, we start with presenting results for the
desorption time �e calculated with one-phonon processes

only, although these times do not apply to any of the dielec-
tric materials we mentioned. First, we discuss the depen-
dence of the desorption time on the surface temperature. If �e
is much larger than the time, the electron needs to thermally
equilibrate with the surface, prior to desorption, and electron
surface states are populated according to nq�exp�−Eq /kTs�.
Since for q�2, −Eq /kTs�−E1 /kTs, this means that the elec-
tron basically desorbs from the lowest surface bound state.
Desorption requires therefore transitions from the lowest
bound state to the upper bound states and finally to the con-
tinuum. They entail the absorption of a phonon. The likeli-
hood of which is, according to Eq. �49�, proportional to the
Bose distribution nB and thus increases strongly with tem-
perature. This is reflected in Fig. 1 showing that an increase
of the surface temperature leads to an increase of �e

−1 over
several orders of magnitude. Variations of the Debye tem-
perature in contrast do not change the strong-temperature
dependence significantly.

We now move on to study the effects of the potential
depth on desorption. In Sec. II, we explained how the poten-
tial depth can be classified by the maximum phonon energy,
the Debye energy ��D. The relative depth of the potential
can be changed easily by tuning the Debye energy while
keeping the absolute potential depth constant. This is advan-
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tageous from the technical perspective since the cumbersome
calculation of the electronic matrix elements Zqq�

n does not
have to be repeated. In order to keep the level of phonon
excitation constant while the Debye temperature is varied,
we set the inverse surface temperature constant

� =
��D

kBTS
. �77�

Figure 2 shows �e
−1 depending on the Debye temperature TD.

The lower the TD, the larger the effective potential depth. For
a one-phonon-deep potential, TD2707 K, the lowest level
is coupled to at least one other bound state by a one-phonon
process. In this region, the calculation of �e

−1 using one-
phonon processes only is applicable and leads to an increase
of �e

−1 with increasing TD, that is, with decreasing effective
potential depth. This is what one would expect as it should
be easier to get the energy required to bridge a smaller en-
ergy difference than a larger one. For a shallow potential,
TD4029 K, the lowest bound state can be emptied directly
to the continuum. This leads to a substantial increase of �e

−1

signaled by the kink. The main conclusion at this point is that

direct transitions which are only possible for a shallow po-
tential are more effective than a cascade of transitions which
are the only means of emptying a deep potential.

To gain further insight, we identify the most relevant cas-
cade. The one-phonon-deep potential, for which the transi-
tion between the lowest two bound states is a one-phonon
process, can be subdivided further, depending on the acces-
sibility of the higher bound states. For the one-phonon-deep
potential, the lowest level does not couple to the continuum
directly, but it is coupled to at least the second bound state.
Transitions between the lowest bound state and the third,
fourth, fifth, etc. bound states may or may not be possible.
For example, for �1,2−1�1,3 only the second bound
state, for �1,3−1�1,4 the second and third bound states,
and hence for �1,n−1�1,n+1 the second to nth bound
state can be reached from the lowest state.

These accessibility thresholds mark the opening of new
desorption channels when the potential depth is reduced. Fig-
ure 3 shows that when the second, third, or fourth level be-
comes available from the lowest level, �e

−1 increases sud-
denly, although these steps are small. We deduce that the first
leg of the cascade to the continuum is predominantly the
transition to the second level.

The question arises as to how important the higher bound
states n=3,4 ,5 , . . . are as intermediate steps for the second
leg of a desorption cascade. To investigate this, we calculated
�e

−1 with different numbers of bound states. The image po-
tential has an infinite sequence of bound states, yet for prac-
tical reasons we can take only a finite number of bound states
into account. Figure 4 confirms that adding higher bound
states to the calculation �e

−1 saturates quickly. Neglecting all
but a few bound states, say seven, is therefore justified. With
two bound states, the value of �e

−1 amounts already to about
two thirds of the value obtained with 16 bound states. Hence,
the second leg of the dominant desorption channel is a direct
transition from the second bound state into the continuum.
The reason for the importance of the second level lies in the
matrix element Zq,q�

2 which is large for low bound states for
which more probability density is concentrated near the sur-
face where the dynamic perturbation inducing desorption is
strongest.
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FIG. 1. �Color online� Inverse desorption time �e
−1 in the one-

phonon approximation as a function of the surface temperature TS

for a one-phonon deep potential �TD=3000 K, TD=4029 K� and
a shallow potential �TD=4400 K�.
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FIG. 2. �Color online� Inverse desorption time �e
−1 in the one-

phonon approximation as a function of the Debye temperature TD

for different inverse temperatures �. Tuning TD the potential can be
made shallow �TD4029 K�, one-phonon deep �2707 K�TD

�4029 K�, or two-phonon deep �TD�2707 K� for which desorp-
tion by one-phonon processes is impossible.
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FIG. 3. �Color online� Inverse desorption time �e
−1 in the one-

phonon approximation as a function of the Debye temperature for a
high surface temperature ��=5�. The small steps under the red ar-
rows coincide with the onset of transitions from the lowest to the
second, third, fourth, fifth, etc. bound states.
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B. Two-phonon transition probability

Under the assumption that the true one-phonon transition
probability �49� dominates for one-Debye-energy transitions
the corrections coming from the two-phonon transition prob-
abilities, the latter need only be considered for two-Debye-
energy transitions, for which the transition probabilities
would be zero otherwise. All the data presented in this sec-
tion were obtained within this approximation.

For TD=2500 K, the numerical results apply to an elec-
tron image bound to graphite, which has, in our notation, a
two-phonon-deep surface potential. Indeed, using the dy-
namically corrected image potential, we find for the lowest
two image states of graphite E1=−0.347 eV and E2=
−0.114 eV. Hence, �12=−1.06 implying −1�12−2 and
thus a two-phonon-deep surface potential. Within our main
assumption that the transition probability corresponding to
the minimum number of phonons needed to open for the first
time a particular transition is the dominant one, the two-
phonon approximation is sufficient for graphite; n-phonon
processes with n�3 should yield only small corrections.

Figure 5 concerns once more the dependence of �e
−1 on the

Debye temperature, but this time also for Debye tempera-
tures leading to two-phonon-deep potentials �TD�2707 K�.
Using one-phonon transition probabilities only, �e

−1 would
drop from a finite value to zero when the one-phonon-deep
potential ��12−1� becomes two-phonon deep ��12�−1�.
This happens at TD=2707 K. Including two-phonon transi-
tion probabilities leads to a finite �e

−1 even for two-phonon-
deep potentials. The data in Fig. 5 for TD=2500 K apply to
graphite �thin vertical line�. For instance, for �=7, that is,
Ts�360 K, we find �e

−1�5�104 s−1 and hence a desorp-
tion time �e�2�10−5 s.

If a two-phonon deep potential is made shallower so that
it becomes one-phonon deep at �12=−1, the stronger one-
phonon transitions set in and �e

−1 increases considerably. For
high surface temperatures, for instance for �=5, �e

−1 in-
creases about fivefold. Hence, for high surface temperatures,

the one-phonon transition probabilities dominate their two-
phonon corrections as expected. For lower surface tempera-
tures, however, the increase in �e

−1 at the onset of one-phonon
transitions becomes smaller. For instance, for �=7, it
amounts only to a factor of 2. For very low surface tempera-
tures, �e

−1 even drops at the threshold, e.g., for �=20, by
about 40% �not shown in Fig. 5�. In this case, our assump-
tion that the one-phonon transition probability dominates its
two-phonon corrections is clearly not justified. An accurate
calculation of �e

−1 for a one-phonon-deep potential near �12
=−1 requires therefore a calculation with all two-phonon
transition probabilities included.

Within our model for the polarization-induced surface po-
tential, graphite is very close to the �12=−1 threshold. The
neglected two-phonon corrections to the one-phonon transi-
tion probabilities, however, would be only critical if �12
were slightly larger than −1, not smaller, as it is in fact the
case. Despite the approximations, we expect our numerical
results to be reasonable for graphite, especially at higher
temperatures, where the resonances of the regularized two-
phonon transition probabilities, which are the reminiscences
of the divergences of the original transition probabilities, are
washed out making the transition probabilities rather robust
against small changes in model parameters.

Figure 6 compares the dependence of �e
−1 on the surface

temperature for the potential depths shallow, one-phonon
deep, and two-phonon deep, as realized by different values
for the Debye temperature. For all potential depths, �e

−1 in-
creases with surface temperature. The increase of �e

−1 for
shallow and one-phonon-deep potentials is about the same
and significantly steeper than for two-phonon deep poten-
tials. For high temperatures, therefore, desorption from two-
phonon-deep potentials lags behind desorption from one-
phonon-deep potentials.

For the calculation with one-phonon transitions included
only, we identified the second bound state as the most im-
portant intermediate state for the desorption cascade. We
now study the role of intermediate bound states when two-
phonon processes are taken into account. The goal is again to
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FIG. 4. �Color online� Inverse desorption time �e
−1 in the one-

phonon approximation as a function of the Debye temperature for
�=10 calculated with different numbers of bound states N. For N
=1, desorption occurs only due to direct transition to the continuum
which dominates the rate for a shallow potential �TD4029 K�.
For N1, cascade transitions allow for desorption from a one-
phonon-deep potential �2707 K�TD�4029 K�. In this case, the
second bound state gives the most important contribution.
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FIG. 5. �Color online� Inverse desorption time �e
−1 in the two-

phonon approximation as a function of the Debye temperature TD

for a two-phonon �TD�2707 K� and a one-phonon-deep potential
�TD2707 K� for different surface temperatures �. At TD

=2707 K, the onset of one-phonon transitions between the lowest
two states, �e

−1, increases considerably. Data for TD=2500 K apply
to graphite �thin vertical line�.
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reveal the relative importance of direct desorption vs. de-
sorption via cascades. Figure 7 shows that �e

−1 saturates
quickly with the number of bound states considered. Calcu-
lating �e

−1 with only the two lowest bound states included
gives essentially the correct result. In the case of the one-
phonon calculation, we inferred from the fact that we need
only two bound states, that the transition from the first to the
second state is the most important one. Within the two-
phonon calculation, however, the interpretation is not that
simple because an additional bound state besides the lowest
one has two influences: first, it makes cascade transitions
with an intermediate bound state possible and second, it al-
ters the transition probability for direct transitions from the
lowest bound state to the continuum because it also acts as a
virtual intermediate state in the contributions to the transition
probabilities that stem from the iteration of the T matrix.
Although the direct two-phonon transition probability from

the lowest bound state to the continuum is modified, it does
not increase significantly with additional virtual intermediate
bound states. Hence, the cascade transitions are by far more
important than the modified direct transitions and make up
almost the whole transition probability on their own.

In addition to the identification of the most efficient de-
sorption channel, Fig. 7 enables us to compare our results to
the ones obtained by Gortel et al.36 Their Figs. 1–3, 5, and 6
show �e

−1 for a single bound state as a function of the bound-
state energy, whereas our Fig. 7 shows �e

−1 as a function of
the Debye temperature, which is proportional to the inverse
of the potential depth. Hence, apart from scaling, Fig. 7 is
mirror-inverted compared to their figures. For N=1, our ap-
proach applies to desorption from a single bound state, the
situation studied by Gortel and co-workers. Despite the dif-
ferences in the surface potential, arising from the fact that we
are concerned with physisorption of an electron and Gortel et
al. with physisorption of an atom, we also find that for po-
tentials with depths allowing one-phonon transitions to the
continuum desorption is much faster than for potentials
whose depths require a two-phonon process for the transition
from the bound state to the continuum. This results in a steep
drop of �e

−1 at TD�2707 K, when the one-phonon-deep po-
tential becomes two-phonon deep. In contrast to Gortel et al.,
however, we can include in the two-phonon calculation the
other bound states. Then, for deep potentials, the stronger
cascades set in and lead to a substantial increase of �e

−1.
Lastly, we look at the relative importance of the two-

phonon processes arising, respectively, from the expansion
of the perturbation �19� and the iteration of the T matrix �30�.
A two-phonon process can be simultaneous, as encoded in
V2, or successive, as described by V1G0V1. Hence, the total
two-phonon transition probability �60� contains a contribu-
tion without virtual intermediate states, symbolically denoted
by �V2�2 �see Eq. �41�� and two contributions with virtual
intermediate states, symbolically denoted by �V1�2V2 and
�V1�4 �see Eqs. �42�, �44�, and �45��.

The inverse desorption time obtained from a calculation

where only two-phonon transitions due to R̃9, that is, due to
the process �V2�2 have been included is shown by the thin
green and blue lines in Fig. 7. For the direct transition from
the lowest bound state �N=1, thin green line� to the con-
tinuum the process, �V2�2 is always dominated by the pro-
cesses �V1�2V2 and �V1�4, as can be deduced by comparing
the thick and thin green lines. For the more important cas-
cade �N=2, thin blue line�, however, the situation is more
subtle. The processes �V1�4 and �V1�2V2, exhibiting reso-
nances at �12=−1 �recall Eqs. �73� and �76� for the regular-

ized two-phonon transition probabilities R̃10 and R̃14, re-
spectively� are important only near �12=−1, that is, in the
vicinity of TD=2707 K. Far away from TD=2707 K, it is in
fact the process �V2�2 which gives the main contribution, as
can be seen from the thin and thick blue lines in Fig. 7.
Hence, depending on the type of the desorption process �di-
rect vs. indirect via cascades�, the energy difference between
initial and final states, and the energy of the virtual interme-
diate states either of the two-phonon processes, �V2�2,
�V1�2V2, and �V1�4, may be the most important one and nei-
ther can thus be neglected.
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FIG. 6. �Color online� Inverse desorption time �e
−1 in the two-

phonon approximation as a function of the surface temperature for
different potential depths. For high surface temperatures, desorption
from a two-phonon-deep potential �TD=2700, 2500, 2300 K� is
significantly slower than desorption from a one-phonon-deep poten-
tial �TD=2710, 3000 K� or a shallow potential �TD=4100 K�.
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FIG. 7. �Color online� Inverse desorption time �e
−1 in the two-

phonon approximation for �=5 as a function of the Debye tempera-
ture TD calculated with different numbers of bound states N. Above
TD=2010 K, the continuum is accessible from the lowest bound
state by two-phonon processes; above TD=4029 K by one-phonon
processes. For TD�2707 K, the potential is two-phonon deep, for
2707 K�TD�4029 K it is one-phonon deep, and above TD

=4029 K it is shallow. For the thin lines labeled with �V2�2, the

two-phonon process has been calculated using R̃9 only.
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The role of simultaneous multiphonon vs. successive one-
phonon processes has been also studied by Gumhalter and
Šiber61–65 in the context of inelastic atom-surface scattering.
In accordance with our observation of the dominance, in di-
rect transitions, of �V1�4 and �V1�2V2 over �V2�2, Šiber and
Gumhalter63 found that the main contribution to the inelastic
multiphonon scattering probability stems from successive
one-phonon processes and not from simultaneous mul-
tiphonon processes. Inelastic atom-surface scattering may
also feature phonon-mediated resonances because in suc-
cessive scattering events, bound states in the atom-surface
potential act as virtual intermediate states in continuum-
continuum transitions.64,65 In Gumhalter’s cumulant
formalism,62 this is encoded in the energy denominators of
the operators he used to construct the scattering matrix for
atom-surface scattering �see, for instance, Eq. �241� in Ref.
62 which represents, in our notation, the sequence V1G0V1�.

VI. CONCLUSIONS

We investigated phonon-mediated desorption of an
image-bound electron from dielectric surfaces using a
quantum-kinetic rate equation for the occupancies of the
bound surface states for the electron. To avoid the unphysical
divergence of the classical image potential, we included the
recoil experienced by the electron when it couples to the
dipole-active modes responsible for the polarization-induced
interaction between the electron and the surface. Due to the
coupling to bulk acoustic phonons, an electron initially oc-
cupying bound surface states may desorb when it gains
enough energy to either directly reach an extended state or to
successively climb up the ladder of bound states. To allow
for an efficient calculation of the electronic matrix elements
entering the transition probabilities in the quantum-kinetic
rate equation, we derived asymptotic approximations for the
electron wave functions and matrix elements.

For the dielectric materials relevant for bounded gas dis-
charges �graphite, silicon oxide, aluminum oxide� or electron
emitting devices �Cs-doped glass and GaAs heterostruc-
tures�, the energy spacing of at least the two lowest image
states is larger than the Debye energy. Hence, provided the
surface temperatures are low enough for the electron to ba-
sically desorb from the lowest bound state, phonon-induced
desorption has to occur for these materials via multiphonon
processes, as they arise from the expansion of the electron-
surface interaction potential with respect to the displacement
field �originating from acoustic phonons� and the iteration of
the T-matrix encoding the successive scattering of the exter-
nal electron on the displacement field. Desorption channels
involving internal electronic degrees of freedom are closed
because the typical surface temperatures are too low for ex-
citing these high-energy modes.

We presented results for a two-phonon-deep surface po-
tential, where the energy difference between the lowest two
bound states is between one and two Debye energies. Clas-
sifying two-phonon processes by the energy difference they
allow to bridge in one- and two-Debye-energy transitions,
we included two-phonon transition probabilities only for
two-Debye-energy transitions, that is, for transitions where

the one-phonon transition probability vanishes. We regular-
ized moreover spurious singularities in the two-phonon tran-
sition probabilities by taking a finite phonon lifetime into
account.

The material parameters used for the numerical calcula-
tion apply to graphite, where the two-phonon approximation
is applicable. For a surface temperature of 360 K, we find an
electron desorption time of 2�10−5 s. Besides producing an
estimate for the time �e with which an image-bound electron
desorbs from a graphite surface, we also investigated, as a
function of the surface temperature and the potential depth,
the relative importance of direct vs. cascading desorption
channels. For that purpose, we used the Debye energy as an
adjustable parameter.

As expected, the inverse desorption time, �e
−1, depends

strongly on the surface temperature, varying several orders
of magnitude when the surface temperature changes. De-
pending on the depth of the surface potential, we identified
various desorption scenarios. They are summarized in Fig. 8.
For a shallow potential, all transitions between the bound
states and the continuum are one-phonon processes. The
lowest bound state can be emptied directly to the continuum.
This is more efficient than the detour via higher bound states.
For a one-phonon-deep potential, the transition from the low-
est bound state to the continuum is a two-phonon process,
whereas the transition to the second bound state and from
there to the continuum is a one-phonon process. In this case,
the cascade with two one-phonon processes is more efficient
than the direct two-phonon process. For a two-phonon-deep
potential, both the direct transition from the lowest bound
state to the continuum and the transition form the lowest
bound state to the second bound state are two-phonon pro-
cesses. The direct transition to the continuum is much
slower, so that the detour via the second state is the faster
channel.

For most dielectrics of practical interest, more than two
phonons are required implying that for these materials the
desorption time for an image-bound electron may be in fact
rather long. Indeed, in an ingenious experiment, using a
field-effect transistor setup with the gate replaced by an ex-
ternally provided electron surface charge, Biasini and
co-workers25,26 determined the desorption time for an elec-

FIG. 8. �Color online� Desorption channels depending on the
potential depth. Left panel shows a shallow potential, middle panel
shows a one-phonon-deep potential, and right panel shows a two-
phonon-deep potential. For the shallow potential, the predominant
desorption channel �bold orange� is a direct transition to the con-
tinuum; for a deep potential the cascade via the second level is the
most important channel. Full lines are one-phonon processes,
dashed lines two-phonon processes, and ED=��D=kBTD.
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tron on a GaAs surface. They obtained 0.48 s which is rather
long indeed but not unexpected, from our point of view, be-
cause the energy difference between the lowest two image
states of GaAs, obtained from the dynamically corrected im-
age potential, is �E12=−0.152 eV implying more than five
phonons to be necessary for that transition ���D=0.03 eV
for GaAs�, which makes it accordingly unlikely.

In principle, the device of Biasini and co-workers25,26

would also allow to determine the electron sticking coeffi-
cient, making it a promising tool for a quantitative experi-
mental investigation of physisorption of electrons specifi-
cally at GaAs surfaces. The empirical data about �e and se
are however sparse in general. In view of the importance
these two parameters have for the complete kinetic modeling
of bounded plasmas, it is unacceptable to use them as adjust-
able parameters, as it is currently the case. We encourage
therefore experimental groups to also design devices for the
investigation of electron physisorption at surfaces which are
used or naturally appear as boundaries of low-temperature
gas discharges.
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APPENDIX A: SCHRÖDINGER EQUATION FOR
SURFACE STATES

To obtain bound and unbound surface states, the
Schrödinger equation �12� has to be solved with the proper
boundary conditions. First, we consider bound states for
which the wave functions have to vanish at x=xc and for x
→�. Substituting y=2�0x /	, with 	=�−�0

2 /�, Eq. �12�
takes the form

���y� + �	

y
−

1

4
���y� = 0, �A1�

whose solutions are Whittaker functions.68 Hence, the wave
functions which vanish at x=xc and for x→� are

�q�x� =
1

�aBNq

W	,1/2	2�0x

	

 , �A2�

where Nq is a normalization constant defined by

Nq
2 = �

xc

�

dxW	,1/2
2 	2�0x

	

 . �A3�

The quantum number 	 is determined by satisfying the
boundary condition at the surface, W	,1/2�2�0xc /	�=0. This
gives an infinite sequence of real numbers 	 whose differ-
ences are however roughly one so that we can map them
one-to-one onto integers q, that is, q↔	. The energy of the
bound state labeled with q is thus given by

Eq = −
me4�0

2

2�2

1

	2 . �A4�

Continuum states vanish only at x=xc. Since for them the
energy is positive, 	 is imaginary. It is thus more convenient
to label them with the real number k=1 / �i	�. The wave func-
tion for continuum states is given by a linear combination of
Whittaker functions

�k�x� =
1

Nk
�W−i/k,1/2�2i�0kx� + cWi/k,1/2�− 2i�0kx�� ,

�A5�

where the constant,

c = − W−i/k,1/2�2i�0kxc�/Wi/k,1/2�− 2i�0kxc� , �A6�

is chosen to enforce the boundary condition ��xc�=0. Nor-
malizing the wave function in a box of length L leads to the
normalization constant Nk=�2Le�/k. The energy of the con-
tinuum states, finally, is given by

Ek =
me4�0

2

2�2 k2. �A7�

In the limit L→�, sums over continuum states can thus be
transformed into integrals according to66

�
k0

¯ =
�0L

aB�
� dk . . . , �A8�

where the L factor in front of the integral cancels with the �L
factor contained in the normalization constant Nk.

APPENDIX B: EVALUATION OF THE MATRIX
ELEMENTS

The electronic matrix element Zq,q�
n for two bound states

labeled, respectively, by q and q� reads

Zq,q�
n =

1

aB
nNqNq�

�
xc

�

dxW	,1/2	2�0x

	

 1

xnW	�,1/2	2�0x

	�

 .

