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1. Motivation

1.1. Quantum Computation

Over the last decades, classical processors have continuously grown more powerful and

more compact. However, this process is already starting to saturate due to simple physical

limitations. As integrated circuits are growing ever smaller (nm range), they are approaching

a regime where classical laws of physics do no longer hold, but quantum mechanical effects

start dominating. Meanwhile, research on quantum computation has widely expanded with

exciting achievements. A quantum computer is a device that processes information based

on the laws of quantum mechanics. In contrast to a classical computer, that works based on

macroscopic electronic states, a quantum computer acts on quantum states. Information is

stored in qubits with states |0〉 and |1〉, in analogy to the binary states 0 and 1 of a classical

bit. There are several different approaches how to realize a quantum computer. The two-

state system can be represented by the direction of the electric current in a superconducting

circuit, by two different energy levels of an ion or by the spin states of an electron.

In addition to overcome the before-mentioned physical length scale limitations, the realisa-

tion of a quantum device also promises very fast speedups in solving certain computational

problems such as the Traveling Salesmen Problem or the factorisation of large numbers

with Shor’s algorithm. Quantum devices are making use of the probabilistic behavior of

quantum mechanic. Before a measurement, the state of a qubit is not purely |0〉 nor |1〉 but

a superposition c0 |0〉 + c1 |1〉, with c0, c1 ∈ C and |c0|2 + |c1|2 = 1. This implies that the

theoretical possibility exists to process exponentially more data at the same time compared

with a classical computer. The potential applications of quantum computers reach from

cryptography to search problems in large databases and simulations of complex quantum

and non-quantum systems, to name only a few.
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Chapter 1. Motivation

1.2. The Electron Qubit

One of the most advanced and promising candidates for the experimental realisation of a

qubit is to use trapped ions stored in vacuum Paul traps. In analogy, it is possible to

trap electrons in Paul traps, even though this is more challenging due to the electrons’

lighter mass and higher velocity. Recent efforts at the University of California Berkeley

were successful. In [1] the research group of Prof. Häffner proposes a prototype design

of a trapped electron quantum computing device. A potential electron qubit conserves the

advantages of ion qubits, but overcomes at the same time a few of the ion qubit’s weaknesses.

In contrary to superconducting wire qubits, ions and electrons are perfectly interchangeable

particles, having for sure the same physical properties. This is quite difficult to achieve

for artificially manufactured qubits, such as wires. Having only two possible spin states,

the electron provides a perfect two-level system, eliminating possible information leakage

to states outside of the logical space. Trapped ion qubits are cooled and manipulated

using laser light to induce optical transitions. Even though these control processes are well

understood and working reliably, building a large scale quantum computer with such qubits

requires optical access to the system, which is a very challenging engineering task. This

issue does not exist for electron qubits that are entirely controlled without complicated

optics. Cooling and detection can be achieved by using a cryogenic tank circuit coupled to

the electron dynamics. Manipulation of single qubits can be realised by applying microwave

pulses near the Zeeman resonance. Also two-qubit gates can be realised using constant or

oscillating magnetic field gradients, acting on two electron qubits that are coupled to each

other. Finally, due to the lighter mass and higher velocity, electrons are trapped at higher

secular frequencies compared to ions, allowing faster gate times for multi-qubit operation

and transport.

1.3. Research Question

At the moment, trapped electron quantum computation is still a very young field of research

with many questions not yet answered. While trapping electrons in Paul traps has already

been demonstrated, important milestones such as motional cooling and the formation of

Coulomb crystals has not yet been observed in Paul traps. Coulomb crystals form in an

ideal trapping potential for sufficiently low energies, but it is not yet clear if they are stable

under real experimental conditions. Therefore, the central research topic of this thesis is
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1.3. Research Question

the numerical investigation of the dynamics and stability of electrons in a Paul

trap. To study this issue for realistic conditions, the most important physical processes

are modelled in a particle simulation. This will help building up a theoretical basis for

current and future trapped electron experiments. The motion of electrons is studied in the

anharmonic potential of a real Paul trap, currently in use at the University of California,

Berkeley.

