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1 Introduction

1 Introduction

Starting out, the motivation for this thesis was investigation of relativistic frequency

shifts in Kerr-de Sitter spacetime, which models charge neutral stationary rotating

black holes embedded in a universe with non-vanishing cosmological constant. This

particular spacetime was chosen because its metric is sufficiently complex to make

numeric simulation attractive, and it is relevant in practice. The initial hope was

to obtain results pertaining to unique phenomenology or with direct applicability to

actual observation.

This hope has not quite been fulfilled. Instead, what will be presented are pre-

liminary results that should be understood as stepping stones towards this goal. This

includes a description of the physics of relativistic frequency shift, a derivation of one

version of the Kerr-de Sitter metric, and some calculations performed in various limits

of the full Kerr-de Sitter spacetime. Some shortcomings of the current approach will

be described and possible ways to improve upon it will be mentioned.

1.1 Physical Background

The theory of General Relativity describes gravity as a consequence of spacetime curva-

ture, affecting massive and massless test particles alike. In a sense, it is still true that in

absence of additional forces, particles continue to move along straight lines. However,

the meaning of straight has to be adjusted once we look beyond the pseudo-Euclidean

geometry of flat Minkowski spacetime.

In addition to the effect of curvature on particle trajectories, there is a secondary

effect, in case of photons manifesting as a shift in frequency when comparing measure-

ments performed at the source to those made by distant observers. Phenomenolog-

ically, this effect is described in a number ways: In case of relative motion in weak

gravitational fields, it is recognized as special relativistic Doppler shift, presented as

a generalization of ordinary Doppler shift of classical waves in a medium. At large

distances, cosmological redshift can be observed, a change in wave length of an elec-

tromagnetic wave due to the metric expansion of space itself. Near large masses, it is

described as gravitational redshift, explained by a loss of energy when climbing out of

the potential well, or as a consequence of gravitational time dilation.

In this thesis, unified descriptions of all of these effects will be presented, one of

them dynamic in terms of timings of consecutive wave fronts, the other kinematic in

terms of parallel transport of photon momentum. The discussion will be restricted

to massless particles, though similar effects can be observed with massive particles as

well, where they manifest as a loss of kinetic energy instead of a shift in frequency.1

1One could make an analogy between the de Broglie waves of massive particles and electromagnetic
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1.2 Outline of this Thesis

1.2 Outline of this Thesis

Following this introduction, the second part of this thesis will very briefly recapitulate

some relevantconcepts from Riemannian geometry and General Relativity. The third

part presents the unified descriptions of relativistic frequency shifts. The fourth part

investigates exemplary spacetimes, recovering the phenomenology. The fifth part intro-

duces the Kerr-de Sitter spacetime via the Kerr-Schild ansatz. The sixth part describes

the methodology of the numeric simulation. The seventh part will present the results

obtained from simulating photon dynamics in various limiting cases of Kerr-de Sitter

spacetime. In the final part, results will be summarized and put into context.

waves, for example arguing that cosmological redshift due to spatial expansion should therefore affect

massive particles as well. Speaking from personal experience, this argument is rarely made.
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2 A Brief Review of Geometry and Relativity

2 A Brief Review of Geometry and Relativity

The theory of General Relativity is based on concepts from Riemannian geometry, with

the twist that it deals with a metric tensor of Lorentzian instead of Euclidean signature.

A comprehensive introduction to either subject is beyond the scope of this thesis, and

familiarity with basic concepts from differential geometry such as differentiable man-

ifolds, coordinate maps, tangent vectors and covectors, tensors, the physical meaning

of the metric tensor or the distinction between space-like, time-like or light-like vectors

will be assumed.

Nevertheless, this section will review certain aspects of General Relativity that are

relevant to the subject at hand.

2.1 Notational Conventions

The bases of tangent and cotangent space induced by a coordinate map xµ will be

denoted by ∂µ and d xµ respectively. When convenient, vectors v = vµ∂µ and covectors

P = pµ dxµ will be referred to as vµ and pµ in keeping with physicists’ conventions.

Metric tensors will be written as

d s2 = gµν dxµ dxν

in terms of symmetrized tensor products

dxµ dxν =
1

2
(dxµ ⊗ dxν + dxν ⊗ dxµ)

and will have signature (−+ ++).

The Einstein convention of summation over repeated tensor indices has been adop-

ted as well as implicit raising and lowering of indices by contraction with the metric

tensor.

2.2 Levi-Civita Connection

Spacetime is modelled as a pseudo-Riemannian differential manifold, a smooth real

space with geometric and topological structure, locally described via coordinate maps

into R4. Its geometric structure is given by the metric tensor, a fiber-wise product on

the tangent bundle, which consists of linear vector spaces attached to any base point

of the manifold.

A priori, the spaces tangent to different points should be considered independent,

and additional structure is needed to relate vectors rooted in distinct points. This

structure is the affine connection, which can be understood geometrically as a horizon-

tal subbundle of the double tangent bundle [11, ch. 9]. In general, it relates vectors
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2.3 Einstein Field Equations

only at infinitesimal distances, and if a finite change is built up by integrating infinites-

imal changes along a path, the result will in general be path-dependent. This failure

of distance parallelism is measured by curvature, an obstruction against integrability

of the horizontal subbundle. In case of metric connections specifically, it is also an

obstruction against isometries into (pseudo-)Euclidean space.

Connections that are compatible with the metric may differ in torsion, a freedom

to twist orthogonal frames while moving along a curve. There is however a unique

torsion-free connection compatible with the metric, the Levi-Civita Connection.

In terms of the metric gµν , its connection coefficients are the Christoffel symbols

[11, ch. 29]

Γλµν =
1

2
gλα (∂νgαµ + ∂µgαν − ∂αgµν) .

This is the connection used in General Relativity.

2.3 Einstein Field Equations

To venture beyond mathematics into the realm of physics, it is important to know

which metric (and thus which connection) correspond to a given physical situation.