�B1�

For the efficient numerical evaluation of Nq and Zq,q�
n , we use

an expansion of Whittaker functions for 	0 in terms of
Laguerre polynomials66

W	,1/2�x� = �
n=0

	�	 − 1�e−1/2xLn�x�
�	 − n��	 − n − 1���2 − 	�

. �B2�

To calculate the bound-state matrix element Zq,q�
n , we can

compute one matrix element after another. First, we choose
two states q and q� which fix the quantum numbers 	 and 	�
in the bound-state wave functions. Then, we integrate over x
and obtain plain numbers for the matrix element which can
be directly inserted into the calculation of the transition prob-
abilities.

The evaluation of the electronic matrix element is more
demanding if either one or both states are continuum states.

HEINISCH, BRONOLD, AND FEHSKE PHYSICAL REVIEW B 81, 155420 �2010�

155420-14

2 Thesis Articles

56



A wave function in the continuum is labeled by a real num-
ber k. If we were only interested in the value of the matrix
element for some k, we could follow the same strategy as for
bound states. Some transition probabilities however contain
sums over all electronic states, e.g., the sum over q1 in R10

�see Eq. �58��, which for continuum states implies an integral
over k. Hence, k is not merely a parameter that we can
specify in advance. It is rather a variable in a matrix element
which thus becomes a function of k,

Zq,k
n → Zq

n�k� = �
xc

�

dx�q�x�
1

aB
n−1xn�k�x� . �B3�

For the two-phonon calculation, we specifically need the
bound-continuum matrix element Zq,k

n for a given q and 0
�k�� and the continuum-continuum matrix element Zk,k�

2

for 0�k�� and k� small. Because of the complicated struc-
ture of the Whittaker function, the matrix elements cannot be
obtained straightforwardly. To make their calculation fea-
sible, we constructed approximate expressions for the con-
tinuum wave function �k�x� for small and large k, respec-
tively, calculated the matrix elements in these two limits, and
then interpolated between them with a Padé approximation.66

We begin with the limit k→0. In this limit, the
Schrödinger equation for the continuum states is

���x� +
2�0

x
��x� = 0, �B4�

which after the substitutions t=2�2�0x and �= t� takes the
form of the Bessel differential equation,69

�� +
1

t
�� + 	1 −

1

t2
� = 0. �B5�

Hence, in the limit k→0, the continuum wave function sat-
isfying the boundary condition �k�xc�=0 can be written as a
linear combination of Bessel and Neumann functions.

There is however one technical caveat. Bessel and Neu-
mann functions grow beyond limit for large x �see formula
�9.2.1� in Ref. 70� and cannot be normalized. Within the
matrix element, this is not dangerous because the decreasing
factors 1 /xn compensate the divergence at large x. The only
problem left is to find the prefactor by which we have to
multiply the linear combination so that it has for small x the
amplitude of the correct �k→0�x�. Once we have this factor,
the linear combination is normalized in the sense that its
envelope coincides for small x with the envelope of the cor-
rect �k→0�x�.

The most direct way to obtain the required multiplication
factor is to perform the limit k→0 in the continuum wave
function �A5�. Due to the complicated structure of the Whit-
taker function, this is however not feasible. Instead, it is
better to determine the factor from the solution of Eq. �B5�,

��x�k→0 = 2�2�0xJ1�2�2�0x� , �B6�

which satisfies the boundary condition ��0�=0. The solution
of Eq. �12� satisfying the same boundary condition is given
by

�k�x� = Ñk
−1M−i/k,1/2�2i�0kx� , �B7�

with the normalization constant

Ñk
−1 =� �

Lk�1 − e−2�/k�
. �B8�

In the limit k→0, Eq. �B7� merges into Eq. �B6� because

M−i/k,1/2�2i�0kx� →
k→0

ik�2�0xJ1��8�0x� . �B9�

For the normalization constant, we thus obtain Nk
−1

→�� / �Lk� for k→0. The fact that k and x are tied together
in the argument of M−i/k,1/2�2i�0kx� suggests that an approxi-
mation for small k is at the same time an approximation for
small x. Since we need the wave function only for small x
and small k, we expect the replacement �B9� to provide good
results for the desired normalization factor.

Since the amplitudes of Bessel and Neumann functions
are the same for large x, we can use the normalization ob-
tained for the Bessel function for the Neumann function as
well. A normalized approximation satisfying the correct
boundary condition, �k�xc�=0, is then given by

��x�k→0 =
1
�L
� �

1 + c̃2
�k2�0x�J1�2�2�0x�

− c̃N1�2�2�0x�� , �B10�

with

c̃ = − J1�2�2�0xc�/N1�2�2�0xc� . �B11�

Using Eq. �B10�, the matrix element Zqk
n can be evaluated in

the limit k→0. We find

Zq,k→0
n = �

xc

�

dx
�q�x��k→0�x�

aB
n−1xn =

�q
n�k

aB
n−1/2�LNq

, �B12�

where the k dependency is separated so that the remaining
integral gives a k-independent quantity, �q

n, which has to be
obtained numerically. Similarly,

Zk→0,k�→0 = �
xc

�

dx
�k�→0�x��k→0�x�

aBx2 =
�c

2�kk�

LaB
,

�B13�

with �c
2 again a constant to be determined numerically.

We now proceed to the approximation of the continuum
wave functions for large k. The higher the energy of the
continuum states, the lesser the potential at the surface
changes the plane-wave behavior far from the surface.
Therefore, in the limit k→�, we can accurately describe the
wave function by a plane wave. Using the asymptotic form
for the Whittaker function �Ref. 69�,
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W−i/k,1/2�2i�0kx� � e−i�0kxe�/2k, �B14�

the continuum wave function in the limit k→� satisfying the
correct boundary condition, �k�xc�=0, can be approximated
by

�k�x� = �2/L sin��0k�x − xc�� . �B15�

Employing, finally, the Fourier integral,71 the matrix ele-
ments for large k can be shown to be66

Zq,k→�
n =

1

aB
n−1/2�LNq

2�2n

��0k�3xc
n+1W	,1/2� 	2�0

	
xc


=
1

aB
n−1/2�LNq

bq
n 1

k3 �B16�

and

Zk�→0,k→�
2 =

1

LaB
� �

1 + c̃2

32

�0
3/2xc

3

��J0��8�0xc� − c̃N0��8�0xc��
�k�

k3

=
1

LaB
bc

2
�k�

k3 , �B17�

where the k-independent coefficients bq
n and bc

2 have to be
worked out again numerically.

Having calculated the leading terms for the matrix ele-
ments for small and large k, we can combine these two limits
via a Padé approximation in terms of �k. The coefficients are
chosen in such a way that the Padé approximation matches
the leading term of both limits: k→0 and k→�. Then, the
matrix elements read

Zq,k
n =

1
�LaB

n−1/2Nq

�q
nk1/2

1 + �q
nk7/2 , �B18�

where �q
n=�q

n /bq
n and

Zk,k�
2 =

1

LaB

�c
2k�1/2k1/2

1 + �c
2k7/2 , �B19�

where �c
2=�c

2 /bc
2.

APPENDIX C: TRANSITION PROBABILITIES IN A
COMPACT FORM

In this appendix, we list the one- and two-phonon transi-
tion probabilities as used in the numerical calculation of the
desorption time. We implicitly assume that q labels both
bound and unbound states. For a bound state, q is simply an
integer �to be mapped onto 	�q�� whereas for a continuum
state, q stands for a real number k. To obtain a compact form
for the transition probabilities, it is moreover convenient to
introduce dimensionless variables

x =
�

�D
, �C1�

�q =
Eq

��D
, �C2�

�q,q� =
Eq − Eq�

��D
, �C3�

� =
��D

kBT
, �C4�

��x� =
��

�D
. �C5�

The transition probability of O�u2�, that is, the one-phonon
transition probability employed in a golden rule approxima-
tion, is given by

R1�q�,q� =
2�

�
�
Q

Gq,q�
1 �Q��Gq,q�

1 �Q���nB���Q���Eq − Eq�

+ ��Q� + �1 + nB���Q����Eq − Eq� − ��Q��

=
3�e4�0

2

���D
2 Zq,q�

2 Zq,q�
2 �I�1�

1 �q�,q� + I�1�
2 �q�,q�� , �C6�

where

I�1�
1 �q�,q� =

− �q,q�

e−��q,q� − 1
for 0 � − �q,q� � 1 �C7�

and

I�1�
2 �q�,q� = �q,q��1 +

1

e��q,q� − 1
� for 0 � �q,q� � 1.

�C8�

Otherwise, I�1�
1 and I�1�

2 are zero. Depending on whether q and
q� denote bound or continuum states, the electronic matrix
element Zq,q�

2 is either given by Eq. �B1�, �B18�, or �B19�.
As explained in Sec. IV B, we keep only those parts of the

transition probabilities of O�u4� which give rise to what we
call two-Debye-energy transitions, which are transitions be-
tween states that are between one and two Debye energies
apart. In the unregularized form, that is, in the form which
diverges in particular situations �see Sec. IV C for a discus-
sion�, the two-phonon transition probabilities included in our
calculation are given by
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R̃9�q�,q� =
2�

�
�

Q1,Q2

Gq�,q
2 �Q1,Q1��Gq�,q

2 �Q2,Q2���2nB���Q1
�nB���Q2

���Eq − Eq� + ��Q1
+ ��Q2

�

+ 2�1 + nB���Q1
���1 + nB���Q2

����Eq − Eq� − ��Q1
− ��Q2

�� =
9�e4�0

2

�2�D
3 Zq,q�

3 Zq,q�
3 �I�2�

1 �q�,q� + I�2�
2 �q�,q�� ,

�C9�

R̃10�q�,q� = −
2�

�
�

Q1,Q2

Gq�,q
2 �Q1,Q1��Gq1,q

1 �Q2�Gq�,q1

1 �Q2����2nB���Q1
�nB���Q2

�
��Eq − Eq� + ��Q1

+ ��Q2
�

Eq − Eq1
+ ��Q1

− i�

+ 2�1 + nB���Q1
���1 + nB���Q2

��
��Eq − Eq� − ��Q1

− ��Q2
�

Eq − Eq1
− ��Q1

− i� �
= −

9�e6�0
3

��2�D
4 �

q1

Zq�,q
3 Zq,q1

2 Zq1,q�
2 �I�2�

3 �q�,q;q1� + I�2�
4 �q�,q;q1�� , �C10�

R̃14�q�,q� =
2�

�
�

q1,q2

�
Q1,Q2

Gq�,q1

1 �Q1�Gq1,q
1 �Q1��Gq�,q2

1 �Q2�Gq2,q
1 �Q2���

��nB���Q1
�nB���Q2

�
��Eq − Eq� + ��Q1

+ ��Q2
�

�Eq − Eq1
+ ��Q2

+ i���Eq − Eq2
+ ��Q1

− i��

+ nB���Q1
�nB���Q2

�
��Eq − Eq� + ��Q1

+ ��Q2
�

�Eq − Eq1
+ ��Q1

+ i���Eq − Eq2
+ ��Q1

− i��

+ �1 + nB���Q1
���1 + nB���Q2

��
��Eq − Eq� − ��Q1

− ��Q2
�

�Eq − Eq1
− ��Q2

+ i���Eq − Eq2
− ��Q1

− i��

+ �1 + nB���Q1
���1 + nB���Q2

��
��Eq − Eq� − ��Q1

− ��Q2
�

�Eq − Eq1
− ��Q2

+ i���Eq − Eq2
− ��Q2

− i���
=

9�e8�0
4

2�2�2�D
5 �

q1,q2

Zq�,q1

2 Zq1,q
2 Zq,q2

2 Zq2,q�
2 �I�2�

5 �q�,q;q1,q2� + I�2�
6 �q�,q;q1,q2� + I�2�

7 �q�,q;q1,q2� + I�2�
8 �q�,q;q1,q2�� ,

�C11�

where, in the limit �→0, the auxiliary integrals are defined by

I�2�
1 �q�,q� = �

−�q,q�−1

1

dx
x

e�x − 1

− �q,q� − x

e��−�q,q�−x� − 1
, �C12�

I�2�
2 �q�,q� = �

�q,q�−1

1

dxx�1 +
1

e�x − 1
���q,q� − x��1 +

1

e���q,q�−x� − 1
� , �C13�

I�2�
3 �q�,q;q1� = �

−�q,q�−1

1

dx
x

e�x − 1

− �q,q� − x

e��−�q,q�−x� − 1

1

�q,q1
+ x − i�

, �C14�

I�2�
4 �q�,q;q1� = �

�q,q�−1

1

dxx�1 +
1

e�x − 1
���q,q� − x��1 +

1

e���q,q�−x� − 1
� 1

�q,q1
− x − i�

, �C15�

I�2�
5 �q�,q;q1,q2� = �

−�q,q�−1

1

dx
x

e�x − 1

− �q,q� − x

e��−�q,q�−x� − 1

1

�q�,q1
− x + i�

1

�q,q2
+ x − i�

, �C16�

PHONON-MEDIATED DESORPTION OF IMAGE-BOUND… PHYSICAL REVIEW B 81, 155420 �2010�

155420-17

Article II

59



I�2�
6 �q�,q;q1,q2� = �

−�q,q�−1

1

dx
x

e�x − 1

− �q,q� − x

e��−�q,q�−x� − 1

1

�q,q1
+ x + i�

1

�q,q2
+ x − i�

, �C17�

I�2�
7 �q�,q;q1,q2� = �

�q,q�−1

1

dxx�1 +
1

e�x − 1
���q,q� − x��1 +

1

e���q,q�−x� − 1
� 1

�q�,q1
+ x + i�

1

�q,q2
− x − i�

, �C18�

I�2�
8 �q�,q;q1,q2� = �

�q,q�−1

1

dxx�1 +
1

e�x − 1
���q,q� − x��1 +

1

e���q,q�−x� − 1
� 1

�q,q1
− x + i�

1

�q,q2
− x − i�

. �C19�

The two-phonon transition probabilities R̃10 and R̃14 diverge for the situations studied in this paper. They have to be therefore
regularized. The regularization procedure outlined in Sec. IV C leads then to the divergence-free, regularized transition
probabilities

R̃10�q�,q� = −
9�e6�0

3

��2�D
4 �

q1

Zq�,q
3 Zq�,q1

2 Zq1,q
2 �I�2�

3� �q�,q;q1� + I�2�
4� �q�,q;q1�� , �C20�

R̃14�q�,q� =
9�e8�0

4

2�2�2�D
5 �

q1,q2

Zq�,q1

2 Zq1,q
2 Zq,q2

2 Zq2,q�
2 �I�2�
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where the integrals are given by

I�2�
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Phonon-mediated sticking of electrons at dielectric surfaces
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We study phonon-mediated temporary trapping of an electron in polarization-induced external surface states
�image states� of a dielectric surface. Our approach is based on a quantum-kinetic equation for the occupancy
of the image states. It allows us to distinguish between prompt and kinetic sticking. Because the depth of the
image potential is much larger than the Debye energy multiphonon processes are important. Taking two-
phonon processes into account in cases where one-phonon processes yield a vanishing transition probability, as
it is applicable, for instance, to graphite, we analyze the adsorption scenario as a function of potential depth and
surface temperature and calculate prompt and kinetic sticking coefficients. We find rather small sticking
coefficients, at most on the order of 10−3, and a significant suppression of the kinetic sticking coefficient due
to a relaxation bottleneck inhibiting thermalization of the electron with the surface at short time scales.

DOI: 10.1103/PhysRevB.82.125408 PACS number�s�: 52.40.Hf, 73.20.�r, 68.43.Mn

I. INTRODUCTION

A complete kinetic modeling of atmospheric,1

interstellar,2–4 or man-made bounded plasmas5–12 requires
boundary conditions for the distribution functions of the rel-
evant plasma species �electrons, ions, neutrals�, that is, a
quantitative microscopic understanding of the elementary
processes at the plasma boundary. Of particular importance
is the buildup of a quasistationary negative surface charge,
which not only depletes the electron density in front of the
boundary �sheath formation� but also acts as an electron res-
ervoir for surface-supported electron-ion recombination and
secondary electron emission which in turn affect the charge
balance in the bulk of the plasma.13 Despite its unquestioned
importance, little is quantitatively known about the micro-
physics of electrons at plasma boundaries. It is only until
recently that we proposed that the charging of plasma bound-
aries can be perhaps microscopically understood in terms of
an electron physisorption process.14,15

The physisorption scenario applies to a plasma electron
approaching a metallic or a dielectric boundary provided its
kinetic energy is large enough to overcome the Coulomb
barrier due to the charges already residing on the boundary
but small enough to make the surface appear as having a
negative electron affinity. If the electron can convert its en-
ergy into internal energy of the boundary, via exciting el-
ementary excitations of the solid, it may get stuck �adsorbed�
at the boundary. Later it may desorb again if it gains enough
energy from the boundary.

Like physisorption of neutral particles16–31 physisorption
of electrons is the polarization-induced temporary binding to
a surface. It can be characterized by a desorption time and a
sticking coefficient. At first glance physisorption of electrons
seems to be not much different from physisorption of neutral
particles. There are however important qualitative differ-
ences which warrant a separate theoretical investigation.

First, albeit not in the focus of our investigation, the long-
range 1 /z tail of the image potential leads to a finite-electron
sticking coefficient at vanishing electron energy and surface
temperature.27,32 This is in contrast to the quantum reflection,
that is, the vanishing sticking coefficient, one finds in this

limit for the short-ranged surface potentials typical for phy-
sisorption of neutral particles.24,31

Second, the surface potential in which physisorption of
electrons occurs, in particular, at plasma boundaries, consists
of a polarization-induced attractive part and a repulsive Cou-
lomb part due to electrons already adsorbed on the surface.
The limit of vanishing coverage, very often adopted in the
theoretical description of physisorption of neutral particles,
is thus only applicable to the very first �last� electron ap-
proaching �leaving� the boundary.

Third, in contrast to physisorption of neutral particles,
physisorption of electrons has to be always described quan-
tum mechanically because the image potential varies on a
scale comparable to the thermal de Broglie wavelength of the
electron.14 This is also the case for physisorption of
positronium.33–35

Finally, and this will be the theme of our investigation, the
polarization-induced image potential supports deep states, in
addition to shallow ones. Direct transitions from the con-
tinuum to deep bound states are very unlikely. Hence, a mod-
eling in terms of a quantum-kinetic rate equation for the
occupancy of the bound surface states,21,22 and Brenig’s dis-
tinction between prompt and kinetic sticking,21 is vital for a
correct description of electron physisorption. For phonon-
controlled adsorption and desorption, as it occurs at dielec-
tric surfaces, deep states also imply that multiphonon pro-
cesses have to be taken into account in the calculation of
state-to-state transition probabilities. This can be done either
via an expansion of the energy-dependent T matrix,16,18,26 the
method we are using,36 or via a Magnus-type resummation of
the time-dependent scattering operator.37–41

In the following we investigate adsorption of an electron
to a dielectric surface at finite temperature assuming an
acoustic longitudinal bulk phonon controlling electron en-
ergy relaxation at the surface. To avoid complications due to
finite coverage we focus on the first approaching electron.
Using the quantum-kinetic rate equation for the occupancy
of the image states of our previous work36 �thereafter re-
ferred to as I�, where we studied desorption of an image-
bound electron from a dielectric surface, we calculate prompt
and kinetic sticking coefficients. Compared to semiclassical
estimates42 they turn out to be extremely small. Instead on
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the order of 10−1 we find them to be at most on the order of
10−3. We also analyze in detail the adsorption scenario as a
function of surface temperature and potential depth. Most
notable, our results reveal an energy relaxation bottleneck
prohibiting, on a short time scale, thermalization of the elec-
tron with the surface, that is, the trickling through of the
electron from upper to deep states. The reduced accessibility
of deep states makes the kinetic sticking coefficient much
smaller than the prompt sticking coefficient in contrast to
what is usually found in physisorption of neutral particles.29

The remaining paper is structured as follows. In Sec. II,
we specify the quantum-kinetic approach of our previous
work concerning desorption �paper I �Ref. 36�� to the situa-
tion of adsorption and introduce prompt and kinetic sticking
coefficients. We then briefly recall in Sec. III the calculation
of the state-to-state transition probabilities based on a micro-
scopic model for the electron-surface interaction and an ex-
pansion of the T matrix for the dynamic part of that interac-
tion. Mathematical details not given can be found in I.
Finally, in Sec. IV, we present and discuss our results before
we conclude in Sec. V.

II. ELECTRON KINETICS

The probability for an approaching electron in the con-
tinuum state k to make a transition to any of the bound states
n of the polarization-induced image potential is given by the
prompt energy-resolved sticking coefficient,22

se,k
prompt = �t�

n

Wnk, �1�

where �t=2L /vz is the traveling time through the surface
potential of width L which, in the limit L→�, can be ab-
sorbed into the transition probability per unit time from the
continuum state k to the bound state n, Wnk. If the incident
unit electron flux �we consider only a single electron imping-
ing on the surface� is stationary and corresponds to an elec-
tron with Boltzmann distributed kinetic energies, the prompt
energy-averaged sticking coefficient is given by22

se
prompt =

�
k

se,k
promptke−�eEk

�
k

ke−�eEk
, �2�

where �e
−1=kBTe is the mean electron energy.

Prompt sticking coefficients are properly weighted sums
over state-to-state transition probabilities from continuum to
bound surface states. They give the probability for initial
trapping, which, according to Iche and Noziéres17 and
Brenig,21 is the first out of three stages of physisorption. The
second stage encompasses relaxation of the bound-state oc-
cupancy and the third stage is the desorption of the tempo-
rarily bound particle.

The second stage, which also includes transitions back to
the continuum, cannot be captured by simple state-to-state
transition probabilities. Instead, a quantum-kinetic rate equa-
tion for the time-dependent occupancy of the bound surface
states nn�t� has to be employed18,21 This equation describes

processes on a time scale much longer than the lifetime of
the individual surface states but shorter than the desorption
time.18,21,22 Following Gortel and co-workers,18,22

d

dt
nn�t� = �

n�

�Wnn�nn��t� − Wn�nnn�t��

− �
k

Wknnn�t� + �
k

�tWnkjk�t� , �3�

where Wn�n is the probability per unit time for a transition
from a bound state n to another bound state n�, Wkn and Wnk
are the probabilities per unit time, respectively, for a transi-
tion from a bound state n to a continuum state k and vice
versa, and

jk�t� = nk�t��t
−1 �4�

is the incident electron flux which, in principle, can be non-
stationary.