After this motivating chapter, the basic physics for answering the research question of this

thesis is shortly introduced: the dynamics in Paul traps, the properties of anharmonic trap-

ping potentials, the formation of Coulomb crystals as well as the resistive cooling process and

the Johnson Nyquist noise. After that, the simulated trap and its potential are described

in detail. The potential is found numerically with a finite element method. Also, the nu-

merical integration method used in this work is discussed. Then, the results of the particle

simulations are presented for the realistic trap potential. Simulations with an approximated

trapping potential without anharmonicities are used as reference. This comparison allows

to identify the influence of the anharmonicites, present in the realistic trap potential, on

the electron dynamics. At first, the traps motional frequencies are calculated. A model for

simulating resistive cooling in axial direction and the corresponding Johnson Nyquist noise,

originating from the tank circuit, is introduced. Cooling times and efficiency are discussed

as well as the coupling of the axial and radial motional modes due to anharmonicities and

Coulomb interaction between electrons. The formation and stability of Coulomb crystals in

the anharmonic and noisy system is discussed for the simplest possible crystal configuration,

namely the two-electron structure. Studies on two-electron structures are a good starting

point for future research on larger structures. In addition, they are relevant for the realisa-

tion of two-electron qubits. This thesis ends with a summary of the most important results

with respect to the research question, along with an outlook on possible future research

beyond this thesis.
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2. Basic Physics

This chapter presents the basic physics needed to understand the processes of trapping and

manipulating electrons in Paul traps.

2.1. Trapping Electrons with Paul Traps

Paul traps, also known as quadrupole traps or radio frequency traps, were invented by

the german physicist Wolfgang Paul, who was awarded with the Nobel Price of Physics in

1989 for this work. They are mainly used for mass spectrometry experiments and ion trap-

ping, even though they are in principle suitable for trapping any charged particle, including

electrons, using time-varying electric fields.

2.1.1. General Operation Principle

According to Earnshaw’s theorem [2], it is impossible to trap charged particles in three

dimensions by using purely static electric fields. This can be easily demonstrated by con-

sidering a three dimensional, harmonic electric potential in directions x, y, z

Φ = αx2 + βy2 + γz2, (2.1)

α, β, γ ∈ R, with a resulting electric field
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Chapter 2. Basic Physics

E = −∇Φ = −2


αx

βy

γz

 . (2.2)

Applying Gauss’ law in vacuum,

∇E = −2(α + β + γ) = 0, (2.3)

implies that for a nonzero potential at least one of the coefficients α, β or γ must be negative

to produce a repulsive potential in at least one direction. Therefore, Paul traps use time-

varying electric fields in the radio frequency range that create an average confining force.

To keep the charged particle stored in the trap, the switching rate must be faster than the

particle’s escape from the trap. For trapped electron experiments, the switching frequency

has to be significantly higher than for trapped ions, due to the electrons smaller mass and

larger velocity. Earnshaw’s principle can be interpreted as a fast rotating saddle potential

and is illustrated in figure 2.1.

Figure 2.1.: Visualisation of a) a particle in a rotating saddle potential with rotation fre-
quency Ω, b) a flapping potential with flapping frequency Ω and c) the effective
trapping potential that results from both scenarios [3].
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2.1. Trapping Electrons with Paul Traps

2.1.2. Linear Paul Traps

In linear Paul traps a three dimensional trapping potential can be realised with an electrode

configuration consisting of six electrodes. Four RF-electrodes are aligned around an axis as

shown in figure 2.2. A periodically alternating AC voltage is applied to the configuration.

Figure 2.2.: Schematic RF-electrode configuration of a Paul trap. The voltage applied to
the electrodes is changing harmonically within the range of −U0 and U0. Same
voltages are applied to electrodes facing each other [3].