This goal is achieved by the Einstein field equation [4][12, ch. 17]

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν ,

relating geometric objects on the left-hand side to the matter distribution on the right-

hand side. It can be derived from the Einstein-Hilbert action [8][12, ch. 21]

S =

∫ (
c4

16πG
(R− 2Λ) + LM

)√
−g d4 x

Here, Rµν denotes the Ricci curvature tensor, R the scalar curvature, gµν the metric

tensor and g its determinant, Λ a cosmological constant and G and c are the gravi-

tational constant and the speed of light. Rµν and R are obtained from the Riemann

curvature tensor by contraction.2

The source of gravity is the stress-energy-momentum tensor Tµν derived from the

matter lagrangian LM .3 However, this thesis is mainly concerned with vacuum solutions

Tµν = 0 and in particular black hole solutions.4

In this thesis, the Einstein equation will be needed once when the Kerr-Schild

approach to finding new metrics will be discussed, but they won’t be solved explicitly.

2in ordinary Riemannian geometry, the Ricci tensor carries information about the directional

change in volume compared to flat space and the spread of geodesics, though the situation is less

intuitive in case of Lorentzian signature of the metric
3technically the Belinfante–Rosenfeld tensor as potential asymmetry of the canonical tensor needs

to be accounted for
4black holes count as vacuum solutions as energy-momentum vanishes everywhere except for the

singularities, which need to be removed from the manifold
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2.4 Parallel Transport

2.4 Parallel Transport

Once a manifold has been equipped with a connection, any curve γ within the manifold

will induce isomorphisms Γ(γ)tt0 between any two tangent spaces along γ. Here, t0 and

t are values of the curve parameter.

Connections where these isomorphisms are isometries are called metric, with the

Levi-Civita connection the prime example.

This means that a vector v0 chosen at a single point visited by the curve will give

rise to a vector field v(t) = Γ(γ)tt0v0 along γ. In terms of the local expression xµ(t) of

γ, this is the parallel transport equation

d vµ

d t
+ Γµαβ

dxα

d t
vβ = 0 (1)

Parallel transport will play a central role in the upcoming discussion of relativistic

frequency shifts.

2.5 Autoparallels

Autoparallels are the answer to the question What’s a straight line in a curved space?

A straight line is a curve with unchanging direction. The ability to compare directions

(represented by tangent vectors obtained from differentiating by a curve parameter) is

made possible by a connection. The local expression

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (2)

is known as the geodesic equation.5 In light of the parallel transport equation (1), it

states that a velocity vector of a geodesic gets transported into the velocity vector at

the destination. Solving the above equation does not merely fix a curve, but also its

parametrization, which will be unique up to affine transformations and in particular

constant rescalings. Eigentime is such a parameter, made unique6 by a normalization

condition on the tangent vectors known as fourvelocities.

From the perspective of physics, moving along unchangingly is the most obvious

generalization of the concept of force-free motion. From this perspective, gravitation-

ally induced acceleration is merely the test particle maintaining its state of motion

according to the first of Newton’s laws.

The geodesic equation (2) is the equation of motion that is going to be integrated

numerically when pushing particles through spacetime.

5however, geodesics in the sense of distance-minimizing curves and autoparallels do not agree in

the presence of torsion
6up to a constant offset
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3 Unifying Descriptions of Frequency Shifts

3 Unifying Descriptions of Frequency Shifts

In this section, two generic approaches for computing relativistic frequency shifts will

be introduced. Note that a complete (classical) description of propagation of light in

curved spacetimes will not be developed: In full generality, this would require solving

the Einstein-Maxwell system of coupled non-linear differential equations, a task beyond

the scope of this work. Instead, it is assumed that the energy-momentum of the light

wave is negligible and does not contribute to the dynamic of the metric.

∆τe

∆τa

absorber

emitter

Figure 1: Two consecutive wave fronts travelling along light rays (coloured), intersect-

ing with the world lines of emitter and absorber (black)

3.1 Frequency Shift from Wave Front Timings

Assuming the validity of the limit of geometrical optics, a light ray in vacuum will

trace out a null geodesic. The path taken will be affected by nearby sources of gravity,

and measurement of deflection of starlight passing the sun was an important historical

milestone7 for the fledgling theory of General Relativity [16].

In this model, relativistic frequency shifts can be obtained by comparing the (pro-

per) time interval between the emission of consecutive wavefronts at the source and

the time interval between their absorption as measured by a distant observer.

Expressing the redshift z = λa−λe
λe

in terms of frequencies ν and periods ∆τ = ν−1

instead of wavelengths λ, it is given by

1 + z =
λa
λe

=
νe
νa

=
∆τa
∆τe

(3)

where the indices denote emitter (e) and absorber (a). Figure 1 depicts this idea.

While this approach is intuitively appealing and can be very convenient when

analysing static situations, it has a number of shortcomings, which will be dealt with

in the next section.
7while the effect had already been predicted from Newtonian gravity, derivation of the observed

angle of deflection requires a relativistic calculation
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3.2 Frequency Shift from Momentum Transport

3.2 Frequency Shift from Momentum Transport

Above, measurements over finite time intervals were used to determine the frequency

shift. This will yield an integrated effect that depends on the intermediate motion of

emitter and absorber and the background dynamics of the spacetime. Also note that

the freedom to choose other timing intervals besides full periods exist, and the result

will in general depend on this arbitrary choice. In principle, wave packets consisting of

a large number of frequencies also have to be dealt with somehow.

More pragmatically, from a computational perspective, the less moving parts one

has to track, the better. So letting the timing interval go to zero, one needs an in-

finitesimal description of the wave. The physical quantity that does this is the wave

(co-)vector8 kµ, describing the wave’s spatio-temporal periodicity. It’s time-like com-

ponent is the wave’s angular frequency, which can be extracted by contraction with

the fourvelocity uµ of the observer in question,

ωobserved = kµu
µ .

The redshift will then be given by

1 + z =
ωe
ωa

=
kν(te) v

ν(te)

kµ(ta)uµ(ta)
(4)

where vν is the fourvelocity of the source and we have parametrized the vector fields

kµ, u
µ, vµ (which in general are only defined along the corresponding worldlines) by

coordinate time for notational convenience.

Now, according to de Broglie’s relation, wave and momentum covectors are related

by

pµ = ~kµ

and (4) can be recast as

1 + z =
Ee
Ea

=
pν(te) v

ν(te)

pµ(ta)uµ(ta)
(5)

in terms of photon energies E.