The solution to Eq. �3� can be obtained from the solution
of the corresponding homogeneous equation,

d

dt
nn�t� = �

n�

�Wnn�nn��t� − Wn�nnn�t�� − �
k

Wknnn�t�

= �
n�

Tnn�nn��t� , �5�

where the matrix T is defined implicitly by Eq. �5� and treat-
ing the electron flux jk�t� as an externally specified
quantity.21,22 In the simplest case, which is also the basis of
Eq. �2�, jk�t� is the stationary flux corresponding to a single
electron whose energy is Boltzmann distributed over the con-
tinuum states k with a mean electron energy kBTe, that is,
jk�t�� jk�ke−�eEk.

To solve Eq. �5� amounts to solving the eigenvalue prob-
lem for the matrix T.21,22 For the particular case of an elec-
tron physisorbing at a dielectric surface this has been already
done in I. If the transitions between bound states are much
faster than the transitions to the continuum, so that the ad-
sorbed electron escapes very slowly, one eigenvalue, −�0,
turns out to be considerably smaller than all the other eigen-
values −��. The equilibrium occupation of the bound states,
nn

eq, is then to a very good approximation the right eigenvec-
tor to −�0, which can be thus identified with the negative of
the inverse of the desorption time, that is, �0=�e

−1.
The kinetic sticking coefficient, which takes into account

not only the initial capture but also the subsequent relaxation
of the occupancy of the bound surface states, can be obtained
as follows.22 The solution of Eq. �3� is split according to

nn�t� = nn
s�t� + nn

f �t� , �6�

where

nn
s�t� = e−�0t�

−�

t

dt�e�0t�en
�0��

k,l
ẽl

�0��tWlkjk�t�� �7�

is the slowly and
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nn
f �t� = �

��0
e−��t�

−�

t

dt�e��t�en
����

k,l
ẽl

����tWlkjk�t�� , �8�

the quickly varying part of nn�t�. The quantities en
��� and ẽn

���

are, respectively, the components of the right and left eigen-
vectors of the matrix T to the eigenvalue −��. The probabil-
ity of the electron remaining in the surface states for times on
the order of the desorption time is given by the slowly vary-
ing part only, that is, ns�t�=�nnn

s�t�. Differentiating ns�t� with
respect to time,

d

dt
ns�t� = �

k

se,k
kineticjk�t� − �0ns�t� , �9�

enables us, following Brenig,21 to identify the kinetic-
energy-resolved sticking coefficient,

se,k
kinetic = �t�

n,l
en

�0�ẽl
�0�Wlk, �10�

which gives the probability for the electron being trapped
even after the energy relaxation of the second stage of phy-
sisorption. In analogy to Eq. �2� the energy-averaged kinetic
sticking coefficient reads for a stationary Boltzmannian elec-
tron flux,

se
kinetic =

�
k

se,k
kineticke−�eEk

�
k

ke−�eEk
. �11�

III. TRANSITION PROBABILITIES

The transition probabilities per unit time Wqq�, where q
and q� stand either for k or n, are the fundamental building
blocks of the foregoing analysis. They have to be calculated
from a microscopic model for the electron-surface interac-
tion. The necessary steps have been described in I.

In short, for a dielectric surface, the main source, leaving
interband electronic excitations aside, which primarily affect
the dielectric constant, of the attractive static electron-surface
potential is the coupling of the electron to a dipole-active
surface phonon.43,44 Far from the surface the surface poten-
tial merges with the classical image potential and thus �1 /z.
Close to the surface, however, it is strongly modified by the
recoil energy resulting from the momentum transfer parallel
to the surface when the electron absorbs or emits a surface
phonon. Taking this effect into account leads to a recoil-
corrected image potential �1 / �z+zc� with zc a cut-off pa-
rameter defined in I.

Transitions between the eigenstates of the recoil-corrected
image potential are due to dynamic perturbations of the sur-
face potential. The surface potential is very steep near the
surface. A particularly strong perturbation arises therefore
from the longitudinal-acoustic phonon perpendicular to the
surface which causes the surface plane to oscillate. Hence,
this should be a stronger perturbation than, for instance, the
residual dynamical interaction with the dipole-active surface
phonon. In the following we consider therefore only the dy-

namical interaction with the longitudinal-acoustic phonon.
The Hamiltonian from which we calculated the transition

probabilities was introduced in I where all quantities entering
the Hamiltonian are explicitly defined. It is given by36

H = He
static + Hph + He-ph

dyn , �12�

where

He
static = �

q

Eqcq
†cq �13�

describes the electron in the recoil-corrected image potential,
which thus accounts for the coupling of the electron to the
dipole-active surface phonon,

Hph = �
Q

��QbQ
† bQ, �14�

describes the free dynamics of the acoustic bulk phonon re-
sponsible for transitions between surface states, and

He-ph
dyn = �

q,q�

	q�
Vp�u,z�
q�cq�
† cq �15�

denotes the dynamic coupling of the electron to the bulk
phonon. Expanding Vp�u ,z� with respect to the displacement
field,

u = �
Q

� �

2	�QNs
�bQ + b−Q

† � , �16�

allows us to classify the dynamic interaction according to the
number of exchanged bulk phonons.

As in I we use for calculational convenience a bulk Debye
model for the longitudinal-acoustic phonon, although it is
less justified for the high-energy part of the phonon spectrum
which also enters our calculation. Sums over phonon mo-
menta are thus replaced by

�
Q

¯ =
3Ns

�D
3 � d��2

¯ . �17�

Measuring energies in units of the Debye energy ��D
=kBTD, important dimensionless energy parameters charac-
terizing Eq. �12� are


n =
En

��D
and �nn� =

En − En�

��D
, �18�

where En�0 is the energy of the nth bound state. We call the
surface potential shallow if the lowest bound state is at most
one Debye energy beneath the continuum, that is, 
1−1,
one-phonon deep if the energy difference between the lowest
two bound states does not exceed one Debye energy, that is,
�12−1, two-phonon deep if the energy difference between
the lowest two bound states is between one and two Debye
energies, that is, −1�12−2, and so forth.

Because of the strong interaction between the electron and
the dipole-active surface phonon, physisorption of an elec-
tron typically takes place in an at least two-phonon deep
image potential �see Table I�. Hence, physisorption of an
electron controlled by a bulk acoustic phonon, as anticipated
in Eq. �12� and in fact applicable to dielectric surfaces, where
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large energy gaps block electronic relaxation channels due to
internal electron-hole pairs and/or plasmons, has to involve
the exchange of many bulk phonons.

The transition probability per unit time from an electronic
state q to an electronic state q� is given by16

R�q�,q� =
2�

�
�
s,s�

e−�sEs

�
s�

e−�Es�

	s�,q�
T
s,q�
2

���Es − Es� + Eq − Eq�� , �19�

where T is the on-shell T matrix corresponding to He-ph
dyn and

�s= �kBTs�−1 with Ts the surface temperature; 
s� and 
s�� are
initial and final phonon states, which are averaged over.

Multiphonon processes have two possible origins.16,39

They arise from the expansion of He-ph
dyn with respect to u,

He-ph
dyn = V1 + V2 + V3 + O�u4� �20�

and from the multiple action of this perturbation. Defining
the free electron-phonon resolvent,

G0 = �E − He
static − Hph + i
�−1, �21�

the latter is encoded in the T-matrix equation,

T = He-ph
dyn + He-ph

dyn G0T . �22�

Using the short-hand notation introduced in I, the one-
phonon process, proportional to u2, is accounted for by

	s�,q�
V1
s,q�	s,q
V1
�
s�,q�� . �23�

It leads to the standard golden rule approximation for the
transition probability.

Two-phonon processes are proportional to u4 and thus less
likely than one-phonon processes. Most of them renormalize
only the one-phonon transition probability and can thus be
neglected in a first approximation. There are however two-
phonon processes which induce transitions absent in the one-
phonon approximation and hence have to be included in the
calculation of the transition probabilities. In our short-hand
notation the processes in question are

	s�,q�
V2
s,q�	s,q
V2
�
s�,q�� , �24�

	s�,q�
V2
s,q�	s,q
V1
�G0

�V1
�
s�,q�� , �25�

	s�,q�
V1G0V1
s,q�	s,q
V2
�
s�,q�� , �26�

	s�,q�
V1G0V1
s,q�	s,q
V1
�G0

�V1
�
s�,q�� . �27�

It is shown in I how these processes can be included in the
calculation of the transition probabilities Wqq� entering the
rate equation �3�. Singularities appearing in some of the two-
phonon transition probabilities have been regularized by tak-
ing a finite phonon lifetime into account �see I and Ref. 45
for details�.

The electronic matrix elements entering the transition
probabilities have been also calculated in I using bound and
unbound wave functions of the recoil-corrected image poten-
tial. Hence, not only bound states but also continuum states
belong to the static surface potential.36 Our approach is thus
on par with Armand and Manson’s calculation of the sticking
coefficient for light neutral particles.26

IV. RESULTS

The material parameters chosen for the numerical calcu-
lations are, unless specified otherwise, given in Table II.
They correspond to graphite. For some calculations we use
however the Debye temperature as a tunable parameter to
realize different potential depths which is the main focus of
this investigation.

A. One-phonon deep potentials

First, we present results for shallow and one-phonon deep
surface potentials. In leading order, only one-phonon pro-
cesses are involved and the one-phonon approximation for
the transition probabilities is sufficient. Because the electron
thermalizes then very quickly with the surface the prompt
and kinetic sticking coefficients are almost identical. In this
section we show therefore only results for the prompt stick-
ing coefficient.

Figure 1 compares se
prompt for a shallow and a one-phonon

deep potential. The sketches in the upper part of the figure
illustrate the main difference between the two potentials. For
a shallow potential the lowest bound state is less than one
Debye energy below the continuum so that a low-lying elec-
tron from the continuum can be directly trapped in the lowest
bound state, n=1, by a one-phonon transition. In the case of
a one-phonon deep potential, one-phonon processes can only
lead to trapping in one of the upper bound states n1.

The middle panels of Fig. 1 show the prompt energy-
resolved sticking coefficient as a function of the energy of
the incident electron. Apart from discontinuities the sticking
coefficient depends linearly on the electron energy. As ex-
plained in Sec. III the one-phonon transition probability is
proportional to u2. From Eq. �16� we have u2�1 /� so that

TABLE I. Dielectric constant 
s, Debye energy ��D, energy
difference of the lowest two bound states of the recoil-corrected
image potential �E12, and the corresponding potential depth param-
eter �12 for graphite, silicon dioxide, and gallium arsenide.


s

��D

�eV�
�E12

�eV� �12

Graphite 13.5 0.215 0.233 1.06

SiO2 3.8 0.041 0.105 2.59

GaAs 13 0.030 0.152 5.13

TABLE II. Material parameters for the numerical results.

Debye temperature TD 2500 K

Dielectric constant 
s 13.5

TO phonon mode frequency ��T 170 meV

Grüneisen parameter �G 1.7

Shear modulus 	 5 GPa
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in conjunction with the Debye model, Eq. �17�, the transition
probability per unit time is proportional to � which translates
due to energy conservation to a proportionality to the elec-
tron energy. The phonon spectrum is thus reflected in the
�one-phonon� energy-resolved sticking coefficient, as it is,
for instance, also in the cross section for �one-phonon� in-
elastic particle-surface scattering.38

Steep jumps in the energy-resolved sticking coefficient
reflect the level accessibility. When the energy difference
between the electron and a bound state exceeds the Debye
energy, one-phonon transitions are no longer possible and the
electron can no longer directly reach that level. For a shallow
potential, the first drop reflects therefore the accessibility of
the first bound state, whereas for a one-phonon deep poten-
tial, where this bound state cannot be directly reached, the
first drop reflects the accessibility of the second bound state.
As energy differences between successive bound states of the
image potential decrease toward the ionization threshold,
that is, with increasing n �see upper panels of Fig. 1�, more
such steps are found near the maximum electron energy al-
lowing for trapping, which is the Debye energy.

The contribution of the nth bound state to the sticking
coefficient, reflected in the height of the corresponding ac-
cessibility threshold, decreases for higher bound states. The
reason for this lies in the electronic matrix element appearing

in first-order perturbation theory, 	n
1 / �z+zc�2
k�. This ma-
trix element is smaller for higher bound states because higher
bound states have less weight near the surface where the
perturbation is strongest. Of considerable importance is
hence the lowest bound state, which, if available, yields a
particularly large contribution. The decreasing electronic ma-
trix element also implies that neglecting all but a few, say,
seven, of the infinitely many bound states suffices for the
calculation of the sticking coefficient.

The prompt energy-averaged sticking coefficient is shown
in the lower panels of Fig. 1 as function of the mean electron
energy. Due to thermal averaging the sticking coefficient
does no longer exhibit characteristics of the phonon spec-
trum and level accessibility, making it thus more robust
against changes in the phonon model. It does however reflect
the importance of the lowest bound state for shallow poten-
tials. Note also, due to the long-range tail of the recoil-
corrected image potential �1 / �z+zc� the energy-resolved
and the energy-averaged electron sticking coefficients are fi-
nite for vanishing electron energy and electron temperature,
irrespective of the surface temperature, as it should be.27,32

B. Two-phonon deep potentials

We now turn our attention to two-phonon deep potentials.
Under the assumption that the true one-phonon process
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FIG. 1. �Color online� Left panel: Sketch of a shallow �top� and one-phonon deep �bottom� potential. The gray shaded areas show the

energy range of sticking by one-phonon processes. Middle panel: Energy-resolved prompt sticking coefficient as a function of the electron
energy for a shallow potential �TD=4100 K� at Ts=410 K �top� and for a one-phonon deep potential �TD=3000 K� at Ts=300 K �bottom�.
Right panel: Energy-averaged prompt sticking coefficient as a function of the mean electron energy for a shallow potential �TD=4100 K� at
Ts=205 K �top� and a one-phonon deep potential �TD=3000 K� at Ts=150 K �bottom�.
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dominates the corrections coming from two-phonon pro-
cesses, the latter are only taken into account for transitions
where one-phonon processes alone would yield no transition
probability.

Two-phonon processes affect in a two-phonon deep po-
tential sticking in two ways. They enable prompt trapping
from higher-lying continuum states, outside the one-phonon
trapping range, and they control the energy relaxation of the
trapped electron and thus the formation of the quasistation-
ary bound-state occupancy from which desorption occurs.
There are thus two questions to be answered: how significant
are two-phonon processes for prompt sticking and how does
the relaxation thereafter depend on the type of phonon pro-
cesses available.

To address the first question we show in Fig. 2 the con-
tributions to the prompt energy-resolved sticking coefficient
arising from, respectively, one- and two-phonon processes. If
available, one-phonon processes provide for much larger
sticking coefficients than two-phonon processes. Figure 2
also confirms that the sticking coefficient saturates quickly
with the number of bound states included into the calcula-
tion. The vanishing of the two-phonon contributions to the
sticking coefficient in a narrow energy range just below 0.1
eV is an artifact of our approximation, which neglects two-
phonon corrections to transitions already enabled by a one-
phonon process, and thus calculates two-phonon sticking co-
efficients only for levels which cannot be reached by a one-
phonon process. Had we included two-phonon corrections to
one-phonon transition rates the two-phonon contributions to
the sticking coefficient would be also finite around 0.1 eV.

To investigate the relative importance of the various two-
phonon processes arising, respectively, from the expansion
of the dynamical perturbation and the T matrix we plot in the
inset of Fig. 2 the partial contributions to the prompt sticking
coefficient arising from the various two-phonon processes
which trigger transition to the second bound state. A two-
phonon process can be simultaneous, as encoded in V2, or
successive, as described by V1G0V1. Hence, the total two-

phonon transition probability contains a contribution without
virtual intermediate states, symbolically denoted by V2

2 �see
Eq. �24�� and two contributions with virtual intermediate
states, symbolically denoted by �V1�2V2 and �V1�4 �see Eqs.
�25�–�27��. The prompt energy-resolved sticking coefficient
calculated with either V2

2, �V1�2V2, or V1
4 only is shown in the

inset of Fig. 2. In accordance to what we found in our cal-
culation of the desorption time of an image-bound electron
�paper I� and to what Gumhalter and Šiber found in their
calculation of the cross section for inelastic particle-surface
scattering,39–41 the direct two phonon process V2

2 is domi-
nated by the processes V1

2V2 and �V1�4.
From the dominance of one-phonon processes over two-

phonon processes we can also infer the validity of the trun-
cation of the T matrix, which of course is only justified if the
dynamic interaction is weak enough. The weakness of the
dynamic interaction also guarantees that the unavoidable vio-
lation of the unitarity of the transition probabilities resulting
from the truncation of the T matrix has no practical physical
consequences. Indeed, a significant violation of unitarity
would be indicated by a sticking coefficient 1.22,23 The
sticking coefficients we obtain are on the order of 10−3, rul-
ing out a breach of unitarity and justifying the truncation of
the T matrix.

Having clarified that two-phonon processes lead to a
much smaller prompt sticking coefficient than one-phonon
processes we now move on to study the effect of two-phonon
transitions on the relaxation of the bound-state occupancy.
For a two-phonon deep potential the energy difference be-
tween the lowest two bound states exceeds one Debye en-
ergy. Hence, the relaxation of an electron trapped in one of
the upper bound states to the quasistationary occupancy can
only occur via two-phonon processes. Since the kinetic stick-
ing coefficient gives the probability for the incident electron
making not only a transition to a bound state but also a
subsequent relaxation to the quasistationary occupancy of
these states, the importance of two-phonon processes should
be signaled by the amount the kinetic sticking coefficient
deviates from the prompt sticking coefficient.

Figure 3 shows that for a two-phonon deep potential the
kinetic-energy-resolved sticking coefficient is for intermedi-
ate electron energies considerably smaller than the prompt
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FIG. 2. �Color online� Energy-resolved prompt sticking coeffi-
cient for a two-phonon deep potential �TD=2500 K and Ts

=500 K� calculated with different numbers of bound states N. Full
lines denote the one-phonon contribution, dashed lines the two-
phonon contribution. Inset: contribution of the second bound state.
One-phonon contribution �for Ee�0.1 eV, red�, two-phonon contri-
bution �for Ee0.1 eV, blue� broken down into the processes
�V2�2V2, �V1�2V2, and �V1�4.
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energy-resolved sticking coefficient. This is due to the fact
that the two-phonon transition to the lowest bound state,
where the major part of the quasistationary occupancy re-
sides, is very unlikely and thus very slow. Only for small
energies, the first hump of the two-phonon contribution to
the sticking coefficient, due to trapping in the lowest bound
state, are prompt and kinetic sticking coefficients identical
because no trickling through is needed. The artificial vanish-
ing of the two-phonon contribution to the sticking coefficient
around 0.1 eV is again a consequence of our approximation
�see discussion of Fig. 2 above�.

The weak coupling between the lowest two bound states
in a two-phonon deep surface potential leads to a relaxation
bottleneck for the electron if it is initially trapped in one of
the upper states. In Figs. 4 and 5 we analyze the relaxation
bottleneck in more detail as a function of the Debye tempera-
ture TD �to realize different potential depths� and the surface
temperature Ts. The upper panel shows the desorption time
from the lowest bound state, that is, the desorption time for
an electron capable to fall to the lowest bound state, and the
desorption time from the upper bound states, that is, the de-
sorption time for an electron not capable to fall to the lowest
bound state. The probability for the electron initially trapped
in the upper bound states to fall down to the lowest bound
states and the probability to desorb to the continuum without
ever passing through the lowest bound state are shown in the
middle panel and the lower panel shows the prompt and the
kinetic sticking coefficient.

Before we discuss Figs. 4 and 5, we say a few words
about the way we calculated the quantities shown in the up-
per and middle panels. The desorption time from the lowest
bound state is the desorption time for an electron equilibrated

with the surface, the quantity we calculated in I, because the
quasistationary occupancy and the equilibrium occupancy
coincide and both reside moreover, for the considered sur-
face temperatures, mainly on the lowest level. The desorp-
tion time from the upper bound states we simply calculated
from Eq. �5� with the lowest bound state excluded.

The probabilities shown in the middle panels we obtained
from the following consideration. Whether an electron
trapped in the upper bound states passes through to the low-
est bound state or not depends on how large the transition
probabilities from the upper bound states to the lowest bound
state are in comparison to the transition probabilities to the
continuum. Hence, the second stage of physisorption, that is,
the time evolution of the occupancy after the initial trapping,
can be captured by a rate equation for the occupancy of the
upper bound states �n=2,3 , . . .�, similar to Eq. �5�, but with a
loss term to both the continuum and the lowest bound state,

d

dt
nn = �

n

�Wnn�nn��t� − Wn�nnn�t�� − �
k

Wknnn�t� − W1nnn�t�

= �
n�

Dnn�nn��t� , �28�

where the matrix D is defined implicitly by Eq. �28� and
where n and n� run over the upper image states. Solving Eq.
�28� with the initial condition,

nl�0� =

�
k

Wlkjk

�
l,k

Wlkjk

, �29�

which is the �conditional� probability that the electron is
trapped in the lth image state under the condition that it is
trapped in any of the bound states, we deduce for the prob-
ability for an electron trapped in one of the upper bound
states to fall either to the lowest bound state �f =1� or to
desorb without falling to the lowest bound state �f =c�,
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FIG. 4. �Color online� Upper panel: inverse desorption time
from the lowest level �dashed blue line� and the upper levels �full
red line�. Middle panel: probability for an electron initially trapped
in one of the upper levels of the surface potential �n=2,3 ,4 , . . .�
either to fall to the lowest bound state �dashed blue line� or to
desorb without ever reaching the lowest bound state �full red line�.
Lower panel: prompt �full red line� and kinetic �dashed blue line�
energy-resolved sticking coefficient. In all three panels, Ee

=0.1 eV and Ts /TD=0.2 �to keep the level of phonon excitation
constant we set TD /Ts constant �Ref. 36��. For TD�2707 K the
surface potential is two-phonon deep, for 2707�TD�4029 K it is
one-phonon deep, and for TD4029 K it is shallow.
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FIG. 5. �Color online� The three panels show, as a function of
the surface temperature, the quantities of Fig. 4 for TD=2500 K,
that is, graphite, and Ee=0.09 eV.
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pf = nf�t → �� = �
n,�

Wfn
1

��

dn
����

l

d̃l
���nl�0� , �30�

where, dn
��� and d̃n

��� are the components of the right and left
eigenvectors of the matrix D.

We now turn our attention to Fig. 4. It shows the effect of
different potential depths realized by tuning the Debye tem-
perature. For a shallow potential �TD4029 K� desorption
from the lowest level is mainly due to direct one-phonon
transitions to the continuum; the same type of transition
emptying the upper bound states. Hence, the desorption time
from the lowest bound state and the upper bound states, re-
spectively, differ not too much for shallow potentials. For
one-phonon deep potentials �2707�TD�4029 K�, however,
the cascade of two one-phonon processes via the second
level yields much larger desorption times from the lowest
level compared to the desorption time form the upper levels.
For a two-phonon deep potential �TD�2707 K�, finally, the
first leg of the cascade, the transition to the second bound
state, is a two-phonon transition, which increases the desorp-
tion time compared to a one-phonon deep potential.