The pairs of electrodes facing each other are held at same voltages: the first pair of electrodes

(left and right electrodes in figure 2.2) is kept at U0, while the second pair of electrodes

(upper and lower electrodes in figure 2.2) is kept at −U0. Here

U0 = U − V cos (Ωt) (2.4)

refers to a time-dependent AC voltage V , driven at frequency Ω, with a constant offset

voltage U that is time-independent. The RF-electrodes provide a switching saddle potential

as discussed above and thus allow trapping of a charged particle in two dimensions x- and

y. To realise trapping in three directions, an additional pair of DC-electrodes is required to

provide a static confining potential in z direction. In the following the x and y directions are

also referred to as the radial directions while the z direction is called the axial direction.
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Chapter 2. Basic Physics

In a lowest order approximation, the above discussed electrode configuration provides the

trapping potential

Φharm. = Φharm.
RF + Φharm.

DC (2.5)

= V cos (Ωt)

(
x2 − y2

r20

)
+ κU

(
2z2 − x2 − y2

2z20

)
, (2.6)

where the constants r0, z0 and κ are determined by the trap geometry and size.

2.1.3. Mathieu Equations and Motional Frequencies

The force F of the trapping potential, acting on a charged particle of mass m and charge q,

is F = −q∇Φ, which gives the equation of motion

mr̈ = −q∇Φ, (2.7)

with the position rᵀ = (x, y, z) and acceleration r̈. It is convenient to define the following

parameters:

ax = ay = −1

2
az = − 4qκU

mz20Ω2
, (2.8)

qx = −qy = − 4qV

mr20Ω2
, (2.9)

qz = 0 , (2.10)

τ =
1

2
Ωt , (2.11)

and to rewrite the equation of motion as
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2.1. Trapping Electrons with Paul Traps

0 =
d2ru
dτ2

+ (au − 2qu cos(2τ))ru, (2.12)

with u ∈ {x, y, z}. For the axial direction, u = z, equation 2.12 represents simply a harmonic

oscillator. In the radial directions u = x, y, the equations of motion 2.12 have the form of

Mathieu-Equations, which are special cases of the Hill-Equation. The Mathieu-Equation is

solved with the ansatz

u(τ) = Aeiβuτ
∑
n

C2ne
i2nτ + e−iβuτ

∑
n

C−2ne
−i2nτ , (2.13)

with the stability parameter βu =

√
au + q2u

2 , as described in [4]. The resulting radial

particle trajectories rx,y(t) can be thought of as harmonic oscillations of the mean position

〈rx,y(t)〉 with additional small oscillating deviations from the mean position δrx,y(t)

rx,y(t) = 〈rx,y(t)〉+ δrx,y(t). (2.14)

The oscillation of the mean position is called secular motion or macro motion while the

small deviation of the trajectories is called micro motion [5].

The stability of the particle’s motion and trapping depends on the parameters au and qu.

This relation can be visualised in a Mathieu stability diagram as in figure 2.3. The r-

stable (i.e. radially stable, meaning x- and y-stable) and z-stable regions are depicted for

an ideal linear quadrupole ion trap, as a function of the parameters au and qu. Three-

dimensional trapping is only possible for regions that are both r- and z-stable, in other

words r-z-stable.
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Chapter 2. Basic Physics

Figure 2.3.: The Mathieu stability diagram shows stable trapping regions for an ideal
quadrupole ion trap as a function of the parameters au and qu [6].

The rest of this section is again following the elaborations in [4]. Usually, Paul traps are

operated in a regime where |au| � 1 and q2u � 1. This justifies a first order approximation

for the particle trajectory, giving

u(t) ≈ A cos(ωu,sec t)
(

1− qu
2

cos(Ωt)
)
. (2.15)

The first term provides an oscillation with frequency

ωu,sec =
Ω

2
βu =

Ω

2

√
au +

q2u
2
. (2.16)

The second term has a much smaller amplitude and can be rewritten as

cos(ωu,sect) cos(Ωt) = cos
(
(Ω + ωu,sec)t

)
+ cos

(
(Ω− ωu,sec)t

)
, (2.17)
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2.2. Planar Traps and Impact of Anharmonicities

showing that it oscillates with the frequency of the micro motion Ω plus and minus the

secular frequency ωu,sec. These frequencies are called the first two sidebands of the motion.