Furthermore, if the photon trajectory γ = xµ(λ) is parameterized by an affine

parameter λ,9 the momentum vector will be proportional to the curve’s tangent vector

respective λ, that is

pµ(t) = ε ẋµ(λ(t))

for some constant of proportionality ε and at all times t, and thus

1 + z =
gµν(te) ẋ

µ(λ(te)) v
ν(te)

gαβ(ta) ẋα(λ(ta))uβ(ta)
. (6)

8in dispersive media, the energy-momentum tensor might not be symmetric, and we would have to

distinguish between momentum density and energy flux, or, respectively, wave and Poynting vector;

this possibility will be ignored
9this is automatic if the trajectory has been obtained by solving the geodesic equation
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3.3 Frequency Shift and Conservation of Canonical Energy

If γ is not affinely parameterized, that proportionality won’t hold, and one needs

to explicitly compute

p(ta) = Γ(γ)
λ(ta)
λ(te)
· p(te) ,

that is, solve (1) for pµ in place of the generic vµ.

Finally, how should this result be interpreted? It shows that relativistic frequency

shifts can be understood kinematically, an interpretation that works for massless and

massive particles alike: Kinetic energy is a frame-dependent quantity, and in curved

spacetimes lacking distance parallelism, the relative change between the orientation of

particle momentum and velocities of source and observer at the moment of emission

and absorption, which is what determines the observed shift in energy, will depend on

the path that was taken through spacetime. From this perspective, there is no differ-

ence between photons getting their frequencies shifted, and massive particles losing or

picking up speed while travelling through gravitational fields.

3.3 Frequency Shift and Conservation of Canonical Energy

The procedure above can be notably simplified if the metric is independent of the time

coordinate, and source and observer are sitting still at fixed spatial coordinates.

The starting point is a ‘dynamic Lagrangian’ L = L(xµ, ẋν) given by [12, ch. 13]

L =
1

2
gµν ẋ

µẋν ,

which has the geodesic equation as Euler-Lagrange equations.

The canonical momenta are given by

πµ =
∂L

∂xµ
= gµν ẋ

ν

where the letter π has been chosen to show that this is not physical momentum.

If the metric has no dependence on a particular coordinate, then the corresponding

component of πµ will be conserved. In particular, if there is no explicit time dependence,

we have

π0 = const .

Now, the fourvelocity vectors for source and observer sitting at fixed spatial coor-

dinates are proportional to ∂0, but have to be normalized, yielding

vµ∂µ =
1√
−g00

∂0 uµ∂µ =
1√
−g00

∂0 .

Putting things together, (6) simplifies to

1 + z =
π0(te)

1√
−g00(te)

π0(ta)
1√

−g00(ta)

=

√
−g00(ta)√
−g00(te)

. (7)

This concludes the discussion of frequency shift as a kinematic effect.
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4 Exemplary Spacetimes

4 Exemplary Spacetimes

A number of toy models showcasing the phenomenology will be presented in the fol-

lowing section before moving on to the other main topic of this thesis.

4.1 Minkowski Spacetime and Relativistic Doppler Effect

Minkowski spacetime is flat, and inertial frames that make the connection coefficients

vanish exist even globally. In such a frame, parallel transport becomes trivial. The

problem will be further simplified by restriction to two dimensions and the assumption

that the inertial laboratory frame is comoving with the observer.

Let the metric be given by

d s2 = −c2 d t2 + dx2

and the observer velocity at time of absorption by

uµ∂µ = ∂t .

At time of emission, let the source move away with velocity

vµ∂µ = γ(∂t + v∂x) γ =
1√

1−
(
v
c

)2 .

The photon will travel in a straight line from source to observer. Let its momentum

at time of emission be

pµ dxµ =
E

c
(−c d t− dx) .

As the parallel transport is trivial, we have pµ(ta) = pµ(te) = pµ, yielding a redshift

1 + z =
pνv

ν

pµuµ
=
γE
c
(−c− v)

−E
c
c

=
1 + v

c√
1−

(
v
c

)2 =

√
c+ v

c− v
.

The more common phenomenological derivation proceeds along the lines of wave-

front timings discussed in section 3.1.

4.2 FLRW Spacetime and Cosmological Redshift

A spatially homogeneous and isotropic universe can be described in terms of the

FLRW10 metric. Choosing reduced-circumference polar coordinates, it is given by

[3, ch. 22.7]

d s2 = −c2 d t2 + a2(t)

[
1

1− k(r/r0)2
d r2 + r2 d Ω2

]
10after Alexander Friedmann, Georges Lemâıtre, Howard P. Robertson and Arthur Geoffrey Walker
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4.2 FLRW Spacetime and Cosmological Redshift

in terms of cosmological time t, comoving radial distance r, a dimensionless scale factor

a(t), a characteristic length r0 and a curvature parameter k = −1, 0,+1 respectively

representing hyperbolic, Euclidean and elliptical spatial geometry. The element of solid

angle is given by d Ω2 = dϑ2 + sin2 ϑ dϕ2.

In terms of the radius of curvature11 R = r0 a and dimensionless conformal coordi-

nates η, χ implicitly defined by c d t = R(η) d η and r(χ) = r0 Σ(χ) where

Σ(χ) =


sinhχ for k = −1

χ for k = 0

sinχ for k = +1

,

this can be recast12 as [12, p. 731]

d s2 = R2(η)
[
− d η2 + dχ2 + Σ2(χ) d Ω2

]
.

Cosmological redshift can be derived from parallel transport along null geodesics.

By rotational symmetry, purely radial solutions to the equations of motion exist, in

which case the problem reduces to two dimensions, yielding an effective metric

d s2 = R2(η)
[
− d η2 + dχ2

]
. (8)

Parallel transport does not depend on affine parametrization of the curve. Choosing

η as curve parameter, the trajectory is defined in terms of the dependence χ = χ(η).

The tangent vector qµ is then

qµ∂µ = ∂η +
dχ

d η
∂χ

with square

qµq
µ = R2

(
−1 +

(
dχ

d η

)2
)

.

In case of photons, the square needs to vanish, ie

dχ

d η
= ±1 ,

fixing everything up to sign. The ingoing solution

qµ∂µ = ∂η − ∂χ

will be discussed.

11in the Euclidean case k = 0, it does not describe curvature, but is an arbitrary length scale
12assuming the implicit definitions, verification boils down to checking that

r20 dχ2 = 1/
(
1− k(r/r0)2

)
d r2
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4.2 FLRW Spacetime and Cosmological Redshift

Let a distant source emit a photon at time ηe, getting absorbed by an observer

sitting at the origin of our coordinate system at time ηa. Let furthermore emitter and

absorber be at rest relative to the Hubble flow, i.e. at rest relative to a comoving

spatial coordinate like χ.