The second level is the link between the upper bound
states and the lowest bound state. The ratio of the transition
probabilities from the second bound state to the lowest
bound state, W12, and from the second bound state to the
continuum, Wc2, determines if the electron trickles through
after initial trapping or not, that is, whether it thermalizes
with the surface or not. For a one-phonon deep potential both
W12 and Wc2 are due to one-phonon processes, in this case
W12Wc2. For a two-phonon deep potential, however, the
transition from the second to the lowest bound state is en-
abled by a two-phonon process only. In this case, and for
moderate surface temperatures, W12�Wc2 so that the elec-
tron is more likely to desorb before relaxing to the lowest
bound state. As the kinetic sticking coefficient gives the
probability of the trapped electron to relax to the quasista-
tionary occupancy, the drop in the probability for reaching
the lowest level at TD=2707 K, which is the one-phonon/
two-phonon threshold, translates into the abrupt reduction in
the kinetic sticking coefficient at TD=2707 K �see middle
and lower panels of Fig. 4�.

Figure 5 shows the quantities of Fig. 4 as a function of the
surface temperature. The Debye temperature is fixed to the
value for graphite. At low surface temperatures the kinetic
sticking coefficient is only slightly smaller than the prompt
sticking coefficient, yet for high surface temperatures their
difference increases significantly as a consequence of the in-
hibited thermalization. This can be understood as follows:
the transition from the second to the first bound state entails
the emission of two phonons and the transition from the
second bound state to the continuum requires only the ab-
sorption of a single phonon. However, at low enough surface
temperatures it is nevertheless possible that the electron
drops to the lowest bound state because the likelihood of
phonon emission is proportional to 1+nB while the likeli-
hood of phonon absorption is proportional to nB. Hence, for
sufficiently low surface temperatures, W12Wc2, even when
W12 entails a two-phonon and Wc2 a one-phonon process, so

that the electron has a good chance to trickle through. In-
creasing the surface temperature benefits however Wc2 more
than W12 so that W12�Wc2, prohibiting the trickling through
and leading to a considerable reduction in the kinetic sticking
coefficient at high surface temperatures.

From the discussion of Figs. 4 and 5 we conclude that a
pronounced relaxation bottleneck inhibiting thermalization
can only occur for at least two-phonon deep potentials and
sufficiently high surface temperatures. The question arises
then on what time scale does the relaxation bottleneck affect
physisorption. To answer this question we analyze, respec-
tively, the time evolution of the occupancy of the lowest
level and the occupancy of the upper levels of the surface
potential under the assumption that initially all bound states
were empty and that for t0 a stationary unit flux of a
Boltzmannian electron fills the levels. Accordingly, the occu-
pancy of the lowest state �n=1� and the upper states �n
�2� can be determined from Eq. �6� setting jk�t�=0 for t
�0 and jk�t�= jk�ke−�eEk for t�0 with �kjk=1.

The results of this calculation are shown in Fig. 6 for low
�upper two panels� and high �lower two panels� surface tem-
perature. Clearly, for times on the order of the desorption
time, �e=�0

−1, indicated by the vertical dashed line in the left
panels, the upper levels are basically empty indicating that a
thermalized electron desorbs; for TD=2500 K and Ts
=500 K the quasistationary occupancy deviates from the
equilibrium occupancy less than 3%. The upper levels are
more populated than the lower one only for very short time
scales, set by �1

−1, indicated by the vertical dashed line in the
right panels. Since �1

−1��0
−1, the relaxation bottleneck does

not affect desorption, which still occurs from the equilibrium
occupancy. It does thus only affect the kinetic sticking coef-
ficient which is significantly smaller than the prompt one and
actually the one to be used to characterize polarization-
induced trapping of an electron at a dielectric surface. The
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FIG. 6. �Color online� Bound-state occupancy of the lowest
bound state �dashed blue line� and the upper bound states �solid red
line� as a function of time for an unit flux of a Boltzmannian elec-
tron with kBTe=0.1 eV. The left and right panels show the two
occupancies on two time scales. The left panel on the scale of the
desorption time �0
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=2500 K whereas the lower two panels show results for Ts

=600 K and TD=2500 K.
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relaxation bottleneck is absent in neutral physisorption sys-
tems because the level spacing is small compared to the De-
bye energy. Prompt and kinetic sticking coefficients are thus
almost identical as has been indeed found for neon atoms
physisorbing on a copper substrate.29

Figure 7 finally shows for graphite the energy-averaged
prompt and kinetic sticking coefficients as a function of the
mean energy of the incident electron and the surface tem-
perature. As two-phonon processes contribute little to the
initial trapping of the electron, their most important role is to
control relaxation to the lowest bound state. In agreement
with the foregoing discussion, the kinetic sticking coefficient
diminishes therefore for higher surface temperatures whereas
the prompt sticking coefficient is less sensitive to the surface
temperature. From Fig. 7 it can be also seen that even the
prompt sticking coefficient for graphite is only at most on the
order of 10−3, the order we also found in our investigation of
electron sticking at metallic surfaces.15 It is two orders of
magnitude smaller than the value obtained from a semiclas-
sical estimate42 whose range of applicability is however hard
to grasp. We expect it, at best, to be applicable to very low
mean electron energies, below 0.0026 eV, and rather high
electron binding energies, larger than 1 eV.15

V. CONCLUSIONS

As a preparatory step toward a microscopic understanding
of the buildup of surface charges at dielectric plasma bound-
aries, we investigated phonon-mediated temporary trapping
of an electron on a dielectric surface. In our simple model for
the polarization-induced interaction of the electron and the
dielectric surface, the adsorbed electron occupies the bound
states of a recoil-corrected image potential. Electron-energy
relaxation responsible for transitions between the image
states leading to adsorption and eventually to desorption is
due to the coupling to an acoustic bulk phonon.

Dielectrics typically used as plasma boundaries are graph-
ite, silicon oxide, aluminum oxide, and bismuth silicon ox-
ide. They all have large energy gaps blocking internal elec-

tronic degrees of freedom and small Debye energies
compared to the energy difference of at least the lowest two
bound surface states. Electron physisorption at these bound-
aries is thus driven by multiphonon processes. As in I we
presented results for a two-phonon deep surface potential, as
it is applicable to graphite, where the energy difference be-
tween the lowest two bound states is between one and two
Debye energies. Classifying two-phonon processes by the
energy difference they allow to bridge, we included two-
phonon transition probabilities only for transitions not al-
ready triggered by one-phonon processes. Besides the Debye
temperature, which we varied to realize different potential
depths, the material parameters used in the numerical calcu-
lations are the ones for graphite.

Similar to physisorption of a neutral particle, sticking and
desorption of an electron can be subdivided into three char-
acteristic stages. At first, the electron is trapped in one of the
upper bound states of the surface potential. Then the bound-
state occupancy relaxes to a quasistationary occupancy. Fi-
nally, over the time scale set by the desorption time, the
electron desorbs. In order to account for both initial trapping
and subsequent relaxation we employed a quantum-kinetic
rate equation for the occupancy of the image states. Apart
from calculating the energy-resolved and energy-averaged
prompt and kinetic electron sticking coefficients, which typi-
cally turn out to be on the order of 10−3, we also investigated
the relative importance of one-and two-phonon processes for
the two stages of the sticking process.

The initial trapping is almost entirely due to one-phonon
transitions from the continuum, two-phonon processes from
higher-lying continuum states contribute very little. The re-
laxation of the bound-state occupancy after the initial trap-
ping depends strongly on the ratio of the probabilities for
downward transitions to the lowest state and upward transi-
tions to the continuum. For graphite, with its two-phonon
deep surface potential, the upper bound states are linked to
the lowest bound state only by a two-phonon process. The
trapped electron has thus only a slim chance to drop to the
lowest bound state, particularly at high surface temperatures,
which favor transitions back to the continuum. The de-
creased accessibility of the lowest surface state leads to a
significant reduction in the kinetic sticking coefficient com-
pared to the prompt sticking coefficient. For the other dielec-
trics typically used as plasma boundaries, silicon dioxide,
aluminum oxide, and bismuth silicon oxide, the surface po-
tentials are much deeper because the Debye energy for these
materials is very small. Hence, more than two phonons are
required to link the upper image states to the lowest one, the
accessibility of the lowest image state is thus even more
suppressed, and the kinetic sticking coefficient should be ac-
cordingly small.
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Physisorption of an electron in deep surface potentials off a dielectric surface

R. L. Heinisch, F. X. Bronold, and H. Fehske
Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, DE-17489 Greifswald, Germany

(Received 3 February 2011; published 4 May 2011)

We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep
polarization-induced surface potentials where multiphonon transitions are responsible for electron energy
relaxation. Focusing on multiphonon processes due to the nonlinearity of the coupling between the external
electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron
desorption times for graphite, MgO, CaO, Al2O3, and SiO2 and electron sticking coefficients for Al2O3, CaO,
and SiO2. To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the
image-state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface
temperature, we identify two generic scenarios: (i) adsorption via trapping in shallow image states followed by
relaxation to the lowest image state and desorption from that state via a cascade through the second strongly
bound image state in not too deep potentials, and (ii) adsorption via trapping in shallow image states but followed
by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a
one-step process to the continuum in deep potentials.

DOI: 10.1103/PhysRevB.83.195407 PACS number(s): 52.40.Hf, 73.20.−r, 68.43.Mn, 68.43.Nr

I. INTRODUCTION

Image states, arising from the polarization-induced interac-
tion between an electron and a surface, offer the possibility for
electron trapping at a surface. Since their original prediction1

for the surface of liquid and solid He, they have been
extensively studied for metallic surfaces.2–6 However, image
states also exist for dielectric surfaces provided the electron
affinity of the dielectric is negative, that is, the vacuum level
falls inside the gap between the valence and the conduction
band. Image states are then the lowest unoccupied states
and should, hence, allow for temporary trapping of external
electrons. So far, image states at a dielectric surface have been
only observed for graphite,7 but they are expected for other
dielectrics with negative electron affinity as well, for instance,
boron nitride8 and the alkaline earth oxides.9

Based on the idea of a two-dimensional electron surface
plasma,10–13 electron trapping in image states has been
suspected for a long time to be responsible for the buildup of
surface charges at plasma walls. We have recently proposed,
therefore, to consider the charging of a plasma wall as an
electron physisorption process.14,15 Indeed, for plasma walls
with negative electron affinity, image states should contribute
to the very beginning of the charging process when the wall
carries no charges yet and the image states thus fall inside the
energy gap of the wall. Only with increasing surface charge
are image states expected to play a less important role because
the Coulomb barrier due to the electrons already residing on
the wall shifts image states to an energy range where they
are destabilized by unoccupied bulk states. The later stages of
charge collection most probably occur via surface resonances
or empty volume states.16

Regardless of its importance for charge collection at dielec-
tric plasma walls, the electron kinetics in the image states of a
dielectric surface is an interesting phenomenon in its own right.
In addition, it is relevant in other physical contexts as well.
For instance, (i) in electron emitters, such as cesium-doped
silicon oxide films with negative electron affinity, electron
emission via image states reduces the operational voltage

considerably;17 (ii) in gallium-arsenide-based heterostruc-
tures, surface charging can be used for the contactless gating of
field devices;18 and (iii) for the alkaline earth oxides, studied
in the field of heterogeneous catalysis,19–22 the electronic
surface states provide the environment for catalytic reactions.
Some situations encompass electronic transitions from bulk to
surface states, as it is the case for electron emitters, while for
others, the electron does not penetrate into the bulk and the
electron kinetics takes place only in surface states. Interesting
questions in this case are the probability for temporary trapping
in these states, the mechanism of electron energy relaxation
at the surface, and the time after which a trapped electron is
released.

This is the concluding paper out of a series of three
on the phonon-mediated physisorption of an electron in the
image states of a dielectric surface. As in our previous work,
Refs. 23 and 24 (hereafter referred to as I and II), we
investigate adsorption and desorption of an electron at finite
temperatures assuming an acoustic-longitudinal bulk phonon
to control energy relaxation at the surface. For the dielectric
material we are considering, the level spacing of the lowest two
bound states typically exceeds the Debye energy, implying that
multiphonon processes have to be taken into account. In I and
II, we have studied desorption and sticking using an expansion
of the energy-dependent T matrix,25–27 allowing us to calculate
one- and two-phonon transition probabilities. This approach is,
however, limited to very few materials, for instance, graphite
and MgO. In the following, we will adopt a different strategy,
calculating multiphonon transition probabilities due to the
nonlinear electron-phonon coupling nonperturbatively. This
allows us to calculate the desorption time and the sticking
coefficient for the deeper surface potentials of CaO, Al2O3,
and SiO2.

The remainder of this paper is structured as follows.
In Sec. II, we briefly recall the quantum-kinetic approach
to physisorption. In Sec. III, we calculate the multiphonon
state-to-state transition probabilities. In Sec. IV, we present
our results for the desorption time and the prompt and kinetic
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energy-resolved and energy-averaged sticking coefficients. In
this section, we also discuss the time evolution of the bound-
state occupancy and the energy-resolved desorption flux.
Section V is devoted to the analytic treatment of a simplified
two-state model used to identify two generic physisorption
scenarios into which we can classify the results of this paper
as well as our previous results, before we conclude in Sec. VI.

II. ELECTRON KINETICS

As in I (Ref. 23) and II (Ref. 24), we describe the time
evolution of the occupancy of the bound surface states with
a quantum-kinetic rate equation.28,29 It captures all three
characteristic stages of physisorption30,31: initial trapping,
subsequent relaxation, and desorption.

The time dependence of the occupancies of the bound states
is given by28,29

d

dt
nn(t) =

∑
n′

[Wnn′nn′ (t) − Wn′nnn(t)]

−
∑

k

Wknnn(t) +
∑

k

τtWnkjk(t) (1)

=
∑
n′

Tnn′nn′ (t) +
∑

k

τtWnkjk(t), (2)

where Wn′n is the probability per unit time for a transition from
a bound state n to another bound state n′, Wkn and Wnk are the
probabilities per unit time for a transition from the bound state
n to the continuum state k and vice versa, and τt = 2L/vz

is the transit time through the surface potential of width L,
which, in the limit L → ∞, can be absorbed into the transition
probability. The matrix Tnm is defined implicitly by the above
equation. The last term in Eqs. (1) and (2), respectively, gives
the increase in the bound-state occupancy due to trapping of
an electron in bound surface states.

The probability for an approaching electron in the contin-
uum state k to make a transition to any of the bound states is
given by the prompt energy-resolved sticking coefficient

s
prompt
e,k = τt

∑
n

Wnk. (3)

By treating the incident electron flux as an externally
specified parameter, the solution of Eq. (1) describes the
subsequent relaxation and desorption. It is given by

nn(t) =
∑

κ

e−λκ t

∫ t

−∞
dt ′eλκ t ′e(κ)

n

∑
kl

ẽ
(κ)
l τtWlkjk(t ′), (4)

where e(κ)
n and ẽ(κ)

n are the right and left eigenvectors to the
eigenvalue −λκ of the matrix Tnm.

If the modulus of one eigenvalue λ0 is considerably
smaller than the moduli of the other eigenvalues λκ , a unique
desorption time and a unique sticking coefficient can be
identified.29 In this case, λ0 governs the long time behavior of
the equilibrium occupation of the bound states n

eq
q ∼ e−Eq/kBTs

and its inverse can be identified with the desorption time
λ−1

0 = τe. In this case, the bound-state occupancy nn(t) splits
into a slowly varying part n0

n(t) given by the κ = 0 summand

in Eq. (4) and a quickly varying part n
f
n (t) given by the sum

over κ �= 0 in Eq. (4).
The adsorbate, i.e., the fraction of the trapped electron

remaining in the surface states for times on the order of
the desorption time, is given by the slowly varying part only
n0(t) = ∑

n n0
n(t). By differentiating n0(t) with respect to the

time

d

dt
n0(t) =

∑
k

skinetic
e,k jk(t) − λ0n

0(t), (5)

we can, following Brenig,31 identify the kinetic energy-
resolved sticking coefficient

skinetic
e,k = τt

∑
n,n′

e
(0)
n′ ẽ(0)

n Wnk , (6)

giving the probability for both initial trapping and subsequent
relaxation.

If the incident unit electron flux corresponds to an electron
with Boltzmann distributed kinetic energies, the prompt or
kinetic energy-averaged sticking coefficient is given by

s...
e =

∑
k s...

e,kke−βeEk∑
k ke−βeEk

, (7)

where β−1
e = kBTe is the mean electron energy.

The desorption flux, that is, the flux due to an electron that is
not instantly reflected at the boundary but sticks to the surface
for a finite time, can also be calculated from the occupancy
of the bound surface states. From Eq. (1), we infer that the
losses of the bound-state occupancy increase the continuum
state occupancy by

dnk

dt
=

∑
n

Wknnn(t). (8)

As the electron remains in the surface potential for the time
it needs to travel through the surface potential, the occupancy
of the continuum state k is given by nk = τt ṅk . To obtain the
energy-resolved desorption flux, we multiply the occupancy
of the continuum state k with the flux j box

k associated with
the box-normalized state |φk〉.23 Thus, the energy-resolved
desorption flux is given by

jk(t) = τt j
box
k

∑
n

Wknnn(t), (9)

which is well defined in the limit L → ∞.

III. TRANSITION PROBABILITIES

The kinetic equations presented in the last section rely on
the knowledge of the transition probabilities. They have to be
calculated from a microscopic model for the electron-surface
interaction.

For a dielectric surface, the transitions are driven by
phonons, the maximum energy of which is, within the Debye
model, the Debye energy h̄ωD . By measuring energies in
units of the Debye energy, important dimensionless parameters
characterizing the potential depth are

εn = En

h̄ωD

and 	nn′ = En − En′

h̄ωD

, (10)
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where En < 0 is the energy of the nth bound state.
In I, we introduced the following classification for the

potential depth. If −n + 1 > 	12 > −n, we call the potential
n-phonon deep. For the calculations in I and II, we considered
only one- or two-phonon deep potentials, for which one- and
two-phonon transition probabilities are sufficient. Dielectrics
with two-phonon deep potentials such as graphite or MgO
are, however, an exception. Many dielectrics, for instance,
Al2O3, CaO, GaAs, or SiO2, have more than two-phonon deep
potentials. Hence, the more relevant situation is physisorption
in deep surface potentials for which multiphonon transition
probabilities are required.

To calculate multiphonon transition probabilities for the
one-dimensional microscopic model used in I and II, we briefly
recall its main features. In short, for a dielectric surface, the
main source of the attractive static electron-surface potential
is the coupling of the electron to a dipole-active surface
phonon.32 Far from the surface, the surface potential arising
from this coupling merges with the classical image potential
and thus ∼1/z. Close to the surface, however, the surface
potential is strongly modified by the recoil energy resulting
from the momentum transfer parallel to the surface when
the electron absorbs or emits a surface phonon. Taking this
effect into account leads to a recoil-corrected image potential
∼1/(z + zc) with zc a cutoff parameter defined in I.

Transitions between the eigenstates of the recoil-corrected
image potential are due to dynamic perturbations of the
surface potential. The surface potential is very steep near the
surface. A particularly strong perturbation arises, therefore,
from the longitudinal-acoustic bulk phonon perpendicular to
the surface, which causes the surface plane to oscillate.

The Hamiltonian from which we calculate the transition
probabilities was introduced in I, where all quantities entering
the Hamiltonian are explicitly defined. It is given by

H = H static
e + Hph + H

dyn
e−ph, (11)

where

H static
e =

∑
q

Eqc
†
qcq (12)

describes the electron in the recoil-corrected image potential,

Hph =
∑
Q

h̄ωQb
†
QbQ (13)

describes the free dynamics of the bulk longitudinal-acoustic
phonon responsible for transitions between surface states, and

H
dyn
e−ph =

∑
q,q ′

〈q ′|Vp(u,z)|q〉c†
q ′cq (14)

denotes the dynamic coupling of the electron to the bulk
phonon.

The perturbation Vp(u,z) can be identified as the difference
between the displaced surface potential and the static surface
potential. It reads, after the transformation z → z − zc, as

Vp(u,z) = − e2
0

z + u
+ e2
0

z
, (15)

where 
0 = (εs − 1)/4(εs + 1) with εs the static dielectric
constant. In general, multiphonon processes can arise both

from the nonlinearity of the electron-phonon coupling H
dyn
e−ph

as well as from the successive actions of H
dyn
e−ph encoded in the

T-matrix equation

T = H
dyn
e−ph + H

dyn
e−phG0T , (16)

where G0 is given by

G0 = (
E − H static

e − Hph + iε
)−1

. (17)

The transition probability per unit time from an electronic
state q to an electronic state q ′ encompassing both types of
processes is given by25

Wq ′q = 2π

h̄

∑
s,s ′

e−βsEs∑
s ′′ e−βsEs′′

|〈s ′,q ′|T |s,q〉|2

× δ(Es − Es ′ + Eq − Eq ′ ), (18)

where βs = (kBTs)−1, with Ts the surface temperature and
|s〉 and |s ′〉 the initial and final phonon states. We are only
interested in the transitions between electronic states. It is thus
natural to average in Eq. (18) over all phonon states. The delta
function guarantees energy conservation.

In our previous work, we have used an expansion of the T
matrix to calculate multiphonon transition rates. In principle,
this ensures that both linear and nonlinear terms in the
interaction as well as successive actions of the perturbation are
taken into account up to a certain order of the phonon process.
However, even for a two-phonon deep potential, taking all
two-phonon processes into account is nearly impossible. The
calculation becomes feasible if two-phonon processes are only
taken into account for transitions not already enabled by a one-
phonon process. This amounts to computing only the lowest
required phonon order for a given transition, neglecting higher-
order corrections to it. For higher-order phonon processes,
even this simplified strategy becomes unfeasible. A different
approach is thus needed.