From equation 2.16 the axial secular frequency can be obtained as

ωz,sec =
Ω

2

√
az =

√
2qUκ

mz20
. (2.18)

In the radial directions, the static DC-potential should ideally have only a very small impact

compared with the RF-potential (ax,y � q2x,y). We can therefore assume ax,y ≈ 0, to find

the radial secular frequencies

ωx,y,sec =
Ω

2

qx,y√
2

=

√
2qV

mΩr20
. (2.19)

Hence, due to the much smaller electron mass and higher velocity, the secular frequencies

of trapped electrons are much higher than those of trapped ions.

2.2. Planar Traps and Impact of Anharmonicities

A perfect quadrupole trapping potential as introduced before is only achievable in linear Paul

traps with perfectly hyperbolically shaped electrodes. In practice, it is rather common to use

planar segmented trap geometries instead of classical linear Paul traps. Planar Paul traps

consist of an RF- and DC-electrode configuration that lies completely within one plane. The

charged particle is trapped above this plane as shown in figure 2.4. Planar traps come along

with a couple of big advantages compared with the classical linear traps. Standardized

and efficient micro-fabrication methods can be used for trap fabrication, such as photo-

lithography and metal evaporation deposition. Planar traps are also popular for their good

scalability. It is possible to fabricate very compact traps, in particular with multiple trapping

zones and shuttling zones to carry the charged particles in between different zones.
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Chapter 2. Basic Physics

Figure 2.4.: Comparison of a) a linear Paul trap and b) a planar ion trap by [7]. The dashed
line represents the trapping axis. The RF-electrodes are colored in red and
realise the radial confinement. The DC-electrodes are colored in blue and allow
axial confinement.

For quantum computation, such a system is highly favorable. The main object of investi-

gation in this thesis is a 3-layer planar Paul trap, designed by the Trapped Ions Group at

the University of Berkeley. It is described in more detail in section 3.1.

There is also a disadvantage of such planar traps. The electrode configuration is usually

more complex and consists of larger numbers of electrodes compared with idealized Paul

traps. This results in a more complicated trapping potential which can be calculated only

numerically. In particular, the potential created by planar traps is not simply a quadrupole

potential, but a linear combination of infinitely many multipoles r2, r3, r4, ... . The

deviation of the trapping potential from an ideal, pure quadrupole potential is called an-

harmonicity. The anharmonicity of an electron Paul trap affects its motional frequencies,

cooling and readout and it is generally favorable to minimize its impact. A description

of the influence of anharmonicities on various aspects of electron trapping can be found

in [8]. The effect of anharmonicities is stronger at positions further away from the trap

center. Therefore, they are even more relevant for trapped electron experiments compared

with trapped ion experiments. Due to their smaller mass electrons experience regions of the

trapping potential with stronger anharmonic terms. In the following is discussed how an

anharmonic Paul trap potential can be described as an expansion in spherical harmonics.