Their velocity vectors at time of emission and absorption will then be given by13

uµ(ta) ∂µ =
c

Ra

∂η vµ(te) ∂µ =
c

Re

∂η

where Ra = R(ηa), Re = R(ηe).

To parallel transport the momentum vector pµ, note that it remains null, i.e.

pµ(η)∂µ = ε(η)(∂η − ∂χ)

for some function ε. It is therefore enough to look at just one component of pµ.

Choosing the time component, the following Christoffel symbols14 are required for

the calculation:

Γηηη = Γηχχ =
Ṙ

R
Γηηχ = Γηχη = 0

Here, the dot denotes differentiation by η.

Plugging into the parallel transport equation (1) yields

ε̇+ 2
Ṙ

R
ε = 0 .

Dividing by ε, this implies

0 =
d

d η
ln ε+ 2

d

d η
lnR =

d

d η
ln εR2

which in turn implies

εR2 = const .

and in particular

εaR
2
a = εeR

2
e .

The redshift according to (5) is then

1 + z =
R2
e εe

c
Re

R2
a εa

c
Ra

=
Ra

Re

.

Thus, wavelengths obey the same scaling law as distances within spatial slices of con-

stant cosmological time. Phenomenologically, the light wave gets stretched alongside

the metric expansion of space.

13this follows from the normalization condition
14derivation of the Christoffel symbols for this simple metric is not particularly hard or enlightening

and will not be shown
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4.3 Schwarzschild Spacetime and Gravitational Redshift

4.3 Schwarzschild Spacetime and Gravitational Redshift

The frequency shift within Schwarzschild spacetime is known as gravitational redshift,

though in case of ingoing photons, the shift will of course occur towards shorter wave-

lengths15. Phenomenologically, the photon will lose or gain energy by climbing out or

falling into the gravitational potential well.

Starting point for the discussion is the Schwarzschild metric in reduced circumfer-

ence polar coordinate is given by16

d s2 = −
(

1− rs
r

)
c2 d t2 +

(
1− rs

r

)−1

d r2 + r2 d Ω2

with d Ω as in last section and rs = 2Gm/c2 denoting the Schwarzschild radius, a

convenient reimagining of the black hole mass m as a length scale.

The situation under investigation is a photon travelling radially outwards from a

source sitting at fixed Schwarzschild coordinates with radius re towards an observer

also sitting at fixed coordinates and at a greater radius ra.

In terms of parallel transport of momentum, the discussion would proceed al-

most identically as the last case of cosmological redshift17. However, given that the

Schwarzschild spacetime is stationary - as can be seen explicitly by the lack of time

dependence of the metric - it is far more convenient to look at wave front timings

instead of solving parallel transport equations.

So let the source emit a wavefront. Let the coordinate time taken to reach the

observer be ∆T1. After a time ∆te, a second wave front gets emitted, travelling towards

the observer in time ∆T2. The coordinate time that has passed since the arrival of the

previous wave front is given by

∆ta = ∆te + ∆T2 −∆T1 .

While the travelling time of the wave is unknown, what is known is that ∆T1 = ∆T2

as the background metric has not changed, and thus one also has ∆ta = ∆te.

All that remains to do is to translate coordinate time into proper times of source

and observer. The time dilation can be read from the metric via d s2 = −c2 d τ 2. At

fixed spatial coordinates, this reduces to

d τ 2 =
(

1− rs
r

)
d t2

15arguably, the name is not ideal for other reasons as well: Take cosmological redshift as an example,

which is also a consequence of spacetime curvature, i.e. the presence of gravity
16see eg [3, ch. 14.5] or any other introductory book on General Relativity
17the reduced metric of the problem can be made to look almost identical by use of the ‘tortoise’

coordinate r? (see eg. [12, p. 663]), except that the conformal factor would have a spatial dependence

R = R(χ) instead
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4.3 Schwarzschild Spacetime and Gravitational Redshift

and thus

∆τ =

√
1− rs

r
∆t

The redshift will be given by

1 + z =
∆τa
∆τe

=

√
1− rs/ra
1− rs/re

In this case, the frequency shift can be attributed wholly to gravitational time

dilation, a result that also follows immediately from section 3.3.
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5 Kerr-de Sitter Spacetime

5 Kerr-de Sitter Spacetime

The following section introduces the metric of Kerr-de Sitter spacetime, describing a

rotating black hole embedded in a universe that isn’t asymptotically flat, but, like our

own, features a nonzero cosmological constant. It is part of the Plebański-Demiański

family of solutions to the Einstein equations [14][6], which can be used to model a

variety of physical situation (cosmological constant, massive black holes carrying elec-

tric and magnetic charge, rotating black holes, accelerating black holes, NUT charge).

While not as general, the Kerr-de Sitter solution is no mere toy model and exhibits sev-

eral interesting features. This particular expression for the metric has been generalized

by Gibbons, Lü, Page and Pope in [5] to arbitrary dimensions.

The contents of this section are largely technical. From here on out, factors of c

will be dropped for notational convenience.

5.1 Spheroidal Coordinates

R
r√

r2 + a2
ϑ

Θ

X

Z

P

Figure 2: Parametrization of an ellipse through a point P and relation to spherical

coordinates

Rotating black holes break the spatial symmetry of spacetime from spherically to

axially symmetric. This formulations of the metric makes use of a spheroidal coordinate

system that also has that such symmetry.

Let Cartesian coordinates be denoted by X, Y, Z and spherical coordinates by

R,Θ, ϕ. Due to axial symmetry, we restrict the discussion to the XZ-plane. For a

fixed linear eccentricity a, there is a unique ellipse centered at the origin through any

point P . Let r denote the semi-minor axis of that ellipse. Its semi-major axis will take
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5.2 De Sitter Spacetime in Spheroidal Coordinates

the value
√
r2 + a2, and the whole ellipse can be parametrized by an angle ϑ via18

X =
√
r2 + a2 sinϑ

Z = r cosϑ ,

which is shown in figure 2.