From I and II, we qualitatively know the relevance of
the different types of multiphonon processes for particular
electronic transitions. For transitions between bound and
continuum states, for instance, one-phonon processes are
sufficient at low electron energies. We will therefore compute
the transition probability between bound and continuum states
in the one-phonon approximation. For transitions between
bound states, we found that multiphonon processes due to the
nonlinearity of the electron-phonon coupling tend to be more
important than the multiphonon processes due to the iteration
of the T matrix, unlike what we found for the two-phonon
bound-state and continuum transitions (see I) or to what Šiber
and Gumhalter33,34 found in the context of atom-surface scat-
tering. Indeed, multiphonon processes from the iteration of the
T matrix give a minor contribution, unless resonances arising
from the T matrix become relevant. This happens whenever
the energy difference between two bound states is a multiple of
the Debye energy. Resonances then smoothen the abrupt steps
in the transition probability at the depth thresholds. Since the
electronic matrix element between the first and the second
bound states is the largest one, this effect is most pronounced
for |	12| = n. Incidentally, bound-state resonances can also
lead to significant corrections in atom-surface scattering as
discussed by Brenig35 and Šiber and Gumhalter.36
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In view of the above discussion, we expect an approx-
imation that takes only the nonlinearity of the electron-
phonon interaction nonperturbatively into account to give an
acceptable first estimate for the multiphonon transition rates.
We denote this approximation as the nonlinear multiphonon
approximation. In particular, it should be sufficient for the
identification of the generic behavior of multiphonon-mediated
adsorption and desorption.

Calculating multiphonon processes due to nonlinear terms
in the interaction potential37 amounts to a distorted-wave Born
approximation with the full interaction potential. Thus, the
transition probability per unit time is given by

Wq ′q = 2π

h̄

∑
s,s ′

e−βsEs∑
s ′′ e−βsEs′′

∣∣〈q,s|H dyn
e−ph|s ′,q ′〉∣∣2

× δ(Es + Eq − Eq ′ − Es ′ ). (19)

To evaluate the multiphonon transition probability, we use
H

dyn
e−ph in the form of Eq. (15). The transition matrix element

in Eq. (19) is then given by

〈q,s|H dyn.

e−ph|q ′,s ′〉 = 〈s|
∫ ∞

zc

dz φ∗
q (z)

× [v(z + u) − v(z)]φq ′(z)|s ′〉, (20)

where v(z) = −(e2
0)/z. By introducing dimensionless vari-
ables x = z/aB , the Fourier transform of the static potential

v(p) =
∫ ∞

xc

dx eipxv(x) (21)

and the state-to-state matrix element

fqq ′ (p) =
∫ ∞

xc

dx φ∗
q (x)e−ipxφq ′ (x), (22)

the transition probability can be rewritten as

Wq ′q = 2π

h̄

∑
s,s ′

e−βsEs∑
s ′′ e−βsEs′′

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dp̃

2π
v(p)v∗(p̃)

× fqq ′ (p)f ∗
qq ′ (p̃)〈s|[e−i

p

aB
u − 1

]|s ′〉
× 〈s ′|[ei

p̃

aB
u − 1

]|s〉δ(Es + Eq − Es ′ − Eq ′). (23)

By using the identity δ(x) = 1/(2π )
∫ ∞
−∞ dt eixt and employ-

ing 〈s|eiEs t/h̄ = 〈s|eiHpht/h̄, the above expression becomes

Wq ′q = 1

h̄2

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dp̃

2π
v(p)v∗(p̃)fqq ′ (p)f ∗

qq ′ (p̃)

×
∫ ∞

−∞
dt ei(Eq−Eq′ )t/h̄〈〈[e−i

p

aB
u(0) − 1

][
e
i

p̃

aB
u(t) − 1

]〉〉
(24)

with〈〈· · ·〉〉 = ∑
s e−βsEs 〈s| · · · |s〉/∑

s ′′ e−βsEs′′ the average
over phonon states. This average can be evaluated for q �= q ′
employing Glauber’s theorem,38 which yields〈〈[

e
−i

p

aB
u(0) − 1

][
e
i

p̃

aB
u(t) − 1

]〉〉
= e

− 1
2a2

B

p2〈〈u(0)2〉〉
e
− 1

2a2
B

p̃2〈〈u(t)2〉〉
e

1
a2
B

pp̃〈〈u(0)u(t)〉〉
(25)

with

〈〈u(0)u(t)〉〉 =
∑
Q

h̄

2μNsωQ

{[1 + nB(h̄ωQ)]e−iωQt

+ nB(h̄ωQ)eiωQt } (26)

the correlation function of the displacement field

u =
∑
Q

√
h̄

2μωQNs

(bQ + b
†
−Q), (27)

where μ is the mass of the unit cell of the lattice and Ns is the
number of unit cells.

As in I and II, we use for calculational convenience a bulk
Debye model for the longitudinal-acoustic phonon, although it
is less justified for the high-energy part of the spectrum, which
also enters our calculation. Sums over phonon momenta are
thus replaced by∑

Q

. . . = 3Ns

ω3
D

∫ ωD

0
dω ω2 . . . . (28)

In terms of the dimensionless variables

x = ω

ωD

, δ = h̄ωD

kBTs

,and τ = ωDt, (29)

the phonon correlation function becomes

〈〈u(0)u(τ )〉〉 = 3h̄

2μωD

∫ 1

0
dx x

[
e−ixτ

1 − e−δx
+ eixτ

eδx − 1

]
.

(30)

Hence, for the transition probability per unit time we obtain

Wq ′q = e4
2
0

h̄2ωDa2
B

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dp̃

2π
v(p)v(p̃)fqq ′ (p)f ∗

qq ′ (p̃)

× e− 1
2 γp2q(0)e− 1

2 γ p̃2q(0)
∫ ∞

−∞
dτ ei	qq′ τ+γpp̃q(τ ), (31)

where

q(τ ) =
∫ 1

0
dx x

[
e−ixτ

1 − e−δx
+ eixτ

eδx − 1

]
and

γ = 3h̄

2μa2
BωD

. (32)

The transition probability (31) contains two Debye-Waller
factors exp[−γp2q(0)/2] and exp[−γ p̃2q(0)/2] governing
the reduction of the transition probability as a function of
the surface temperature. It also contains phonon processes of
all orders as can be most easily seen from the Taylor expansion

eγpp̃q(τ ) = 1 + γpp̃q(τ ) + 1
2 [γpp̃q(τ )]2 + · · · . (33)

Clearly, the second term on the right-hand side represents
the one-phonon and the third term the two-phonon process.
From I, we know that two-phonon processes are much
weaker than one-phonon processes. We expect, therefore,
lower-order phonon processes to dominate their higher-
order corrections, so that the expansion (33) converges
quickly.

As higher-order phonon processes are small compared
to lower-order processes, we take, for a given 	qq ′ , only
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the leading term of exp[γpp̃q(τ )] into account, that is, the
lowest-order phonon process that enables a transition between
the states q and q ′. The Fourier transformation of powers of
q(τ ), however, required when (33) is used in (31), can not be
evaluated in closed form, making it necessary to construct an
approximation for q(τ ).

To derive an approximation for q(τ ) subject to the constraint∫ ∞

−∞
dτ ei	qq′ τ qn(τ ) = 0 for |	qq ′ | > n, (34)

which states that an n-phonon process yields a nonvanishing
transition probability only for −n < 	 < n and vanishes
otherwise, we split q(τ ) = qs(τ ) + qi(τ ) into a contribution
arising from spontaneous phonon emission qs(τ ) and a
contribution from induced phonon emission or absorption
qi(τ ). They are, respectively, given by

qs(τ ) =
∫ 1

0
dx xe−ixτ and qi(τ ) = 2

∫ 1

0
dx x

cos(xτ )

eδx − 1
.

(35)

The former can be evaluated giving

qs(τ ) = cos τ − 1

τ 2
+ i

τ cos τ − sin τ

τ 2
+ sin τ

τ
. (36)

For qi(τ ), we need to find an approximation. For this purpose,
we look at the Fourier transform of qi :∫ ∞

−∞
dτ ei	τ qi(τ ) =

{
2π

|	|
eδ|	|−1 for − 1 < 	 < 1

0 else
. (37)

Expanding the Fourier transform in terms of |	|,

2π
|	|

eδ|	| − 1
≈ 2π

[
1

δ
− 1

2
|	| + 1

12
δ|	|2 + O(δ2)

]
(38)

yields a high-temperature approximation, which converges
quickly for the temperatures we are interested in and guar-
antees at the same time that the one-phonon contribution can
only bridge energy differences up to |	qq ′ | = 1. Applying the
inverse transformation gives

qi(τ ) =
(

2

δ
− 1 + δ

6

)
sin(τ )

τ
+ 1

τ 2

+
(

−1 + δ

3

)
cos(τ )

τ 2
− δ

3

sin(τ )

τ 3
+ O(δ2), (39)

which satisfies Eq. (34). By using this approximation, the
Fourier transform of powers of q(τ ) can be done analytically.

As the n-phonon process gives a vanishing transition
probability at |	| = n, we take the maximum of the n-phonon
and the n + 1-phonon process to obtain a better approximation
in the vicinity of |	| = n. Then, the Fourier transformation of
exp[γpp̃q(τ )] in leading nonvanishing order is given by

∫ ∞

−∞
dτ ei	τ+γpp̃q(τ,δ) ≈

{
max(An,An+1) for n − 1 < 	 < n,

max(Bn,Bn+1) for − n < 	 < −n + 1
, (40)

where

An = −2π
(γpp̃)n

n!

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
(−1)n+j

(
1

δ
+ 1

2
+ δ

12

)n−k (
1

2
+ δ

6

)k−j (
− δ

6

)j (	 − n)n+k+j−1

(n + k + j − 1)!
+ O(δ2) (41)

and

Bn = 2π
(γpp̃)n

n!

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
(−1)n+j

(
−1

δ
+ 1

2
− δ

12

)n−k (
−1

2
+ δ

6

)k−j (
δ

6

)j (	 + n)n+k+j−1

(n + k + j − 1)!
+ O(δ2). (42)

Using the approximation given by Eq. (40) allows an
efficient numerical evaluation of the transition probabilities
(31). Equations (39)–(42) are first order in δ. For the materials
and temperatures we are interested in, this is sufficient. Note,
however, that the expansion can be continued to higher orders
in δ. The Fourier transformation of exp[γpp̃q(τ )] is then
still a polynomial in 	 and, thus, amenable for numerical
calculations.

IV. Results

We now use the multiphonon transition probability to study
the electron kinetics in front of a CaO, Al2O3, and SiO2 surface.
They all have three-phonon deep surface potentials, that is, the
energy difference of the two lowest image states is between two

and three Debye energies. The material parameters required
for the numerical computation are summarized in Table I.
All numerical results were obtained for these parameters.
Where indicated, we varied the Debye temperature to simulate
different potential depths. Furthermore, the multiphonon cal-
culation for CaO, Al2O3, and SiO2 is compared to the one- and
two-phonon calculations from I and II, which are applicable
to graphite and MgO.

A. Desorption

To judge the quality of the nonlinear multiphonon approx-
imation derived in the previous section, we first compare in
Fig. 1 the inverse desorption time obtained from it with the
inverse desorption time obtained from our previous one- and
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TABLE I. Material parameters for the numerical results.

CaO Al2O3 SiO2

Debye temperature TD 648 K 980 K 470 K
Dielectric constant εs 12.01 9.9 3.78
TO-phonon frequency h̄ωT 41 meV 79 meV 133 meV

two-phonon approximations. Shown is the dependence of τ−1
e

on the Debye temperature TD , which is tuned to vary the
potential depth. The dimensionless inverse temperature δ, as
defined in Eq. (29), is kept constant to keep the level of phonon
excitation the same while the Debye temperature is varied.

The nonlinear multiphonon approximation can be, of
course, only compared with the two-phonon approximation in
the range of Debye temperatures for which the potential is two-
phonon deep. Calculated in the multiphonon approximation,
τ−1
e changes very little over the range of two-phonon depth, but

shows steep jumps at the threshold to one- and three-phonon
depth. For τ−1

e calculated in the two-phonon approximation,
which is based on an iteration of the T matrix with the nonlinear
electron-phonon coupling, these thresholds are washed out by
the resonances. Nevertheless, τ−1

e is on the same order of
magnitude in both approximations. The main effect of the
neglected resonances is the rounding off of the drops at the
thresholds. As the steps, an artifact of taking only nonlinear
multiphonon processes into account, are less steep for deeper
potentials, the nonlinear multiphonon approximation might be
even more appropriate for deeper potentials. The thin dotted
vertical line in Fig. 1 corresponds to Al2O3. Unfortunately,
the potential depth is just below the two-phonon three-phonon
threshold, so the value for τ−1

e is most likely underestimated.
Figure 1 suggests that the nonlinear multiphonon approxi-

mation, that is, the Born approximation with the full nonlinear
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FIG. 1. (Color online) Inverse desorption time τ−1
e as a function of

the Debye temperature TD for δ = 1 (surface temperature Ts = TD/δ)
calculated in the nonlinear multiphonon approximation (solid red
line) and the two-phonon approximation from I for two-phonon depth
(dashed blue line). The surface potential is one-phonon deep for
TD > 2000 K, two-phonon deep for 2000 K > TD > 1000 K, three-
phonon deep for 1000 K > TD > 666 K, and four-phonon deep for
666 K > TD > 500 K. Data for TD = 980 K apply to Al2O3 (thin
vertical line).
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FIG. 2. (Color online) Inverse desorption time τ−1
e as a function

of the surface temperature Ts for graphite, MgO, CaO, Al2O3, and
SiO2.

electron-phonon coupling, should be adequate for identifying
different scenarios of phonon-driven electron physisorption
in deep potentials. Nevertheless, we can not rigorously
assess its range of validity compared, for instance, to an
approximation based on an iteration of the T matrix with
only linear electron-phonon coupling. For transitions between
deep bound states, higher orders in the nonlinear electron-
phonon coupling tend to benefit from the large electronic
matrix elements, while, in particular for low temperatures,
bound-state resonances enhance the relevance of iterations of
lower orders of the nonlinear electron-phonon coupling. For
a better understanding, an expansion of the T matrix with the
full nonlinear electron-phonon coupling would be necessary.
Taking virtual processes involving the Rydberg series of image
states into account would make this an interesting yet strenuous
continuation of this work.

We now move on to the study of the dependence of
τ−1
e on the surface temperature. Figure 2 shows the inverse

desorption time τ−1
e as a function of the surface temperature

for graphite, MgO, Al2O3, CaO, and SiO2. For graphite
and MgO, both two-phonon deep, τ−1

e was calculated in
the two-phonon approximation; for Al2O3, CaO, and SiO2,
all of them three-phonon deep, the nonlinear multiphonon
approximation has been used. For all materials, τ−1

e increases
significantly with the surface temperature.

By comparing, in Fig. 2, τ−1
e for Al2O3, CaO, and

SiO2, we notice that τ−1
e increases with decreasing εs (see

Table I) in accordance with the fact that a smaller εs implies
a less deep surface potential and thus a faster desorption.
From Fig. 2, we also see that, for high surface temperatures,
desorption from the two-phonon deep potentials of graphite
and MgO is quicker than from the three-phonon deep potentials
of Al2O3, CaO, and SiO2 as expected. For low surface
temperature, however, τ−1

e for graphite decreases much steeper
than for the other materials. This might be due to the high
Debye temperature of graphite, so for room temperature, the
dimensionless inverse temperature δ = TD/Ts , which controls
phonon excitation, is already in the low-temperature regime
where downward transitions due to spontaneous phonon

195407-6

2 Thesis Articles

78



PHYSISORPTION OF AN ELECTRON IN DEEP SURFACE . . . PHYSICAL REVIEW B 83, 195407 (2011)

emission remain constant, while upward transitions are ex-
tremely temperature dependent, causing the desorption time
to be equally temperature dependent. This peculiarity leads to
the surprising fact that, at low temperatures, desorption from
two-phonon deep potentials can be in some cases slower than
desorption from three-phonon deep potentials.

Figure 2 also gives insight into the validity of the high-
temperature expansion (39). Up to first order in δ, it is valid
for δ < 3. This corresponds to a surface temperature of 300 K
for Al2O3 and 225 K for CaO. The small upward bends at these
temperatures indicate that, for lower surface temperatures, the
expansion given by Eq. (39) should be continued to higher
orders in δ.

B. Sticking

In II, we found that one-phonon processes give much
higher contributions to the sticking coefficient than two-
phonon processes. For this reason, we calculate the transition
probabilities for continuum and bound-state transitions only
in the one-phonon approximation. The effect of multiphonon
processes with regard to sticking lies in the relaxation from
the state in which the electron is initially trapped to the lowest
bound state. This is captured by the kinetic sticking coefficient.
Before we address this question in more detail, we take a look
at the prompt sticking coefficient.

The prompt sticking coefficient for Al2O3, CaO, and SiO2

is presented in Fig. 3. First, we consider the prompt energy-
resolved sticking coefficient shown in the inset. Note that the
quadratic phonon dispersion of the Debye model translates
into an energy-resolved sticking coefficient which, apart from
the discontinuities, is proportional to the electron energy. The
steep jumps in the energy-resolved sticking coefficient reflect
level accessibility. When the energy difference between the
approaching electron and a bound state exceeds the Debye
energy, one-phonon processes no longer enable sticking to
this level. Since the lowest two bound states of the image
potential of Al2O3 and SiO2 have energies εn < −1, they can
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FIG. 3. (Color online) Prompt energy-averaged sticking coeffi-
cient for CaO, Al2O3, and SiO2 as a function of the mean energy of
the electron at a surface temperature of Ts = 300 K. Inset: Prompt
energy-resolved sticking coefficient for Al2O3 and SiO2 as a function
of the electron energy for Ts = 300 K.
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FIG. 4. (Color online) Prompt (full line) and kinetic (dashed line)
energy-averaged sticking coefficient for SiO2 as a function of the
mean energy of the electron and the surface temperature Ts .

not be reached by one-phonon processes from the continuum.
Thus, the lowest bound state contributing to prompt sticking
is the third bound state. Due to the differences in the Debye
energy, the energy-resolved sticking coefficient for SiO2 is
larger and increases faster for low electron energies than the
sticking coefficients for Al2O3 and CaO (not explicitly shown).
Compared to Al2O3 and CaO, the energy-resolved sticking
coefficient for SiO2 is thus strongly peaked at low electron
energies. As a result, the energy-averaged sticking coefficient
shown in the main panel of Fig. 3 is much larger for SiO2 than
for Al2O3 and CaO.

Figure 4 shows the prompt and kinetic energy-averaged
sticking coefficient for SiO2 as a function of the mean
electron energy and the surface temperature. The prompt
sticking coefficient increases slightly with temperature due
to the increased contribution of induced phonon emission
responsible for continuum and bound-state transitions. The
kinetic sticking coefficient is smaller than the prompt sticking
coefficient by four to five orders of magnitude and decreases
with temperature as a higher surface temperature favors quick
transitions back into the continuum after initial trapping.

Depending on whether transitions from the upper bound
states to the lowest state or to the continuum are more likely,
the electron trickles through after initial trapping or desorbs
before relaxing to the lowest bound state. For the three-phonon
deep surface potentials of Al2O3, CaO, and SiO2, trickling
through is suppressed, leading to a considerable reduction of
the kinetic compared to the prompt sticking coefficient.

C. Electron kinetics

So far, we have calculated from the kinetic rate
equation (2) the prompt and kinetic sticking coefficients and
the desorption time. The rate equation contains, however, more
information. For a specified electron influx or initial condition,
the time evolution of the bound-state occupancy and the energy
resolution of the desorption flux can be calculated as well.

To address the first question, we plot in Fig. 5 the time
evolution of the bound-state occupancy. Our aim is to identify
the stages of physisorption and to relate them to the eigenvalues
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FIG. 5. (Color online) Time evolution of the bound-state occu-
pancy of a single electron trapped at t = 0 in the upper bound states of
Al2O3 at Ts = 300 K. The thin vertical lines correspond to λ−1

0 , λ−1
1 ,

and λ−1
2 , respectively, where −λi are the three lowest eigenvalues of

the matrix Tnm.

of the matrix Tnm. The situation we are considering is a
three-phonon deep potential, that is, −3 < 	12 < −2, with the
second bound state lying more than one Debye energy below
the continuum, that is, ε2 < −1, so that electron trapping,
due to one-phonon processes, can occur only in the third and
higher bound states. The bound states i � 2, which we call
upper bound states, are linked by one-phonon transitions.

To obtain the time evolution of the bound-state occupancy
after trapping of an electron at t = 0, we solve the rate equation
with the initial condition for the bound-state occupancy
ni(0) = τtWik for a specified k, which is the probability that
the electron is trapped in state i. In Fig. 5, k corresponds to
an electron energy of E = 0.05 eV. Due to the high electron
energy, the third state can not be reached by a one-phonon
process. Thus, trapping occurs in the fourth and higher bound
states.

In a first stage after trapping of the electron, the fast one-
phonon transitions between the upper bound states dominate
the electron kinetics. Due to trapping of the electron in the
fourth and higher bound states, the occupancy of the upper
bound states is out of equilibrium. Over the time scale set by
λ−1

2 , the inverse of the third eigenvalue of Tnm, the occupancy
in the upper bound states relaxes toward its equilibrium value.
The electron trickles through from the fourth and higher bound
states to the second bound state, as can be seen from the
increase in the occupancy of the second bound state n2 and
the reduction of the occupancy of the third and higher bound
states nq�3.

Then, the strong one-phonon transitions between the upper
bound states and the continuum, occurring over the time
scale set by λ−1

1 , empty the upper bound states. The weak
multiphonon transitions from the upper states to the lowest
bound state are only a small perturbation to the electron
kinetics in the upper bound states so that λ−1

1 corresponds
to the desorption time for the system of the upper bound states
without the lowest bound state.

Until the upper bound states are emptied, a small fraction
of the occupancy reaches the lowest bound state as can be seen
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FIG. 6. (Color online) Energy-resolved desorption flux at t =
10−4 s for an electron trapped at t = 0 in the upper bound states under
the same conditions as in Fig. 5. For Al2O3, one-phonon transitions
between bound and continuum states are only possible from the third
and higher bound states. The small numbers give the bound state
from which transitions to the continuum are no longer possible at the
respective energy.

from the discrepancy of the initial occupancy of the upper
bound states nq�2 and the maximum occupancy of n1. This
difference corresponds to the reduction of the kinetic with
respect to the prompt sticking coefficient in Fig. 4. The lowest
bound state remains occupied for a much longer time, until
desorption takes place at times on the order of τe = λ−1

0 .
Figure 6 finally shows the energy-resolved desorption flux

at t = 10−4 s [given by Eq. (9)] after trapping of the electron
under the same conditions as in Fig. 5. The final transition that
sets the electron free is a one-phonon transition from one of the
upper bound states to the continuum. From each bound state i,
one-phonon transitions are only possible to continuum states
with an energy E � Ei + h̄ωD . Hence, the energy-resolved
desorption flux exhibits the same discontinuities as the energy-
resolved sticking coefficient shown in Fig. 3, located at
electron energies for which one-phonon transitions between
bound states and the continuum cease to be operational.

V. TWO-STATE SYSTEM: DISCUSSION

To clarify the generic behavior of electron physisorption
at dielectric surfaces, and to put the results presented in the
previous section and in I and II into perspective, we study a
simple model of two bound states coupled to a continuum of
states. Electron physisorption occurs in the image potential
that supports a deep lowest bound state, well separated from
a group of relatively closely packed upper bound states. Since
the upper bound states are strongly coupled by one-phonon
processes, they can be subsumed under an effective upper
bound state. The effective state is then weakly coupled to the
lowest bound state via multiphonon processes and strongly
coupled to the continuum via one-phonon processes.

The left panel of Fig. 7 schematically shows the system
of the two surface states. Gearing toward deep potentials, we
include only transitions between the two bound states and
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FIG. 7. (Color online) Left panel: Schematic drawing of the two-
state model discussed in the main text. Middle panel: Physisorption
scenario of type A. A trapped electron has a high chance to drop
to the bottom, then it revolves between the two bound states, until
it desorbs. Right panel: Physisorption scenario of type B. Due to a
relaxation bottleneck, the electron is unlikely to drop to the lowest
state. Transitions that the electron makes once per temporary trapping
event are represented by a thin line; a bold line represents transitions
made more than once; and dashed lines represent transitions that are
made with a very low probability.

between the upper state and the continuum. The matrix Tnm

defined by Eq. (1) reads, for this system, as

T =
(−W21 W12

W21 −W12 − Wc2

)
, (43)

where W12 and W21 are the transition probabilities from the
second to the first bound state and vice versa, and Wc2 is
the transition probability from the second bound state to the
continuum. For the two-state model, the eigenvalues −λκ and
the right and left eigenvectors e(κ) and ẽ(κ) can be calculated
analytically. The eigenvalues are given by

−λ0,1 = − 1
2 (W21 + W12 + Wc2)

± 1
2

√
(W21 + W12 + Wc2)2 − 4W21Wc2. (44)

Parameters of physical interest can be also obtained
analytically. The desorption time, for instance, is the negative
inverse of the lowest eigenvalue τe = λ−1

0 . Since only the
upper bound state can be reached from the continuum, prompt
sticking arises solely from trapping in the upper bound state.
The prompt sticking coefficient is thus given by s

prompt
e,k =

τtW2k . In the two-state model, the kinetic sticking coefficient
is moreover related to the prompt sticking coefficient by
skin
e = ẽ

(0)
2 s

prompt
e . Hence, the probability for the electron to

trickle through from the upper to the lower bound state is ẽ
(0)
2 .

For many dielectrics, the weakest transitions are from
the lowest bound state to the upper bound states. They are
typically triggered by more than two phonons. To mimic this
situation within the two-state model, we set W21 � W12,Wc2.
The inverse of the desorption time becomes, in this limit,

τ−1
e = Wc2

W12 + Wc2
W21, (45)

and the ratio between kinetic and prompt sticking coefficient
becomes

skin
e

s
prompt
e

= W12

W12 + Wc2
. (46)

The physical behavior of the two-state model depends,
therefore, on the ratio between W12 and Wc2 and, thus, on
the potential depth and the surface temperature. Two extreme

cases are possible and represent different physisorption sce-
narios. For Wc2 � W12, τ−1

e
∼= (W21/W12)Wc2, which, using

detailed balance, can be brought into the Arrhenius form
τ−1
e = e−β(E2−E1)Wc2. Kinetic and prompt sticking coeffi-

cients coincide moreover in this parameter range. Hence,
an electron trapped in the upper state drops to the lowest
state before desorption. Desorption from the lowest state
occurs then via a cascade, that is, a series of fast transitions
1 → 2 → 1 → 2 → 1 . . . until eventually the transition 2 →
removes the electron from the bound states. The just-described
physisorption scenario, which we call type-A scenario, is
illustrated in the middle panel of Fig. 7. Recalling that the
upper level stands for a manifold of strongly coupled bound
states, it resembles the physisorption of neutral particles via
cascades originally proposed and investigated by Gortel and
co-workers.28

In the other limit, W12 � Wc2. The inverse of the desorption
time and the ratio between prompt and kinetic sticking
coefficient are then given by τ−1

e
∼= W21 and skin

e /s
prompt
e

∼=
W12/Wc2, respectively. The physisorption scenario is now
dramatically different from the one discussed before because
the desorption time is solely determined by the transition
probability from the lower to the upper bound state. As a result,
desorption does not occur via a cascade, but as a one-way
process 1 → 2 → continuum, where the second transition is
so fast that it basically does not affect the desorption time.
Hence, in this scenario, which we call type B, the upper bound
state can be considered as de facto belonging to the continuum
and desorption as basically equivalent to desorption from a
single deep state. For sticking, the type-B scenario exhibits
moreover a relaxation bottleneck. An electron trapped in the
upper state is very unlikely to drop to the lowest bound state,
as schematically shown in the right panel of Fig. 7.

Within the limits set by the model for the electron-surface
interaction introduced in I and briefly recalled in Sec. III,
the two-state model contains the essential physics of electron
physisorption. For potentials with ε2 > −1, where a direct
one-phonon transition from the second bound state to the
continuum is possible, the two-state model can be applied
directly. Calculating the desorption time within the two-state
model shows very good agreement with the results for graphite
obtained in I. For the ratio between kinetic and prompt
sticking coefficient skin/sprompt, which is given in the two-state
model by ẽ

(0)
2 , the agreement is less good but qualitatively

correct, reproducing, for instance, the temperature-dependent
transition between types A and B. For potentials with ε2 < −1,
no one-phonon process from the second bound state to the
continuum is possible and the two-state model can not be
applied directly. For physisorption of type B, however, the
electron kinetics in the upper bound states is only marginally
perturbed by transitions to and from the lowest bound state.
The time it takes an electron to get from the second bound state
into the continuum is then the desorption time of the system of
the upper bound states alone, that is, the negative inverse of the
smallest eigenvalue −λ

up
0 of the matrix T

up
nm, which is the matrix

Tnm defined in Eq. (2) with n,m > 1. In the two-state model,
λ

up
0 can be regarded as an effective transition rate between the

second state and the continuum. Hence, to apply the two-state
model with potentials where the second bound state does not
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couple by one-phonon processes to the continuum, we simply
replace in Eqs. (45) and (46) Wc2 by λ

up
0 .

Let us finally look at the results obtained in the previous
section and in I and II from the perspective of the two-state
model. In a one-phonon deep potential, the transitions from the
upper bound states to the lowest bound state and from the upper
bound states to the continuum are enabled by one-phonon
processes. In this case, the downward transitions are always
more likely than the upward transitions so that one-phonon
deep potentials always give rise to physisorption of type A.
Hence, they show no relaxation bottleneck and prompt and
kinetic sticking coefficient coincide. Two- or more-phonon
deep potentials can either lead to physisorption of type A or B,
depending on the surface temperature. In this case, one-phonon
transitions from the upper bound states to the continuum
compete with multiphonon transitions from the upper bound
states to the lowest bound state. As a transition from the
upper states to the continuum requires phonon absorption,
proportional to nB , while a transition from the upper states to
the lowest requires phonon emission, proportional to 1 + nB ,
we expect that, for sufficiently low temperature, physisorption
is always of type A, even for multiphonon deep potentials. For
sufficiently high temperatures, all two- or more-phonon deep
potentials are, however, of type B. In this case, a relaxation
bottleneck results in the discrepancy between prompt and
kinetic sticking coefficient (see Fig. 4). The electron kinetics
is primarily determined by the one-phonon transitions among
the upper states (see Fig. 5). The temperature at which type
A merges into type B depends on the potential depth and the
Debye temperature. For room temperature, the three-phonon
deep potentials of Al2O3, CaO, and SiO2 and the two-phonon
deep potential of MgO are all of type B. The crossover between
types A and B occurs for the two-phonon deep potential of
graphite at room temperature (see Fig. 5 of our previous work
II).

VI. CONCLUSIONS

Within a simplified one-dimensional model for the
polarization-induced interaction between an external electron
and a dielectric surface with a sufficiently large energy gap
and a sufficiently negative electron affinity, we investigated
phonon-induced adsorption and desorption of an electron at
a dielectric surface. The required electron energy relaxation,
inducing transitions between the eigenstates of the surface
potential, which we approximated by a recoil-corrected image
potential, is due to the coupling to an acoustic bulk phonon.

The majority of dielectrics of interest have a surface
potential that is three- or more-phonon deep, that is, the
energy difference between the two lowest bound states is more
than two Debye energies of the bulk phonon. In our previous

work,23,24 we took multiphonon processes into account using
a T matrix approach, which is, however, only feasible for
one- and two-phonon deep potentials, as it is, for instance,
in the case for graphite. To overcome this limitation, we
derived in this paper a nonperturbative expression for the
multiphonon transition probability arising solely from the
nonlinearity of the electron-phonon interaction. In view of
our previous results for one- and two-phonon deep potentials,
we expect this approximation to give an acceptable correct
order-of-magnitude estimate for the multiphonon transition
probability involving more than two phonons, despite the
neglect of resonant processes stemming from the iteration of
the T matrix.

We presented numerical results for the electron desorption
time for graphite, MgO, CaO, Al2O3, and SiO2 and the prompt
and kinetic energy-resolved and energy-averaged electron
sticking coefficient for CaO, Al2O3, and SiO2. In addition, we
calculated the energy-resolved desorption flux and investigated
the time evolution of the bound-state occupancy after initial
trapping of an electron, revealing the characteristic stages of
electron physisorption: initial trapping, relaxation in the upper
bound states, trickling through to the lowest bound state, and
desorption. Ultrafast electron spectroscopy at surfaces with
stable image states4–6 should be able to resolve these different
stages experimentally.

Using a simple two-state model, we finally identified two
vastly different scenarios of electron physisorption, depending
on potential depth and surface temperature, and put our results,
including the ones of our previous work,23,24 into perspective.
For almost all dielectrics of practical interest, the trapped
electron has, only for very low temperatures well below
room temperature, a significant chance to trickle through to
the lowest bound state. The desorption process in this case
would then proceed via a cascade between the first and second
bound state until it eventually makes a transition from there
to the continuum. The shallow bound states, albeit important
for adsorption, play a minor role for desorption. The second
bound state is the most important one. It is a relay state. At
room temperature, however, a relaxation bottleneck prevents
the trapped electron from falling to the lowest bound state.
The electron physisorption kinetics is thus dominated by fast
one-phonon transitions in the upper bound states. Only a small
fraction of the electron trickles through to the lowest bound
state and resides there for a very long time until it makes a
one-step desorbing transition to the continuum.
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We study for a dielectric particle the effect of surplus electrons on the anomalous scattering of light

arising from the transverse optical phonon resonance in the particle’s dielectric function. Excess electrons

affect the polarizability of the particle by their phonon-limited conductivity, either in a surface layer

(negative electron affinity) or the conduction band (positive electron affinity). We show that surplus

electrons shift an extinction resonance in the infrared. This offers an optical way to measure the charge of

the particle and to use it in a plasma as a minimally invasive electric probe.

DOI: 10.1103/PhysRevLett.109.243903 PACS numbers: 42.25.Bs, 42.25.Fx, 73.20.�r, 73.25.+i

The scattering of light by a spherical particle is a fun-
damental problem of electromagnetic theory. Solved by
Mie in 1908 [1], it encompasses a wealth of scattering
phenomena owing to the complicated mathematical form
of the scattering coefficients and the variety of the under-
lying material-specific dielectric constants [2,3]. While
Mie scattering is routinely used as a particle size diagnostic
[2], the particle charge has not yet been determined from
the Mie signal. Most particles of interest in astronomy,
astrophysics, atmospheric sciences, and laboratory experi-
ments are however charged [4–8]. The particle charge is a
rather important parameter. It determines the coupling of
the particles among each other and to external electro-
magnetic fields. An optical measurement of it would be
extremely useful. In principle, light scattering contains
information about excess electrons as their electrical con-
ductivity modifies either the boundary condition for elec-
tromagnetic fields or the polarizability of the material
[2,9–11]. But how strong and in what spectral range the
particle charge reveals itself by distorting the Mie signal of
the neutral particle is an unsettled issue.

In this Letter, we revisit Mie scattering by a negatively
charged dielectric particle. Where electrons are trapped on
the particle depends on the electron affinity � of the
dielectric, that is, the offset of the conduction band mini-
mum to the potential in front of the surface. For �< 0, as it
is the case for MgO, CaO, or LiF [12,13], the conduction
band lies above the potential outside the grain and elec-
trons are trapped in the image potential induced by a
surface mode associated with the transverse optical (TO)
phonon [14,15]. The conductivity �s of this two-
dimensional electron gas is limited by the residual scatter-
ing with the surface mode and modifies the boundary
condition for the electromagnetic fields at the surface of
the grain. For �> 0, as it is the case for Al2O3 or SiO2,
electrons accumulate in the conduction band forming a
space charge [15]. Its width, limited by the screening in
the dielectric, is typically larger than a micron. For micron-
sized particles we can thus assume a homogeneous distri-
bution of the excess electrons in the bulk. The effect on

light scattering is now encoded in the bulk conductivity of
the excess electrons �b, which is limited by scattering with
a longitudinal optical (LO) bulk phonon and gives rise to
an additional polarizability per volume � ¼ 4�i�b=!,
where ! is the frequency of the light. We focus on the
scattering of light in the vicinity of anomalous optical
resonances that have been identified for metal particles
by Tribelsky et al. [16,17]. These resonances occur at
frequencies ! where the complex dielectric function
�ð!Þ ¼ �0ð!Þ þ i�00ð!Þ has �0 < 0 and �00 � 1. For a
dielectric they are induced by the TO phonon and lie in
the infrared. Using Mie theory, we show that for
submicron-sized particles the extinction resonance shifts
with the particle charge and can thus be used to determine
the particle charge.
In the framework of Mie theory, the scattering and trans-

mission coefficients connecting incident (i), reflected (r),
and transmitted (t) partial waves are determined by the
boundary conditions for the electric and magnetic fields at
the surface of the particle [2,18]. For a charged particle
with �< 0 the surface charges may sustain a surface
current K which enters the boundary condition for the
magnetic field. Thus, êr�ðHiþHr�HtÞ¼ 4�

c K, where

c is the speed of light [11]. The surface currentK ¼ �sEk
is induced by the component of the electric field parallel to
the surface and is proportional to the surface conductivity
�s. For �> 0 the bulk surplus charge enters the refractive

indexN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p
through its polarizability. Matching the

fields at the boundary of a dielectric sphere with radius a
gives, following Bohren and Hunt [11], the scattering
coefficients

arn ¼ c nðN�Þc 0
nð�Þ � ½Nc 0

nðN�Þ � i�c nðN�Þ�c nð�Þ
½Nc 0

nðN�Þ � i�c nðN�Þ��nð�Þ � c nðN�Þ�0
nð�Þ ;

brn ¼ c 0
nðN�Þc nð�Þ � ½Nc nðN�Þ þ i�c 0

nðN�Þ�c 0
nð�Þ

½Nc nðN�Þ þ i�c 0
nðN�Þ��0

nð�Þ � c 0
nðN�Þ�nð�Þ ;

(1)

where for �< 0 (�> 0) the dimensionless surface con-
ductivity �ð!Þ ¼ 4��sð!Þ=c (� ¼ 0) and the refractive
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index N ¼ ffiffiffi
�

p
(N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ �
p

), the size parameter � ¼
ka ¼ 2�a=	, where k is the wave number, c nð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
��=2

p
Jnþ1=2ð�Þ, �nð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
��=2

p
Hð1Þ

nþ1=2ð�Þ with Jnð�Þ
the Bessel and Hð1Þ

n ð�Þ the Hankel function of the first
kind. As for uncharged particles the extinction efficiency
becomes Qt ¼ �ð2=�2ÞP1

n¼1ð2nþ 1ÞReðarn þ brnÞ. Any
effect of the surplus electrons on the scattering of light,
encoded in arn and brn, is due to the surface conductivity
(�< 0) or the bulk conductivity (�> 0).

For �< 0 we describe the surface electron film in a
planar model to be justified below. For the dielectrics
which we consider, the low-frequency dielectric function
is dominated by an optically active TO phonon with fre-
quency !TO. For the modeling of the surface electrons it
suffices to approximate it by �ð!Þ ¼ 1þ!2

TOð�0 � 1Þ=
ð!2

TO �!2Þ, where �0 is the static dielectric constant.

This allows for a TO surface mode whose frequency is

given by �ð!sÞ ¼ �1 leading to !s ¼ !TO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �0Þ=2
p

[19]. The coupling of the electron to this surface mode
consists of a static and a dynamic part [20]. The former
leads to the image potential V ¼ ��0e

2=z with �0 ¼
ð�0 � 1Þ=½4ð�0 þ 1Þ� supporting a series of bound

Rydberg states whose wave functions read 
nkðx;zÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=AaBnn!

2
p

eikxWn;1=2ð2�0z=naBÞ with aB the Bohr

radius, k ¼ ðkx; kyÞ, x ¼ ðx; yÞ, and A the surface area.

Since trapped electrons are thermalized with the surface
and the spacing between Rydberg states is large compared
to kBT, they occupy only the lowest image
band n ¼ 1. Assuming a planar surface is justified pro-
vided the de Broglie wavelength 	dB of the electron on the
surface is smaller than the radius a of the sphere. For a
surface electron with energy Ekin=kB¼300K one finds
	dB � 10�6 cm. Thus, for particle radii a > 10 nm the
plane-surface approximation is justified. The dynamic
interaction enables momentum relaxation parallel to
the surface and limits the surface conductivity.
Introducing annihilation operators ck and aQ for elec-

trons and phonons, the Hamiltonian describing the dy-
namic electron-phonon coupling in the lowest image

band reads H ¼ P
k�kc

y
kck þ @!s

P
Qa

y
QaQ þHint [21]

with Hint ¼ P
k;QðMk;Q=

ffiffiffiffi
A

p ÞcykþQðaQ � ay�QÞck, where

the matrix element is given by (m is the electron mass)

MkQ ¼ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0@

3
p
m

ffiffiffiffiffiffiffiffiffiffi
!sQ

p
�

2�0

QaB þ 2�0

�
3
�
QkþQ2

2

�
: (2)

Within the memory function approach [22] the surface
conductivity can be written as

�sð!Þ ¼ e2ns
m

i

!þMð!Þ (3)

with ns the surface electron density. Up to second order in
the electron-phonon coupling the memory function

Mð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m!s�

p
e2�0ffiffiffiffiffiffiffiffiffiffiffi

2�@3
p

Z 1

�1
d ��

jð� ��Þ � jð ��Þ
��ð ��� �� i0þÞ ; (4)

jð�Þ ¼ e�

e� � 1
j�þ 1j3e��ð�þ1Þ=2Ið=

ffiffiffiffiffiffiffiffiffi
j�þ1j

p
Þ

�
�j�þ 1j

4

�

þ 1

e� � 1
j�� 1j3e��ð��1Þ=2Ið=

ffiffiffiffiffiffiffiffiffi
j��1j

p
Þ

�
�j�� 1j

4

�
;

(5)

where � ¼ !=!s, � ¼ �@!s,  ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

0@=a
2
Bm!s

q
, and

IaðxÞ ¼
R1
0 dte�xð1=tþtÞa6=ðaþ ffiffi

t
p Þ6 which for low tem-

perature, that is x ! 1, has the asymptotic form IaðxÞ �ffiffiffiffiffiffiffiffiffi
�=x

p
e�2xa6=ð1þ aÞ6. Since Mð!Þ is independent of ns

the surface conductivity is proportional to ns.
For�> 0 the bulk conductivity is limited by a LOphonon

with frequency !LO. The coupling of the electron to this

mode is described by Hint ¼
P

k;qMcykþqckðaq þ ay�qÞ=ffiffiffiffi
V

p
q [23], whereM¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�e2@!LOð��11 ���1

0 Þ
q

. Employing

the memory function approach, the bulk conductivity is
given by Eq. (3) where ns is replaced by the bulk electron
density nb and m by the conduction band effective mass
m�, the prefactor of the memory function [Eq. (4)] is then

4e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�!LO�

p ð��11 � ��1
0 Þ=ð3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�@Þ3p Þ, and

jð�Þ ¼ e�

e� � 1
j�þ 1je��ð�þ1Þ=2K1ð�j�þ 1j=2Þ

þ 1

e� � 1
j�� 1je��ð��1Þ=2K1ð�j�� 1j=2Þ; (6)

where � ¼ !=!LO, � ¼ �@!LO, and K1ðxÞ is a modified
Bessel function. For low temperature, i.e., � ! 1
jð�Þ � ffiffiffiffiffiffiffiffiffiffi

�=�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�þ 1jp

�ð��� 1Þ.
To exemplify light scattering by a charged dielectric

particle we consider a MgO (�<0) and an Al2O3 (�>0)
particle [24]. The charge effect on scattering is controlled
by the dimensionless surface conductivity � ¼ �0 þ i�00
(for �< 0) or the excess electron polarizability � ¼ �0 þ
i�00 (for �> 0), both shown in Fig. 1, which are small even
for a highly charged particle with ns ¼ 1013 cm�2 (corre-
sponding to nb¼3�1017 cm�3 for �> 0 and a ¼ 1 �m).
The electron-phonon coupling reduces �00 and�0 compared
to a free electron gas where Mð!Þ ¼ 0, implying �0 ¼ 0
and �00 ¼ 0. For T ¼ 0 K, �0 ¼ 0 (�00 ¼ 0) for 	�1 <
	�1
s ¼ 909 cm�1, the inverse wavelength of the surface

phonon (	�1<	�1
LO¼807 cm�1, the inverse wavelength of

the bulk LO phonon) since light absorption is only possible
above the surface (bulk LO) phonon frequency. At room
temperature �00 and �0 still outweigh �0 and �00. The
temperature effect on �00 is less apparent for 	�1 >
300 cm�1 than for �0 but for 	�1 < 300 cm�1 a higher
temperature lowers �00 considerably. The upper panel of
Fig. 2 shows the complex dielectric constant � and the
refractive index N. For MgO we use a two-oscillator fit for
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� [26,31]. In the infrared, � is dominated by a TO phonon at
401 cm�1. The second phonon at 640 cm�1 is much
weaker, justifying our model for the image potential based
on one dominant phonon. Far above the highest TO pho-
non, that is, for 	�1 > 800 cm�1 (	�1 > 900 cm�1) for
MgO (Al2O3) �

0 > 0 and �00 � 1. For these wave numbers
a micron-sized grain would give rise to a typical Mie plot
exhibiting interference and ripples due to the functional
form of arn and brn and not due to the dielectric constant.
Surplus electrons would not alter the extinction in this
region because j�j � j�j and j�j � j�j.