For each value of a, a spheroidal coordinate system is given by the set r, ϑ, ϕ. The

transformation to spherical coordinates is given by

R sin Θ =
√
r2 + a2 sinϑ

R cos Θ = r cosϑ

from which we can also derive

R2 = (r2 + a2) sin2 ϑ+ r2 cos2

= r2 + a2 sin2 ϑ .

In our new coordinates, the Euclidean metric takes the form

d s2 =
r2 + a2 cos2 ϑ

r2 + a2
d r2 + (r2 + a2 cos2 ϑ) dϑ2 + (r2 + a2) sin2 ϑ dϕ2

or, introducing a new coordinate χ = cosϑ to avoid trigonometric expressions

d s2 =
r2 + a2χ2

r2 + a2
d r2 +

r2 + a2χ2

1− χ2
dχ2 + (r2 + a2)(1− χ2) dϕ2 .

The equivalence of this metric to the expression in spherical coordinates is shown

explicitly in appendix A.1.

5.2 De Sitter Spacetime in Spheroidal Coordinates

The metric of de Sitter spacetime describing a homogeneous isotropic universe without

matter, but non-vanishing cosmological constant. It can be expressed as

d s2 = −(1− λR2) d t2 +
(
1− λR2

)−1
dR2 +R2 d Θ2 +R2 sin2 Θ dϕ2

where λ = α−2 in terms of the de Sitter radius α and λ = Λ/3 in terms of the

cosmological constant Λ.

The transformation to spheroidal coordinates will be adjusted from the previous

section to account for the presence of λ. It is given by

R sin Θ =

√
(r2 + a2) (1− χ2)

1 + λa2

R cos Θ = rχ

18this construction goes back to the mathematician Philippe de La Hire
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5.3 Construction of Derived Metrics in Kerr-Schild Form

and thus

R2 =
(r2 + a2) (1− χ2)

1 + λa2
+ r2χ2 .

Expressed in these coordinates, the metric for de Sitter spacetime reads

d s2 = −(1− λr2) (1 + λa2χ2)

1 + λa2
d t2 +

r2 + a2χ2

(1− λr2) (r2 + a2)
d r2

+
r2 + a2χ2

(1 + λa2χ2) (1− χ2)
dχ2 +

(r2 + a2) (1− χ2)

1 + λa2
dϕ2 .

(9)

Note that physically, nothing has happened yet: The metric still describes de Sitter

spacetime, merely in a more unwieldy form. This will change in the subsection following

the next one.

5.3 Construction of Derived Metrics in Kerr-Schild Form

The construction mechanism will only be sketched instead of described in detail.

A metric d s2 is said to be in Kerr-Schild form when it has been written as

d s2 = d s20 + hkµkν dxµ dxν

where d s20 is some base metric,19 h some function and kµ a covector field that is null

regarding d s20.

This ansatz has been first studied by Trautman during the investigation of gravita-

tional waves [20] with important results by Kerr and Schild [9][10] and further studies

by Gürses and Gürsey [7][2] and others.

Let d s20 = ḡµν dxµ dxν and kµ := (kµ)s0 = ḡµνkν . Then gµν is given by

gµν = ḡµν − hkµkν

because

(ḡµλ − hkµkλ)(ḡλν + hkλkν) = ḡµλḡλν = δµν .

This also implies

kµ = gµνkν = (kµ)s ,

meaning kµ is a null vector field respective to either metric.

This has important consequences:

For one, kµ is geodesic with respect to d s2 if and only if it is geodesic with respect

to d s20. Also, it is necessarily geodesic if d s2 solves the vacuum Einstein equations [18,

ch. 32].20

19often, but not necessarily the Minkowski metric
20in the presence of matter, we additionally must have Tµνk

µkν = 0
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5.4 Schwarzschild Spacetime in Kerr-Schild Form

On the flip side, if kµ is a null-geodesic congruence and d s20 solves the Einstein

equations, hµν := hkµkν only needs to solve the Einstein equations linearized21 around

d s20 for d s2 to solve the full Einstein equations [2].

The final step of this proof has been provided as appendix A.2.

5.4 Schwarzschild Spacetime in Kerr-Schild Form

To illustrate the mechanism, Schwarzschild spacetime in Kerr-Schild form will be con-

structed, starting from the Minkowski metric in spherical coordinates:

d s20 = − d t2 + d r2 + r2 dϑ+ d Ω2

Choosing radial null geodesics oriented towards the past as congruence, the vector field

takes the form

kµ∂µ = −∂t + ∂r

with corresponding covectorfield

kµ dxµ = d t+ d r.

Let rs be a characteristic length and

h =
rs
r

and thus

hµν dxµ dxν =
rs
r

(
d t2 + d r2 + 2 d t d r

)
.

The new metric d s2 = d s20 + hµν dxµ dxν will then be given by

d s2 = −
(

1− rs
r

)
d t2 +

(
1 +

rs
r

)
d r2 + 2

rs
r

d t d r + d Ω2

To show that this is a solution to the Einstein equation, one only needs to check that

hµν fulfills the linearized equation given in appendix A.2. This will not be presented.

Instead, the metric can be brought into standard form by the coordinate transformation

tSchwarzschild = t− rs ln
∣∣∣r
r s
− 1
∣∣∣

That calculation can be found in appendix A.3.

21to prove this, h can be formally replaced by εh and all derived quantities expanded in powers of ε
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5.5 Kerr-de Sitter Spacetime in Kerr-Schild Form

5.5 Kerr-de Sitter Spacetime in Kerr-Schild Form

The derivation of the Kerr-de Sitter metric in Kerr-Schild form proceeds analogously

to the last section, but starts with the de Sitter metric in spheroidal coordinates (9),

using a null geodesic congruence

kµ∂µ = − 1

1− λr2
∂t + ∂r −

a

r2 + a2
∂ϕ

and h given by

h =
rsr

r2 + a2χ2
.