To observe a stronger dependence of extinction on the
parameters � and � or �, we turn to 400 cm�1 < 	�1 <
700 cm�1 for MgO (700 cm�1 < 	�1 < 900 cm�1 for
Al2O3) where �0 < 0 and �00 � 1 allowing for optical
resonances, sensitive to even small changes in �. They
correspond to resonant excitation of transverse surface
modes of the sphere [32]. For a metal particle the reso-
nances are due to plasmons and lie in the ultraviolet
[16,17]. For a dielectric the TO phonon induces them. As
the polarizability of excess electrons, encoded in � or �, is

larger at low frequency, the resonances of a dielectric
particle, lying in the infrared, should be more susceptible
to surface charges. The lower panel of Fig. 2 shows a
clearly distinguishable series of resonances in the extinc-
tion efficiency. The effect of negative excess charges is
shown by the crosses in Fig. 3. The extinction maxima are
shifted to higher 	�1 for both surface and bulk excess
electrons. For comparison the circles show the shift for a
free electron gas. The effect is strongest for the first reso-
nance, where a surface electron density 1013 cm�2 (or an
equivalent bulk charge), realized for instance in dusty
plasmas [33], yields a shift of a few wave numbers.
The shift can be more clearly seen in Fig. 4 where the tail

of the first resonance is plotted for MgO on an enlarged
scale. The main panel shows the extinction efficiency for
ns ¼ 1013 cm�2 with its maxima indicated by blue dots.
Without surface charge the resonance is at 	�1 ¼
606 cm�1 for a < 0:25 �m. For a charged particle it
moves to higher 	�1 and this effect becomes stronger the
smaller the particle is. The line shape of the extinction
resonance for fixed particle size is shown in the top and
bottom panels for a ¼ 0:2 �m and a ¼ 0:05 �m, respec-
tively. For comparison, data for other surface charge den-
sities are also shown. Figure 4 also suggests that the
resonance shift is even more significant for particles with
radius a < 0:01 �m where the planar model for the image
states is inapplicable. An extension of our model, guided
by the study of multielectron bubbles in helium [34],
requires surface phonons, image potential, and electron-
phonon coupling for a sphere. Because of its insensitivity
to the location of the excess electrons, we expect qualita-
tively the same resonance shift for very small grains.
As we are considering particles small compared to 	 we

expand the scattering coefficients for small �. To ensure
that in the limit of an uncharged grain, that is, for � ! 0, arn
and brn converge to their small � expansions [18], we

FIG. 2 (color online). Dielectric constant � ¼ �0 þ i�00,
refractive index N ¼ nþ ik (top), and extinction efficiency Qt

(bottom) depending on the particle radius a for MgO and Al2O3

as a function of the inverse wavelength 	�1.
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FIG. 1 (color online). Dimensionless surface conductivity
� ¼ �0 þ i�00 for MgO for ns ¼ 1013 cm�2 (left) and polariz-
ability of excess electrons � ¼ �0 þ i�00 for Al2O3 for
nb ¼ 3� 1017 cm�3 (right) as a function of the inverse wave-
length 	�1.
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FIG. 3 (color online). Magnification of the extinction reso-
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substitute t ¼ �=� before expanding the coefficients. Up to
Oð�3Þ this yields ar1 ¼ ar2 ¼ br2 ¼ 0 and only br1 �Oð�3Þ
contributes. Then the extinction efficiency reads

Qt ¼ 12�ð�00 þ �00 þ 2�0=�Þ
ð�0 þ �0 þ 2� 2�00=�Þ2 þ ð�00 þ �00 þ 2�0=�Þ2 ;

(7)

where the excess charges enter either through �with� ¼ 0
for �< 0 or through �with � ¼ 0 for �> 0. For �, � ! 0
this gives the limit of Rayleigh scattering. The resonance is
located at the wave number where

�0 þ �0 þ 2� 2�00=� ¼ 0 (8)

and has a Lorentzian shape, already apparent from Fig. 4,
provided �00 and �0 (or �00) vary only negligibly near the
resonance wavelength. For an uncharged surface the reso-
nance is at 	�1

0 for which �0 ¼ �2. For �< 0 the shift of

the resonance is proportional to �00 and thus to ns, provided
�0 is well approximated linearly in 	�1 and �00 does not
vary significantly near 	�1

0 . In this case, we substitute in

(8) the expansions �0 ¼ �2þ c�ð	�1 � 	�1
0 Þ and �00 ¼

c�ns where c� ¼ @�0
@	�1 j	�1

0
and c� ¼ �00

ns
j	�1

0
. Then the reso-

nance is located at 	�1 ¼ 	�1
0 þ c�ns=ð�c�a	�1

0 Þ. For

�> 0 the resonance is located at 	�1 ¼ 	�1
0 � c�nb=c�

where c� ¼ �0
nb
j	�1

0
. The dotted lines in Fig. 4 give the

location of the resonance obtained from Eq. (8) for MgO,

where 	�1
0 ¼ 606 cm�1 for several surface electron den-

sities. They agree well with the underlying contour calcu-
lated from the exact Mie solution, as exemplified for
ns ¼ 1013 cm�2. The proportionality of the resonance shift
to ns (nb) can also be seen in Fig. 5 where we plot on the
abscissa the shift of the extinction resonance arising from
the surface electron density given on the ordinate for LiF
[24], MgO (�< 0), and Al2O3 (�> 0). Both bulk and
surface electrons lead to a resonance shift. To illustrate
the similarity of the shift we consider (8) for free electrons,
which then becomes �0 �2Nee

2=ðma3!2Þ¼�2 for �<0
and �0 � 3Nee

2=ðm�a3!2Þ ¼ �2 for �> 0; Ne is the
number of excess electrons. The effect of surface electrons
is weaker by a factor 2m�=3m where the 2=3 arises from
geometry as only the parallel component of the electric
field acts on the spherically confined electrons. Most
important, however, �=� and � enter the resonance condi-
tion on the same footing showing that the shift is essen-
tially an electron density effect on the polarizability of the
grain. We therefore expect the shift to prevail also for
electron distributions between the two limiting cases of a
surface and a homogeneous bulk charge.
To conclude, our results suggest that for dielectric par-

ticles showing anomalous optical resonances the extinction
maximum in the infrared can be used to determine the
particle charge (see Fig. 5). For dusty plasmas this can be
rather attractive because established methods for measur-
ing the particle charge [35–37] require plasma parameters
that are not precisely known whereas the charge measure-
ment by Mie scattering does not. Particles with surface
(negative electron affinity �, e.g., MgO, LiF) as well as
bulk excess electrons (�> 0 e.g., Al2O3) show the effect
and could serve as model systems for submicron-sized dust
in space, the laboratory, and the atmosphere. These parti-
cles could be used also as minimally invasive electric
probes in a plasma, which collect electrons depending on
the local plasma environment. Determining their charge
from Mie scattering and the forces acting on them by

FIG. 4 (color online). Middle: Extinction efficiency Qt as a
function of the inverse wavelength 	�1 and the radius a for a
MgO particle with ns ¼ 1013 cm�2 and T ¼ 300 K. The dotted
lines indicate the extinction maximum for ns ¼ 0 (black),
2� 1012 (green), 5� 1012 (red), and 1013 cm�2 (blue) obtained
from (8). Top and bottom: Extinction efficiency Qt as a function
of 	�1 for a ¼ 0:2 �m (top) and a ¼ 0:05 �m (bottom) for
different surface electron densities.
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FIG. 5 (color online). Position of the extinction resonance
depending on the surface charge ns for LiF, MgO, and Al2O3

(for equivalent bulk charge nb ¼ 3ns=a) particles with different
radii a. Solid (dashed) lines are obtained from the Mie contour
[Eq. (8)].
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conventional means [35–37] would provide a way to
extract plasma parameters locally.
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gemeinschaft through SFB-TRR 24, Project B10.
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Optical signatures of the Charge of a Dielectric Particle in a Plasma
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With an eye on dust particles immersed into an ionized gas, we study the effect of a negative
charge on the scattering of light by a dielectric particle with a strong transverse optical phonon
resonance in the dielectric constant. Surplus electrons alter the scattering behavior of the particle
by their phonon limited conductivity in the surface layer (negative electron affinity) or in the bulk
of the particle (positive electron affinity). We identify a charge-dependent increase of the extinction
efficiency for low frequencies, a shift of the extinction resonance above the transverse optical phonon
frequency, and a rapid variation of the polarization angles over this resonance. These effects could
be used for non-invasive optical measurements of the charge of the particle.

PACS numbers: 42.25.Bs, 42.25.Fx, 52.27.Lw

I. INTRODUCTION

Charged dust particles embedded in a plasma envi-
ronment are an ubiquitous phenomenon in nature.1,2

They are found in the interstellar medium,3,4 plane-
tary magnetospheres,5 the upper atmosphere,6 and in
industrial plasmas.7 Dusty laboratory plasmas,8 contain-
ing self-organized dust clouds, serve moreover as model
systems for studying the dynamic behavior of strongly
Coulomb-correlated systems of finite extent.

From the plasma physics point of view, the most im-
portant property of a dust particle is the charge it ac-
cumulates from the plasma. It controls the coupling to
other dust particles and to external electromagnetic fields
as well as the overall charge balance of the plasma. As a
consequence various methods have been devised to mea-
sure the particle charge. They range from force balance
methods for particles drifting in the plasma9 or trapped
in the plasma sheath10,11 to methods based on wave
dispersion,12 normal mode analysis,13 and dust cluster
rotation.14 Yet, the precise determination of the parti-
cle charge in a plasma environment remains a challenge.
Methods independent of the plasma parameters,12–14

which are usually not precisely known, require specific
experimental configurations, long measurement times or
cannot yield the charge of individual dust particles. The
phase-resolved resonance method,11 for instance, allows
only a precise relative charge measurement. For an ab-
solute charge measurement the potential profile in the
vicinity of the particle has to be additionally obtained by
Langmuir probe measurements which however are only
about 20% accurate. Thus an optical measurement of
the particle charge, independent of the plasma parame-
ters, would be extremely useful.

The scattering of light by a small particle (Mie scat-
tering15) encodes—at least in principle—the particle
charge.16–21 It enters the scattering coefficients through
the electrical conductivity of the surplus electrons which
modifies either the boundary conditions for the electro-
magnetic fields or the polarizability of the particle. To
assess how and at which frequencies charges are revealed
by the Mie signal requires however not only a microscopic

calculation of the surface and bulk conductivities but also
a detailed analysis of the conductivities’ impact on the
different scattering regimes the particle’s dielectric con-
stant gives rise to.

So far, the dependence of the Mie signal on the particle
charge has not been investigated systematically. In our
previous work21 we made a first step to clarify this issue
which has also been raised by Rosenberg.22 We identi-
fied the extinction at anomalous optical resonances of
dielectric particles with a strong transverse optical (TO)
phonon resonance in the dielectric constant to be sensi-
tive to surplus electrons. In the present work we give a
more comprehensive survey of Mie scattering by small
negatively charged dielectric particles. Our aim is to
identify over the whole frequency range, not only in the
vicinity of anomalous resonances, features in the Mie sig-
nal which respond to surplus electrons. From these fea-
tures the surplus electron density of the particle could be
determined optically via light scattering.

After a brief outline of the Mie theory of light scat-
tering by small charged particles in the next section, we
present in Section III results for the four generic scatter-
ing features which occur for a charged dielectric parti-
cle with a strong resonance in the dielectric constant at
the TO phonon frequency ωTO: low-frequency scattering,
ordinary resonances below ωTO, anomalous resonances
above ωTO, and high-frequency scattering. We investi-
gate the intensity of the Mie signal and its polarization.
Thereby we include ellipsometric techniques into our con-
siderations. Section IV finally summarizes the results and
points out possibilities for an optical measurement of the
particle charge.

II. THEORY

The scattering behavior of an uncharged dielectric
particle is determined by its radius a and frequency-
dependent dielectric constant ε(ω). For a negatively
charged dielectric particle light scattering is also influ-
enced by the electric conductivity of the surplus elec-
trons. Whether surplus electrons are trapped inside the
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particle or in a surface layer around it depends on the
electron affinity χ of the particle.21

For χ < 0, as it is the case for instance for MgO and
LiF,23 the conduction band inside the dielectric is above
the potential outside the particle. Electrons do not pen-
etrate into the dielectric. Instead they are trapped in
the image potential in front of the surface.24,25 The im-
age potential is due to a surface mode associated with
the TO phonon. The interaction of an electron with the
surface mode comprises a static part, which induces the
image potential,26,27 and a dynamic part, which enables
momentum relaxation parallel to the surface limiting the
surface conductivity.28 The phonon-limited surface con-
ductivity σs, calculated in our previous work21 using the
memory function approach,29 modifies the boundary con-
dition for the magnetic field at the surface of the grain.16

For χ > 0, as it is the case for instance for Al2O3,
Cu2O and PbS, the conduction band inside the dielec-
tric lies below the potential outside the particle. Elec-
trons thus accumulate in the conduction band where they
form an extended space charge.24 Its width, limited by
the screening in the dielectric, is typically larger than a
micron. For micron-sized particles we can thus assume
a homogeneous electron distribution in the bulk. The
bulk conductivity is limited by scattering with a longitu-
dinal optical (LO) phonon30 and can be also calculated21

within the memory function approach. The bulk conduc-
tivity of the surplus electrons σb leads to an additional
polarizability per volume α = 4πiσb/ω which alters the
refractive index.

The scattering behavior of the particle is controlled by
the scattering coefficients. They are determined by ex-
panding the incident (i) plane wave into spherical vector
harmonics and matching the reflected (r) and transmit-
ted (t) waves at the boundary of the sphere.17,31 In the
case of χ > 0 the boundary conditions at the surface are
given by êr × (Ci + Cr − Ct) = 0 for C = E,H. For
χ < 0 the surface charges may sustain a surface current
K = σsE‖ which is induced by the parallel component
of the electric field and proportional to the surface con-
ductivity. This changes the boundary condition for the

magnetic field to êr × (Hi + Hr −Ht) = 4πK/c, where
c is the velocity of light. The boundary condition for the
electric field is still êr × (Ei + Er −Et) = 0. The refrac-
tive index of the particle N =

√
ε (χ < 0) or N =

√
ε+ α

(χ > 0). Matching the fields at the particle surface gives
the scattering coefficients16

arn = − F an
F an + iGan

, brn = − F bn
F bn + iGbn

, (1)

where

F an = ψn(Nρ)ψ′n(ρ)− [Nψ′n(Nρ)− iτψn(Nρ)]ψn(ρ),
(2)

Gan = ψn(Nρ)χ′n(ρ)− [Nψ′n(Nρ)− iτψn(Nρ)]χn(ρ),
(3)

F bn = ψ′n(Nρ)ψn(ρ)− [Nψn(Nρ) + iτψ′n(Nρ)]ψ′n(ρ),
(4)

Gbn = ψ′n(Nρ)χn(ρ)− [Nψn(Nρ) + iτψ′n(Nρ)]χ′n(ρ)
(5)

with the dimensionless surface conductivity τ(ω) =
4πσs(ω)/c (χ < 0) or τ = 0 (χ > 0). The size param-
eter ρ = ka = 2πa/λ where λ is the wavelength and

ψn(ρ) =
√
πρ/2Jn+1/2(ρ), χn(ρ) =

√
πρ/2Yn+1/2(ρ)

with Jn the Bessel and Yn the Neumann function. The
efficiencies for extinction (t) and scattering (s) are

Qt = − 2

ρ2

∞∑

n=1

(2n+ 1)Re(arn + brn) (6)

Qs =
2

ρ2

∞∑

n=1

(2n+ 1)(|arn|2 + |brn|2) (7)

from which the absorption efficiency Qa = Qt − Qs can
be also obtained.

An important special case is the scattering by small
particles, for which ρ � 1. Inspired by the expressions
used in Ref. 32 we write in this case F an = Nn+1fan/(2n+
1) and Gan = Nn+1gan/(2n+ 1) with

fan =
22n(n+ 1)!n!

(2n+ 1)!(2n)!
ρ2n+1

(
iτ

n+ 1
ρ+

N2 − 1

(n+ 1)(2n+ 3)
ρ2 +O(ρ3)

)
, (8)

gan =2n+ 1− iτρ+
1−N2

2
ρ2 +O(ρ3), (9)

and similarly F bn = Nnf bn/(2n+ 1) and Gbn = Nngbn/(2n+ 1) with

f bn =
22nn!(n+ 1)!

(2n)!(2n+ 1)!
ρ2n+1

(
1−N2 − i(n+ 1)

τ

ρ
+O(ρ)

)
, (10)

gbn =− (n+ 1)− nN2 − in(n+ 1)
τ

ρ
+

[
(n+ 3)N2 + nN4

2(2n+ 3)
− (n+ 1) + (n− 2)N2

2(2n− 1)

]
ρ2

+

[
−i (n+ 1)(n− 2)

2(2n− 1)
+ i

n(n+ 3)

2(2n+ 3)
N2

]
τρ+O(ρ3) . (11)
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The leading scattering coefficients for small uncharged
particles are b1 ∼ O(ρ3) and a1, b2 ∼ O(ρ5). For them

fa1 = i
τ

3
ρ4 +

N2 − 1

15
ρ5, ga1 = 3− iτρ+

1−N2

2
ρ2,

(12)

f b1 = −i4τ
3
ρ2 +

2(1−N2)

3
ρ3, gb1 = −2−N2 − i2τ

ρ
,

(13)

f b2 = −i τ
5
ρ4 +

1−N2

15
ρ5, gb2 = −3− 2N2 − i6τ

ρ
.

(14)

Keeping only the coefficient b1 the extinction efficiency
Qt = −6 Re(br1)/ρ2. Approximating br1 = f/ig (we have
neglected f ∼ ρ3 compared to g ∼ ρ0 in the denominator)
we obtain for the extinction efficiency

Qt =
12ρ (ε′′ + α′′ + 2τ ′/ρ)

(ε′ + α′ + 2− 2τ ′′/ρ)
2

+ (ε′′ + α′′ + 2τ ′/ρ)
2 (15)

which is valid for small particles, that is, for ρ� 1.

III. RESULTS

In the following we will discuss light scattering for a
MgO (χ < 0) and an Al2O3 (χ > 0) particle (for material
parameters see Ref. 33). The particle charge affects light
scattering through the dimensionless surface conductivity
τ = τ ′+ iτ ′′ (MgO) or the surplus electron polarizability
α = α′ + iα′′ (Al2O3). Both τ and α are shown as a
function of the inverse wavelength λ−1 in the first row
of Fig. 1. They are small even for a highly charged
particle with ns = 1013 cm−2 which corresponds to nb =
3× 1017 cm−3 for a = 1µm. For T = 300 K τ ′′ > τ ′ and
−α′ > α′′ except at very low frequencies. For λ−1 → 0
the conductivities σs and σb tend to a real value so that
τ ′ > τ ′′ and α′′ > −α′ for very small λ−1. Both τ and α
decrease with increasing λ−1 and vary smoothly over the
considered frequencies. Shown for comparison are also
τ and α for T = 0 where τ ′ = 0 for λ−1 < λ−1s = 909
cm−1, the inverse surface phonon wavelength (α′′ = 0
for λ−1 < λ−1LO = 807 cm−1, the inverse LO phonon
wavelength), since light absorption is possible only above
λ−1s (or λ−1LO).

The scattering behavior of the uncharged particles is
primarily determined by the dielectric constants ε(ω)
(second row of Fig. 1). For MgO it is dominated by a TO
phonon at λ−1 = 401 cm−1. For Al2O3 two TO phonon
modes at λ−1 = 434 cm−1 and λ−1 = 573 cm−1 domi-
nate ε(ω). At frequencies well below the TO phonon reso-
nance the dielectric constant tends towards its real static
value ε0. In this regime (marker A in Fig. 1) ε′′ � ε′.
For constant radius a, the extinction efficiency Qt → 0
for λ−1 → 0. Just below the TO phonon resonance (for

Al2O3 below the lower TO-phonon) ε′ is large and pos-
itive and ε′′ � ε′ (except in the immediate vicinity of
the resonance). This gives rise to ordinary optical reso-
nances (marker B in Fig. 1).34 Above the TO phonon res-
onance (for Al2O3 above the higher TO-phonon) ε′ < 0
and ε′′ � 1. This entails anomalous optical resonances
(marker C in Fig.1).35–37 Far above the TO phonon res-
onance ε′ takes a small positive value and ε′′ � 1. This
gives rise to an interference and ripple structure (marker
D in Fig. 1).17

In the context of plasma physics dielectric particles
with a strong TO phonon resonance have already been
studied theoretically as wave-length selective infra-red
absorbers.22 In the following we explore the modifica-
tion of the features A–D by surplus electrons. We are
particularly interested in identifying dependencies in the
optical signal which can be used as a charge diagnostic.

A. Low-Frequency Scattering

In the low frequency limit of scattering (marker A in
Fig. 1) the extinction efficiencyQt is relatively small. For
λ−1 < 200 cm−1 particles with a radius of a few microns
are small compared to the wavelength. In this limit the
dominant scattering coefficient is br1 and the extinction
efficiency is given approximately by Eq. (15). Extinction
is due to absorption which is controlled by ε′′. As ε′′ is
small in this frequency range energy dissipation on the
grain and thus extinction is inhibited. For λ−1 → 0,
ε′′ → 0 and hence Qt → 0.

For charged dielectric particles light absorption is con-
trolled not only by ε′′ but also by τ ′ for χ < 0 and by α′′

for χ > 0 which stem from the real part of the surface or
bulk conductivity of the surplus electrons, respectively.
For low frequency τ ′ and α′′ are larger than for higher
frequencies and for λ−1 → 0 even outweigh τ ′′ and −α′
as the real parts of the surface and bulk conductivities
tend to finite values whereas the imaginary parts vanish
for λ−1 = 0. This allows increased energy dissipation on
charged dust particles entailing increased light absorp-
tion. Figure 2 shows this saturation of the extinction
efficiency for charged particles.

For comparison, we also show the results for free sur-
face (MgO) or bulk electrons (Al2O3). In this case the
conductivities are purely imaginary and the saturation of
the extinction efficiency is not observed. Instead we find
a plasmon resonance of the electron gas around or inside
the particle. The resonance is located where Re(gb1) = 0
(with gb1 given by Eq. (13)). This discrepancy with re-
sults from the phonon-limited conductivities shows that
in the low-frequency limit the model of free surplus elec-
trons cannot offer even a qualitative explanation.