The covector kµ becomes

kµ dxµ =
1 + λa2χ2

1− λa2
d t+

r2 + a2χ2

(1− λr2) (r2 + a2)
d r − a(1− χ2)

1 + λa2
dϕ

Putting this all together, the Kerr-de Sitter metric in expanded Kerr-Schild form is

d s2 = −1 + λa2χ2

1 + λa2

(
1− λr2 − rrs(1 + λa2χ2)

(1 + λa2) (r2 + a2χ2)

)
d t2

+
r2 + a2χ2

(1− λr2) (r2 + a2)

(
1 +

rrs
(1− λr2) (r2 + a2)

)
d r2

+
r2 + a2χ2

(1 + λa2χ2) (1− χ2)
dχ2

+
1− χ2

1 + λa2

(
r2 + a2 +

rrsa
2(1− χ2)

(1 + λa2) (r2 + a2χ2)

)
dϕ2

+ 2rrs
1 + λa2χ2

(1 + λa2) (1− λr2) (r2 + a2)
d t d r

− 2rrs
a(1 + λa2χ2) (1− χ2)

(1 + λa2)2 (r2 + a2χ2)
d t dϕ

− 2rrs
a(1− χ2)

(1 + λa2) (1− λr2) (r2 + a2)
d r dϕ

This is not a mere reformulation of the flat vacuum solution, but a wholly distinct

curved system. The new parameter rs, the formerly arbitrary and only cosmetic pa-

rameter a, and the parameter λ inherited from de Sitter spacetime now represent the

physical quantities black hole mass, angular momentum and cosmological constant.

For λ = 0, we recover a variant of the Kerr metric, which describes rotating black

holes in asymptotically flat spacetime, given by

d s2 = −
(

1− rrs
r2 + a2χ2

)
d t2 +

r2 + a2χ2

r2 + a2

(
1 +

rrs
r2 + a2

)
d r2

+
r2 + a2χ2

1− χ2
dχ2 + (1− χ2)

(
r2 + a2 +

rrsa
2(1− χ2)

r2 + a2χ2

)
dϕ2

+ 2rrs
1

r2 + a2
d t d r − 2rrs

a(1− χ2)

r2 + a2χ2
d t dϕ− 2rrs

a(1− χ2)

r2 + a2
d r dϕ
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5.5 Kerr-de Sitter Spacetime in Kerr-Schild Form

Note that the tt-component changes its sign at

r± =
rs
2
±
√
r2s
4
− a2χ2.

which defines the so-called ergospheres of a rotating black hole. In contrast, the event

horizons, of which there are now two, are not manifestly present.

The linearization of the Einstein equations will again not be presented. Instead, it

has been verified that the metric above does indeed fulfill the Einstein equations via

the computer algebras system SageMath [19][17].22 The Christoffel symbols have been

obtained that way as well. Some exemplary terms have been rendered in appendix A.4.

22the code is a mere R = g.ricci(); S = g.ricci scalar(); R - 0.5*S*g + 3*lm*g == 0,

with g the metric above and lm a parameter
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6 Simulation Methodology

6 Simulation Methodology

This section briefly describes the algorithms used to advance photon state and calculate

redshift, but merely in the abstract. Details of the programmatic implementation in C

are not provided.

From now on, photon velocity will be denoted by vµ.

6.1 Integration Method

The following leapfrog integrator in kick-drift-kick form was used to iterate the equa-

tions of motion (2) from timestep i→ i+ 1:

[vµ]i+1/2 = [vµ]i −
[
Γµαβv

αvβ
]
i

∆t

2

[xµ]i+1 = [xµ]i + [vµ]i+1/2 ∆t

[vµ]i+1 = [vµ]i+1/2 −
[
Γµαβ
]
i+1

[
vαvβ

]
i+1/2

∆t

2

It is a second order symplectic integrator which has seen successful application in

many fields of physics such as molecular dynamics [1]. The particular implementation

developed for this thesis dynamically adapts the timestep size when spatial resolution

becomes too coarse. It would be preferable to perform this in a systematic manner to

avoid negative impacts on numeric stability [15], but this is beyond the scope of this

thesis.

6.2 Computation of the Frequency Shift

As the geodesic equation is used to iterate photon position and velocity, there is no need

to explicitly parallel transport the momentum vector. Instead, equation (6) is used. All

observations will be made in the Kerr-de Sitter coordinate frame, i.e. observers sitting

still at fixed coordinates (r, χ, ϕ). The expressions for such velocities have already been

given in section 3.3.

The redshift at timestep i is computed from current values and initial value at step

0 via

[1 + z]i =

[
g0µv

µ

√
−g00

]
0[

g0νv
ν

√
−g00

]
i

.

Conservation of canonical energy has not been leveraged. This means arbitrary

time-dependent metrics can be supported.

Note that choice of using the coordinate frame for observation has severe limitations,

which will be pointed out when relevant.
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6.3 Graphical Representation

6.3 Graphical Representation

The spatial slices of constant time are in general non-Euclidean, so any coordinate

choice will give a distorted picture by necessity. It was decided to undo the coordinate

change to spheroidal coordinates described in section 5.2. This recovers the inner

structure of the Kerr black hole as conventionally rendered in Cartesian Kerr-Schild

coordinates [21]. If the spheroidal coordinates had naively been rendered, the ring

singularity would have collapsed to a point.

In case of Schwarzschild black holes, the event horizon will be rendered graphically,

in case of Kerr black holes, the outer event horizon and ergosphere.
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7 Simulation Results

The results presented in this section either demonstrate a particular physical effect

of interest or showcase an issue with the numeric approach taken. In order, closed

photon orbits in Schwarzschild and Kerr Spacetime, energy and angular momentum

drift in Kerr spacetime, gravitational redshift in Schwarzschild and Schwarzschild-de

Sitter spacetime, and finally, crossing the event horizon into the interior of a Kerr black

hole will be discussed briefly.

All black holes will have a mass parameter rs = 1, which serves as fundamental

length scale in all examples.

7.1 Photon Orbits in Schwarzschild and Kerr Spacetime

In both Schwarzschild and Kerr Spacetime, there exist closed photon orbits. For Kerr

spacetime, the pro- and retrograde orbits are distinct and given by [13]

rpo = rs

(
1 + cos

(
2

3
arccos

∓2a

rs

))
.

This is consistent with the result for Schwarzschild spacetime

rpo = 1.5 rs.

Figure 3 shows the result for parameters rs = 1 and, in case of the Kerr black hole,

a = 0.499.

Figure 3: Photon orbits in Schwarzschild (left) and Kerr spacetime (right)

The Schwarzschild and retrograde Kerr orbits showed no numeric drift at all. The

prograde orbit did drift. Figure 4 shows a sampling of photon position in the xy-

plane, with colour indicating sequence number. After an initial meta-stable period,
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7.1 Photon Orbits in Schwarzschild and Kerr Spacetime

the photon jumped into a new orbit. To understand what is going on, the squarenorm

of photon velocity - which should be a constant of motion - has been plotted in figure

5.
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Figure 4: Sampling of positions of photon in retrograde Kerr orbit

The squarenorm shows the same characteristic evolution as the photon position. A

metastable phase A with small drift experiences a perturbation, resulting in a phase

B of rapid change until a new metastable phase C with small drift has been entered.

Looking at the sign, a timelike velocity indicates that the photon started with a small

mass. After the switch in metastable states, the velocity is now spacelike, and the

photon now technically a tachyon.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  450000  900000

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0  150000  300000

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 435000  450000

0.0471577421

0.0471577422

0.0471577423

 600000  750000  900000

A

B

C

A

C

B

v µ
v
µ

iteration step

Figure 5: Evolution of the squarenorm of photon velocity
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7.2 Energy and Angular Momentum Drift in Kerr Spacetime

7.2 Energy and Angular Momentum Drift in Kerr Spacetime

According to section 3.3, canonical energy and axial angular momentum

E = g0µv
µ L = g4µv

µ

are conserved quantities in Kerr spacetime. Figure 6 shows a visually appealing tra-

jectory around a black hole with rotation parameter a = 0.4. Figure 7 shows the

drift in the supposedly conserved canonical energy and angular momentum around the

symmetry axis.

Figure 6: One of many interesting photon trajectory around a Kerr black hole

A certain amount of numeric drift is hard to avoid, though the result could likely be

improved by choosing an integrator that has been specialized for velocity-dependent

forces. It might also be possible to improve the situation by choosing coordinates

derived from cylindrical instead of spherical coordinates, explicitly respecting the sym-

metry of the system.
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Figure 7: Relative energy and angular momentum drift
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7.3 Gravitational Redshift in Schwarzschild Spacetime

7.3 Gravitational Redshift in Schwarzschild Spacetime

The analytical expression for gravitational redshift has been derived in section 4.3.

Figure 8 shows the numeric result for an outgoing photon emitted at a radius of 1.2rs

and absorbed at a radius of 6.2rs as well as an ingoing twin.

The deviation from the analytical result is not the same for the ingoing and outgoing

case: The ingoing value rapidly swings into the correct values, whereas the outgoing

photon shows the greater deviation and continues to show a systematic error. A possible

explanation is the lack of step size adjustment: The errors are expected to be greatest

closest to the event horizon, where gradients are maximal and an initially accumulated

offset cannot be compensated later on.
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Figure 8: Photon trajectory, gravitational redshift and relative deviations from ana-

lytical expression

When switching on a positive cosmological constant, in the parameter range chosen,

the photon will be sandwiched between black hole and cosmological horizon, located

at [13]

r± =
2√
Λ

cos

[
π

3
± 1

3
arccos

(
3rs
2

√
Λ

)]
Figure 9 shows what happens to redshift in this situation. There appears to be a

radius where redshift becomes independent of the parameter Λ = 3λ.

However, when trying to relate results to direct experience, the limitation of fixing

just one observer strikes: Of interest are primarily observers that are comoving with
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7.3 Gravitational Redshift in Schwarzschild Spacetime

the Hubble flow in an expanding universe instead of some the chosen observer sitting

in a seemingly static universe. The question of how the two observes are related has

not been considered in this work, though.
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Figure 9: Redshift in Schwarzschild-de Sitter spacetime with varying cosmological

constant
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7.4 Probing the Interior of Kerr Black Holes

7.4 Probing the Interior of Kerr Black Holes

Rotating black holes have rich interior structure, and the coordinates used here remain

useable while crossing the outer horizons until the singularity is hit. However, graph-

ical representation will be misleading as various coordinates exchange their quality,

time becoming spacelike and spacelike coordinates becoming timelike. This is also a

problem when calculating the frequency shift, as naively, photon energy would become

imaginary. To obtain sensible results, a different observer would have to be chosen.
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Figure 10: Photon trajectory entering a Kerr black hole, with radial plot on the right

and square of photon velocity bottom left

Figure 10 shows the trajectory of a photon that enters a rotating black hole with

a = 0.499. The singularity located at the cusp of the inner ergosphere has been

avoided. However, the photon then proceeds to re-cross both inner and outer event

horizon before happily orbiting within the outer ergosphere. The bottom left graph

shows the photon’s velocity squared, giving a hint why this is possible: At various
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7.4 Probing the Interior of Kerr Black Holes

points in time, the photon became spacelike, and this temporary tachyonic nature

allows it to enter classically forbidden regions.

An option might be to use a family of massive particles with decreasing mass

to numerically probe the structure of spacetime, instead of using photons that will

generally not behave entirely correctly, as they will keep switching between massive

and tachyonic behaviour instead of being massless.
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8 Conclusion

8 Conclusion

In this work, relativistic frequency shifts have been explored both conceptionally and

via simple hands-on calculations. It has been argued that these shifts can be regarded

as a kinematic consequence of curved spacetime, irrespective of any phenomenological

explanation. Parallel transport of photon momentum is sufficient to explain all different

cases, as is the naive approach of tracking wave fronts, though the latter has several

shortcomings and is unsuitable for computational analysis.

Kerr-de Sitter spacetime was chosen as a proper subject for numerical investigation

of relativistic frequency shifts. Therefore, an expression for the metric tensor and its

Christoffel symbols had to be obtained. The derivation of the metric via a Kerr-Schild

ansatz was sketched.

Some generic results regarding numeric simulation were presented, and a few simple

cases of redshift have been modelled. The existence of an apparent fixed point of red-

shift in Schwarzschild-de Sitter spacetime irrespective of the value of the cosmological

constant was genuine news to the author, but may very well be well-established in the

literature.

The most interesting goal of exploring Kerr-de Sitter phenomenology in detail has to

be deferred to potential subsequent work: The initial decision to restrict investigation

to timelike geodesics and the pragmatic decision to initially only consider the frame

induced by the chosen coordinates limited the scope of the investigation.