The saturation of the extinction efficiency for low fre-
quencies could be employed as a charge measurement.
Performing an extinction measurement at fixed wave-
length would give an approximately linear increase of Qt
with the surface density or bulk density of surplus elec-

Article VI

93



4

MgO Al2O3

Qa

Qs

Qt

τ’ (0K) τ’ (300K)

τ’’ (0K) τ’’ (300K) τ’’ (free e)

                   
10

-5
10

-4
10

-3
10

-2
10

-1

MgO Al2O3

Qa

Qs

Qt

τ’ (0K) τ’ (300K)

τ’’ (0K) τ’’ (300K) τ’’ (free e)

                   
10

-5
10

-4
10

-3
10

-2
10

-1

MgO Al2O3

Qa

Qs

Qt

τ’ (0K) τ’ (300K)

τ’’ (0K) τ’’ (300K) τ’’ (free e)

                   
10

-5
10

-4
10

-3
10

-2
10

-1

MgO Al2O3

Qa

Qs

Qt

τ’ (0K) τ’ (300K)

τ’’ (0K) τ’’ (300K) τ’’ (free e)

                   
10

-5
10

-4
10

-3
10

-2
10

-1

MgO Al2O3

Qa

Qs

Qt

τ’ (0K) τ’ (300K)

τ’’ (0K) τ’’ (300K) τ’’ (free e)

                   
10

-5
10

-4
10

-3
10

-2
10

-1

-α’ (0K) -α’ (300K)

α’’ (0K) α’’ (300K)

-α’ (free e)

                   
10

-4
10

-3
10

-2
10

-1

1

-α’ (0K) -α’ (300K)

α’’ (0K) α’’ (300K)

-α’ (free e)

                   
10

-4
10

-3
10

-2
10

-1

1

-α’ (0K) -α’ (300K)

α’’ (0K) α’’ (300K)

-α’ (free e)

                   
10

-4
10

-3
10

-2
10

-1

1

-α’ (0K) -α’ (300K)

α’’ (0K) α’’ (300K)

-α’ (free e)

                   
10

-4
10

-3
10

-2
10

-1

1

-α’ (0K) -α’ (300K)

α’’ (0K) α’’ (300K)

-α’ (free e)

                   
10

-4
10

-3
10

-2
10

-1

1

                   

-2
0
2
4
6

ε’
ε’’
n

k

                   

 
 
 
 
 

                   
0

2

4

a
 [
µ

m
]

                   
 

 

 

                   
0

2

4

a
 [
µ

m
]

                   
 

 

 

10
2         10

3         10
4

λ
-1

 [cm
-1

]

0

2

4

6

8

10

a
 [
µ

m
]

0.1

0.3

1

3

10

10
2         10

3         10
4

λ
-1

 [cm
-1

]

 

 

 

 

 

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

FIG. 1: (Color online) First row: Dimensionless surface conductivity τ = τ ′ + iτ ′′ for MgO for ns = 1013cm−2 (left) and
polarizability of excess electrons α = α′ + iα′′ for Al2O3 for nb = 3 × 1017cm−3 (right) as a function of the inverse wavelength
λ−1. Second row: Dielectric constant ε = ε′ + iε′′ and refractive index N = n + ik as a function of λ−1. Third to fifth row:
Absorption efficiency Qa (third row), scattering efficiency Qs (fourth row), and extinction efficiency Qt (fifth row) as a function
of λ−1 and the particle radius a for an uncharged MgO and Al2O3 particle. The labels indicate the four characteristic scattering
regimes: low frequencies (A), ordinary resonances (B), anomalous resonances (C), and interference and ripple structure (D).
The dashed lines give the approximate position of the ar1 (B) and the br1 (C) resonance. The full lines give the approximate
cross-over from absorption to scattering dominance of the resonances.

trons (see right panels of Fig. 2). B. Ordinary Resonances

Below the TO phonon resonance at λ−1TO in the dielec-
tric constant ε′ is large while ε′′ is still comparatively
small (except at λ−1TO). The large positive ε′ (which en-
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FIG. 2: (Color online) Left: Extinction efficiency Qt as a
function of the inverse wavelength λ−1 for a charged MgO
particle (top) and a charged Al2O3 particle (bottom) with
radius a = 1µm at T = 300 K. Full lines give the results
for the phonon-limited surface or bulk conductivity, dashed
lines show for comparison the results for free surface or bulk
electrons. Right: Extinction efficiency as a function of the
surface electron density for an MgO particle (or corresponding
bulk electron density for Al2O3) for λ−1 = 50 cm−1.

tails a large positive real part of refractive index N) al-
lows for ordinary optical resonances,34 which are clearly
seen in Fig. 1. The lowest resonance is due to the a1
mode. The contribution of this mode to the extinc-
tion efficiency is Qta1 = −6 Re(ar1)/ρ2. More generally,
the extinction efficiency due to one mode only reads
Qta,bn = 2(2n+ 1)qta,bn/ρ

2 where

qta,bn =
f ′(f ′ − g′′)

(f ′ − g′′)2 + g′2
(16)

with f = f ′ + if ′′ and g = g′ + ig′′ (given for ρ � 1
by Eqs. (8)-(11)). Note that we have neglected f ′′ as
ε′′ � 1. The resonance is approximately located where
g′ = 0. This gives for n = 1 the condition

3 + τ ′′ρ+ (1− ε′ − α′)ρ2/2 = 0. (17)

The approximate resonance location for an uncharged
sphere, obtained from 3+(1−ε′)ρ2/2 = 0 is shown in Fig.
1 by the dashed line. It deviates somewhat from the true
resonance location but captures its size dependence quali-
tatively. The contribution of one mode to absorption and
scattering, respectively, is Qa,sa,bn = 2(2n+1)qa,sa,bn/ρ

2 with

qaa,bn =
−f ′g′′

(f ′ − g′′)2 + g′2
, qsa,bn =

f ′2

(f ′ − g′′)2 + g′2
.

(18)
For f ′ > −g′′ scattering outweighs absorption while ab-
sorption outweighs scattering for −g′′ > f ′. The bound-
ary between the two regimes is given by −g′′ = f ′. For
n = 1 this gives for an uncharged particle

ρ =

(
15

2

ε′′

ε′ − 1

) 1
3

, (19)
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FIG. 3: (Color online) Extinction efficiency Qt as a function
of the inverse wavelength for MgO (left) and Al2O3 (right)
particles with radius a = 4µm for ns = 0, 1013, and 2 × 1013

cm−2 (or corresponding bulk electron density nb = 3ns/a) at
T = 300K.

which is shown in Fig. 1 by the solid line and agrees with
the underlying contour.

Fig. 3 shows that the a1 resonance is not shifted signif-
icantly by surplus charges. As the charge enters ∼ τρ or
∼ αρ2 the shift cannot be increased by reducing the par-
ticle size. Ordinary resonances thus offer no possibility
to measure the particle charge.

C. Ripple and Interference Structure

Far above the highest TO phonon frequency (that is,
for MgO and Al2O3 for λ−1 > 1000 cm−1) the extinction
efficiency shows the typical interference and ripple struc-
ture of Mie scattering (marker D in Fig. 1).17 It consists
of a broad interference pattern superseded by fine rip-
ples which are due to individual modes. They become
sharper for larger frequencies. Figure 4 shows the over-
all interference and ripple structure (top) and exemplifies
the charge sensitivity of the ripple due to the mode b10
(bottom). It is shifted only very slightly with increasing
particle charge. This is due to the small values of the
surface conductivity or the polarizability of the surplus
electrons for λ−1 > 1000 cm−1. Thus the ripple struc-
ture is not a suitable candidate for a charge measurement
either.

D. Anomalous Resonances

At the TO phonon resonance the real part of the di-
electric constant changes sign. For λ−1 > λ−1TO ε

′ < 0 and
ε′′ � 1. This gives rise to a series of anomalous optical
resonances, which can be seen in Fig. 1 (marker C). They
correspond to the resonant excitation of transverse sur-
face modes of the sphere.35 For a metal particle they are
tied to the plasmon resonance36,37 whereas for a dielectric
particle they are due to the TO-phonon. The resonances
are associated with the scattering coefficients bn. The
lowest resonance is due to the mode b1. The resonance
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FIG. 4: (Color online) Top panel: Overview of the ripple and
interference structure. Bottom panel: Extinction efficiency
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location is approximately given by Re(gb1) = 0, which
according to Eq. (11) gives for an uncharged sphere

−2− ε′ +
(
−1− ε′

10
+
ε′2 − ε′′2

10

)
ρ2 = 0. (20)

This approximation, shown by the dashed line near
marker C in Fig. 1, agrees well with the underlying Mie
contour.

The higher resonances are scattering dominated, while
the lowest resonance shows a cross-over from absorption
to scattering dominance (see Fig. 1). This cross-over can
be understood from the contribution of the b1 mode to
the scattering and absorption efficiencies (given by Eq.
(18)). Absorption dominates for −g′′ > f ′, while scat-
tering dominates for −g′′ < f ′. The boundary between
the two regimes lies where −g′′ = f ′. For n = 1 this gives

ρ =

(
3

2

ε′′

1− ε′
) 1

3

(21)

which agrees well with the Mie contour (see Fig 1).
The anomalous resonances are sensitive to small

changes in ε and τ or α. Surplus electrons lead to a
blue-shift of the resonances.21 This effect is strongest for
small particles with radius a < 1µm. In the small parti-
cle limit the extinction efficiency is approximately given
by Eq. (15). The resonance is located at

ε′ + α′ + 2− 2τ ′′/ρ = 0. (22)

Compared to the resonance condition for ordinary res-
onances, Eq. (17), the charge sensitivity increases for
small particles as surplus charges enter by −2τ ′′/ρ ∼
ns/a (for χ < 0) or α′ ∼ nb (for χ > 0). This shows that
the resonance shift by the surplus electrons is primarily
an electron density effect on the polarizability of the dust
particle.21
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FIG. 5: (Color online) Top panels: Real part ε′ and imag-
inary part ε′′ of the dielectric constant as a function of the
inverse wavelength λ−1. The maximum of ε′′ for LiF stems
from a TO phonon mode at 503 cm−1. Middle panel: Extinc-
tion efficiency Qt as a function of λ−1 and the radius a for
a LiF particle with ns = 5 × 1012 cm−2 (left) and an Al2O3

particle with nb = 3ns/a (right) for T = 300 K. The dotted
lines indicate the extinction maximum for (from left to right)
ns = 0 (black), 1012 (green), 2 × 1012 (red), and 5 × 1012

cm−2 (blue). Bottom panel: Extinction efficiency Qt as a
function of λ−1 for different surface electron densities (corre-
sponding to the middle panel) and fixed radius a = 0.05µm.
The extinction maximum is shifted to higher frequencies with
increasing electron density.

Figure 5 shows the resonance shift for charged sub-
micron-sized LiF33 and Al2O3 particles. For Al2O3 the
resonance shift is relatively large and the extinction reso-
nance has a Lorentzian shape. As ε′ is well approximated
linearly close to −2 and ε′′ varies only slightly this fol-
lows form Eq. (15). For LiF the shift is smaller and the
lineshape is not Lorentzian. The reason is the minor TO
phonon at λ−1 = 503cm−1. This leads to a bump in ε′′

disturbing the Lorentzian shape.
A comparison of the resonance shift for MgO and LiF

(χ < 0) as well as Al2O3, PbS and Cu2O33 (χ > 0) is
given by Fig. 6. The shift tends to be larger for bulk
(χ > 0) than for surface (χ < 0) surplus electrons. Cu2O
is an example for a dielectric where ε′′ is too large for
a well-resolved series of extinction resonances to form.
Nevertheless a tail of the lowest resonance for small par-
ticles is discernible which is blue-shifted by surplus elec-
trons, albeit by a lesser extent than for Al2O3 or PbS.
PbS has a particularly strong resonance shift. Compared
to the other materials the TO phonon resonance of PbS is
located at a significantly lower frequency where α is par-
ticularly large. Together with the small conduction band
effective mass which benefits the electrons’ mobility this
leads to the larger charge-induced blue-shift.

The blue-shift of the extinction resonance could be
used as a charge measurement for particles with a < 1µm.
The resonance shift is found for particles with χ < 0, e.g.
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MgO or LiF, and χ > 0, e.g. PbS, Cu2O or Al2O3.
The most promising candidates are particles made from
Al2O3 or PbS. The latter may even allow a measurement
for micron-sized particles.

E. Polarization Angles

So far we have considered charge effects in the ex-
tinction efficiency. In the following we will turn to the
charge signatures in the polarization of the scattered
light. While the extinction (or scattering) efficiency gives
only access to the magnitude of the scattering coefficients
the polarization of scattered light also reveals the phase
of the scattering coefficients. The phase information is
particularly useful close to the ordinary and anomalous
optical resonances. They occur for Re(ga,bn ) = 0 where
the sign change of ga,bn leads to a rapid phase change
around the resonances. For ε′′ = 0 the functions fa,bn
and ga,bn are real in the small particle limit (cf. Eqs.
(12) -(14)). In this limit fan ∼ ρ2n+3 and f bn ∼ ρ2n+1

while ga,bn ∼ ρ0 (for uncharged particles), which entails
ga,bn > fa,bn except very close to the resonance. As a con-
sequence the phase of the scattering coefficients varies
over the resonances by about π.

For linearly polarized incident light (Ei ∼ êx) the elec-
tric field of the reflected light,

Er ∼E0
e−iωt+ikr

ikr

∞∑

n=1

2n+ 1

n(n+ 1)

×
[(
arn
P 1
n(cos θ)

sin θ
+ brn

dP 1
n(cos θ)

dθ

)
cosφêθ

−
(
arn

dP 1
n(cos θ)

dθ
+ brn

P 1
n(cos θ)

sin θ

)
sinφêφ

]
, (23)

is in general elliptically polarized (P 1
n(µ) =√

1− µ2dPn(µ)/dµ with Pn(µ) a Legendre polyno-

mial). Rewriting the reflected electric field as

Er ∼ E0
e−iωt+ikr

ikr

(
A2e

iφ2 êθ +A3e
iφ3 êφ

)
, (24)

where the amplitudes A2, A3 and the phases φ2, φ3 are
given implicitly by the above equation, the ellipsometric
angles are defined by

∆φ = φ2 − φ3 and tanψ =
A2

A3
. (25)

The angle ψ gives the amplitude ratio and the phase dif-
ference ∆φ characterizes the opening of the polarization
ellipse. For ∆φ = 0,±π the reflected light is linearly
polarized while for ∆φ = ±π/2 the opening of the polar-
ization ellipse is maximal.

Note that forward scattered light (θ = 0),

Er ∼ E0
e−iωt+ikr

ikr

∞∑

n=1

2n+ 1

2
(arn + brn) êx, (26)

is linearly polarized. The same applies to backscattered
light (θ = π) or light that is scattered perpendicularly to
the incident wave and in plane or perpendicularly to the
direction of polarization of the incident light (θ = π/2
and φ = 0 or φ = π/2).

An important scattering angle where the scattered
light is elliptically polarized is perpendicular to the in-
cident wave and at 45◦ to the plane of polarization of
the incident wave (θ = π/2 and φ = π/4). This con-
figuration is also used to determine from the Mie signal
the particle size of nanodust.38 Figure 7 shows the polar-
ization angles ∆φ and ψ for this scattering direction for
MgO and Al2O3 particles with radius a = 0.5µm. Pan-
els (i) (MgO) and (iv) (Al2O3) give an overview for an
uncharged particle.

In the small particle limit only the scattering coeffi-
cients ar1, br1, and br2 are relevant. The reflected electric
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FIG. 7: (Color online) Ellipsometric angles Ψ and ∆φ for scattering by an MgO and Al2O3 particle with radius a = 0.5µm
in the direction θ = π/2 and φ = π/4. (i) (MgO) and (iv) (Al2O3) show Ψ and ∆φ for 0 cm−1 < λ−1 < 1000 cm−1 for an
uncharged particle. (ii) (MgO) and (v) (Al2O3) magnify the vicinity of the extinction resonance. Ψ and ∆φ are shifted with
increasing surface electron density ns (or corresponding bulk electron density nb = 3ns/a). The annotated value at the base
point gives the wave-number. From there the electron density increases counter-clockwise along the branches. The shift in ∆φ
as a function of ns or correspondingly nb is shown for two representative λ−1 in (iii) (MgO) and (vi) (Al2O3).

field is given by

Er ∼ E0
eikr−iωt

ikr

[(
3

2
√

2
ar1 −

5

2
√

2
br2

)
êθ −

3

2
√

2
br1êφ

]
.

(27)

Figure 7 (i) shows a strong variation of ∆φ for MgO as
a function of λ−1 which can be related to the variation
of the phase of the scattering coefficients. For low fre-
quencies λ−1 < 300 cm−1 the reflected light is linearly
polarized. Close to 400 cm−1 the rapid phase variation
by π of the coefficient ar1 increases ∆φ by about π. Above
λ−1TO resonances appear in the coefficients br1 and br2 for
ε′ = −2 and ε′ = −3/2 (for ρ� 1), respectively. As these
resonances are located very close to each other, the phase
shifts by π partly cancel and ∆φ acquires and looses a
phase of about −π/2 at around λ−1 = 600 cm−1. For
Al2O3 the variation of ∆φ is more complicated because
two TO phonon modes dominate ε. Nevertheless the in-
terplay of the b1 and the b2 mode above the higher TO
phonon resonance leads to the rapid variation of ∆φ from
close to 0 to −π/2 and back to close to 0 near 800 cm−1.

Surplus charges alter the polarization angles very little
except near the rapid opening and closing of the polar-
ization ellipse at the anomalous resonances. Here surplus
charges lead to a blue shift of the resonances in br1 and
br2. The shift is approximately given by Eq. (22) for

the mode b1 and by 2ε′ + 2α′ + 3 − 6τ ′′/ρ = 0 for the
mode b2 (in both cases ρ� 1). The resonance blue-shift
translates into a shift of ∆φ. For a charged particle ∆φ
acquires and looses −π/2 as for an uncharged particle
but this takes place at higher λ−1 than for an uncharged
particle. This is shown in panels (ii) and (v) of Fig. 7.
Panels (iii) and (vi) exemplify it for fixed λ−1 where ∆φ
increases or decreases with the particle charge. This shift
of ∆φ by several degrees should also offer a possibility for
a charge measurement.

IV. CONCLUSIONS

We studied the scattering behavior of a charged di-
electric particle with an eye on identifying a strategy
for an optical charge measurement. Our focus lay on
the four characteristic regimes of scattering for particles
with a strong TO phonon resonance: (i) low-frequency
scattering, (ii) ordinary resonances, (iii) anomalous res-
onances, and (iv) interference and ripple structure. Sur-
plus charges enter into the scattering coefficients through
their phonon-limited surface (for negative electron affin-
ity) or bulk (positive electron affinity) conductivities.

No significant charge effects are found for the ordi-
nary resonances and the interference and ripple struc-
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ture. Surplus charges affect however the low-frequency
regime and the anomalous optical resonances.

We have identified three charge-dependent features of
light scattering: (i) a charge-induced increase in extinc-
tion for low-frequencies, (ii) a blue-shift of the anomalous
extinction resonance, and (iii) a rapid variation of one
of the two polarization angles at the anomalous extinc-
tion resonance. At low frequencies energy relaxation is
inhibited for uncharged particles as the imaginary part
of the dielectric constant is very small. Surplus charges
enable energy relaxation on the grain through their elec-
trical conductivity which has a significant real part at
low frequencies. This leads to increased absorption at
low frequencies. Above the TO phonon frequency the
real part of the dielectric constant is negative which
leads to anomalous optical resonances. Surplus charges
enter into the resonance condition through the imagi-
nary part of their electrical conductivity. They lead to
a resonance blue-shift which is most significant for sub-
micron-sized particles. Moreover, at the anomalous res-
onances the phase of the resonant scattering coefficients
varies rapidly. This causes the opening and closing—
characterized by the angle ∆φ—of the polarization el-
lipse of the reflected light. Surplus charges lead to the
rapid variation in ∆φ being shifted to higher frequency.

We suggest to use these charge signatures in the Mie
signal to measure the particle charge. For plasmonic par-
ticles charge-induced resonance shifts have already been
detected experimentally for metallic nanorods which were
charged by an electrolytic solution39,40 and for an array

of nanodiscs exposed to an argon plasma.41

In order to detect the charge-sensitive effects of light
scattering by dust particles in a dusty plasma would re-
quire to shine infra-red light through the plasma and to
measure light attenuation or the polarization of reflected
light. The low-frequency increase in extinction or the
shift in the polarization angle ∆φ could be observed with
monochromatic light while the resonance shift would re-
quire a frequency dependent extinction measurement.
This would not only allow a determination of the particle
charge without knowing any plasma parameters but also
of nanodust particles38,42,43 where traditional techniques
cannot be applied at all.

Eventually suitable particles with a strong charge sen-
sitivity (e.g. Al2O3 or PbS particles) could even be em-
ployed as minimally invasive electric plasma probes. The
particles would accumulate a charge depending on the lo-
cal plasma environment. Performing simultaneously an
optical charge measurement and a traditional force mea-
surement9–11 would then allow to infer the local electron
density and temperature at the position of the probe par-
ticle.
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18 J. Klačka and M. Kocifaj, J. Quant. Spectr. Rad. Transfer

106, 170 (2007).
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[39] H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, Berlin, 1992).

[40] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation

effects. Phys. Rev. 140A, 1133 (1965).

[41] N. D. Mermin, Thermal properties of the inhomogeneous electron gas. Phys. Rev.

137A, 1441 (1965).

[42] Z. W. Gortel, H. J. Kreuzer, and R. Teshima, Desorption by phonon cascades for gas-

solid systems with many physisorbed surface bound states. Phys. Rev. B 22, 5655

(1980).

[43] H. J. Kreuzer and Z. W. Gortel, Physisorption Kinetics (Springer Verlag, Berlin,

1986).

[44] G. Iche and P. Nozieres, A simple stochastic description of desorption rates. J. Phys.

(Paris) 37, 1313 (1976).

[45] W. Brenig, Microscopic theory of gas-surface interaction. Z. Phys. B 48, 127 (1982).

[46] E. Evans and D. L. Mills, Interaction of slow electrons with the surface of a model

dielectric: Theory of surface polarons. Phys. Rev. B 8, 4004 (1973).

103



Bibliography

[47] G. Barton, Image-induced surface states on electronically dense metals. J. Phys. C

14, 3975 (1981).

[48] B. Bendow and S.-C. Ying, Phonon-induced desorption of adatoms from crystal sur-

faces. I. Formal theory. Phys. Rev. B 7, 622 (1973).

[49] E. T. Whittaker and G. N. Watson, A course of modern analysis (Cambridge Uni-

versity Press, Cambridge, 1927).

[50] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by small particles

(Wiley, New York, 1983).
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Hiermit erkläre ich, dass diese Arbeit bisher von mir weder an der Mathematisch-Natur-

wissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald noch einer an-

deren wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde.
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Sept 1995 - Jul 2004 Kepler-Gymnasium Tübingen
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