If future work were to be performed, the addition of other classes of observers

should be considered. The use of timelike geodesics to obtain the behavior of null-

geodesics as a limit might be wothwhile to persue, in hope that it will suffer less from

the horizon-jumping tendencies of photons that easily slip into tachyonic behaviour.
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A Appendix

A Appendix

A.1 Equivalence of Spherical and Spheroidal Metrics

The Euclidian metric in spherical coordinates can be rewritten into

d s2 = dR2 +
R2

1− η2
d η2 +R2(1− η2) dϕ2

by introducing η = cos Θ. The non-trivial part one needs to show is that

dR2 +
R2

1− η2
d η2 =

r2 + a2χ2

r2 + a2
d r2 +

r2 + a2χ2

1− χ2
dχ2 (10)

Recalling the definitions of section 5.1, we have

Rη = rχ

R2 = r2 + a2(1− χ2)

from which one can derive

d η =
χ

R
d r +

r

R
dχ− rχ

R2
dR

dR =
r

R
d r − a2χ

R
dχ

1

1− η2
=

R2

(r2 + a2)(1− χ2)
.

Plugging this into (10) yields

(LHS) = (. . . the cross terms cancel . . . )

=

(
r2

R2
+
a4χ2(1− χ2)

R2(r2 + a2)

)
d r2 +

(
a4χ2

R2
+
r2(r2 + a2)

R2(1− χ2)

)
dχ2

= (. . . add fractions, expand and re-factorize . . . )

=
R2(r2 + a2χ2)

R2(r2 + a2)
d r2 +

R2(r2 + a2χ2)

R2(1− χ2)
dχ2

= (RHS)

using elementary algebra.
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A.2 Linearized Einstein Equations

A.2 Linearized Einstein Equations

According to [2], linearization yields the Ricci tensor

Rµ
ν = R̄µ

ν − hµαRα
ν +

1

2

(
∇̄α∇̄νh

µα + ∇̄α∇̄µhνα − ∇̄α∇̄αh
µ
ν

)
.

Tracing over the vacuum Einstein equations for ḡµν and raising one of the indices, we

have

R̄ = 4Λ R̄µ
ν = (

1

2
R̄− Λ)δµν = Λδµν .

Additionally using hµµ = 0, we also have

R = 4Λ + ∇̄α∇̄βh
αβ

and arrive at the linearized Einstein equation

0 = Λδµν − Λhµν +
1

2

(
∇̄α∇̄νh

µα + ∇̄α∇̄µhνα − ∇̄α∇̄αh
µ
ν

)
− 1

2
(4Λ + ∇̄α∇̄βh

αβ)δµν + Λδµν

=
1

2

(
∇̄α∇̄νh

µα + ∇̄α∇̄µhνα − ∇̄α∇̄αh
µν − δµν ∇̄α∇̄βh

αβ
)
− Λhµν
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A.3 Recovery of Schwarzschild Metric from Kerr-Schild Form

It is sufficient to show that

−
(

1− rs
r

)
d t2Schwarzschild +

(
1− rs

r

)−1

d r2

= −
(

1− rs
r

)
d t2 +

(
1 +

rs
r

)
d r2 + 2

rs
r

d t d r

under the transformation

tSchwarzschild = t− rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ .

Substituting

d tSchwarzschild = d t− 1
rs
r
− 1

d r

it follows

(LHS) = −
(

1− rs
r

)
d t2 +

 1

1− rs
r

−
1− rs

r(
r
rs
− 1
)2
 d r2 + 2

1− rs
r

rs
s
− 1

d t d r

= −
(

1− rs
r

)
d t2 +

(
r

r − rs
− r2s(r − rs)
r(r − rs)2

)
d r2 + 2

rs(r − rs)
r(r − rs)

d t d r

= −
(

1− rs
r

)
d t2 +

(r + rs)(r − rs)
r(r − rs)

d r2 + 2
rs
r

d t d r

= (RHS)
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A.4 Christoffel Symbols of the Kerr-de Sitter Metric

There are 36 non-zero independent Christoffel symbols. As an example, the first, the

longest and the shortest have been rendered, with term order as produced by SageMath:

Γttt = −1

2
(a2χ2λ+ 1)(2(a4χ4 + 2a2χ2r2 + r4)(a2λ+ 1)λr

+(a2χ2λ+ 1)(a2χ2 − r2)rs)rrs
/

(
a10χ6λ2 + 2a8χ6λ+ a6χ6 − (a4λ3 + 2a2λ2 + λ)r8

−(3a6χ2λ3 + (6a4χ2 − a4)λ2 + (3a2χ2 − 2a2)λ− 1)r6

−3(a8χ4λ3 − a2χ2 + (2a6χ4 − a6χ2)λ2 + (a4χ4 − 2a4χ2)λ)r4

−(a10χ6λ3 − 3a4χ4 + (2a8χ6 − 3a8χ4)λ2 + (a6χ6 − 6a6χ4)λ)r2
)

Γttr = Γtrt =
1

2

(
2(a2λ3 + λ2)r9 + 2(2a2χ2λ2 + (2a4χ2 + a4)λ3 − λ)r7

+2((a6χ4 + 2a6χ2)λ3 + (a4χ4 − a4)λ2 − (2a2χ2 + a2)λ)r5

+2(a8χ4λ3 − 2a6χ2λ2 − (a4χ4 + 2a4χ2)λ)r3

+((a2χ2λ+ 1)r3 − (a4χ4λ+ a2χ2)r)r2s − 2(a8χ4λ2 + a6χ4λ)r

−(a6χ4λ+ 3(a2χ2λ2 + λ)r6 + a4χ2 + (3a2λ+ (a4χ4 + 3a4χ2)λ2 − 1)r4

+(a6χ4λ2 + a4χ4λ+ a2χ2 − a2)r2)rs
)/

(
a8χ4λ+ (a2λ3 + λ2)r10 + a6χ4 + ((2a4χ2 + a4)λ3 + (2a2χ2 − a2)λ2 − 2λ)r8

+((a6χ4 + 2a6χ2)λ3 + (a4χ4 − 2a4χ2 − 2a4)λ2 − (4a2χ2 + a2)λ+ 1)r6

+(a8χ4λ3 + 2a2χ2 − (a6χ4 + 4a6χ2)λ2 + a2 − (2a4χ4 + 2a4χ2 − a4)λ)r4

−(2a8χ4λ2 − a4χ4 − 2a4χ2 + (a6χ4 − 2a6χ2)λ)r2
)

Γχrχ = Γχχr = r/(a2χ2 + r2)
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