Laplace’s equation must hold for the trapping potential, which reads in spherical coordinates

(r, θ, ϕ)

Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin (θ)

∂

∂θ

(
sin (θ)

∂Φ

∂θ

)
+

1

r2 sin2(θ)

∂2Φ

∂ϕ2
= 0, (2.20)
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2.2. Planar Traps and Impact of Anharmonicities

and which is solved by the method of separating variables into a radial part R(r) and angular

parts Θ(θ), φ(ϕ)

Φ(r, θ, φ) = R(r)Θ(θ)φ(ϕ). (2.21)

This expression can be expanded in terms of spherical harmonics as it is shown in textbooks

as [9], giving

Φ(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(Almr
l +Blmr

−l−1)Ylm(θ, ϕ). (2.22)

Ylm are the spherical harmonics

Ylm(θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimϕ, (2.23)

with the associated Legendre functions

Pml (cos θ) = (−1)m(sin θ)m
dm

d(cos θ)m

(
Pl(cos θ)

)
, (2.24)

with the Legendre polynomials Pl(cos θ) following Rodrigues’ Formula

Pl(x cos θ) =
1

2ll!

dl

d(cos θ)l

(
(cos θ)2 − 1

)l
. (2.25)
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Chapter 2. Basic Physics

In this notation Alm and Blm are the expansion constants. It turns out that Blm = 0, ∀l,m,

since the second term Blmr
−l−1 diverges for nonzero constants Blm at the trapping axis

r = 0. The expansion thus simplifies to

Φ(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

Almr
lYlm(θ, ϕ). (2.26)

The spherical harmonics Ylm form a complete set of orthogonal functions. They satisfy the

orthogonality property

∫
dΩY ∗l′m′(θ, ϕ)Ylm(θ, ϕ) = δll′δmm′ , (2.27)

with the complex conjugate Y ∗lm(θ, ϕ) = (−1)mYl,−m(θ, ϕ). This property allows to write

down a formula for the expansion coefficients

Alm =

∫
dΩY ∗lm(θ, ϕ)Φ(r, θ, ϕ). (2.28)

The potential expansion 2.26 can be rewritten in Cartesian coordinates by applying the

standard back transformation. A transformation to an expansion with single index basis

functions and coefficients is obtained by applying a mapping proposed by [3]. The single

index basis functions Yj are obtained by

Yj =


rljY`j ,0 if mj = 0

1√
2
rlj
(
(−1)mjY`j ,mj

+ Y`j ,−mj

)
if mj > 0 ,

i√
2
rlj
(
Y`j ,mj

− (−1)mjY`j ,−mj

)
if mj < 0

(2.29)

14



2.2. Planar Traps and Impact of Anharmonicities

and the corresponding single index coefficients Mj by

Mj =


A`j ,0 if mj = 0

1√
2

(
(−1)mjA`j ,mj

+ A`j ,−mj

)
if mj > 0 .

−i√
2

(
A`j ,mj

− (−1)mjA`j ,−m,
)

if mj < 0

(2.30)

Every index j in the single index notation corresponds to two indices lj and mj in the

two-index notation, as demonstrated below up to l = 2



j

1

2

3

4

5

6

7

8

9



→



`j mj

0 0

1 −1

1 0

1 1

2 −2

2 −1

2 0

2 1

2 2



. (2.31)

We end up with a simple single index version of the expansion 2.26 for the trapping potential

in Cartesian coordinates that is used later in this thesis to describe the realistic potential

of the experimental Paul trap:

Φ(x, y, z) =

∞∑
j=1

MjYj(x, y, z). (2.32)
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Chapter 2. Basic Physics

2.3. Coulomb Crystals

Multiple charged particles trapped in the same potential can be cooled down to low energies

to form Coulomb crystals. The thermal motion of the particles is cooled down into a

quasi-stationary state where the Coulomb repulsion between the particles and the trapping

potential pushing the electrons back to the trap center are balancing each other. Having a

total number of N particles of charges qi at positions ri, the Coulomb force acting on one

of them with charge q at position r is

FCoul(r) =
q

4πε0

N∑
i=1

qi
r− ri
|r− ri|3

, (2.33)

where ε0 is the vacuum permittivity. There has been a lot of research on ions in Paul traps,

where large Coulomb crystals of up to several hundreds of ions can be formed. Figure 2.5

shows an experiment by [10] on ion crystals, changing shape as the axial potential strength

is varied.

Figure 2.5.: Coulomb crystals in Paul traps, consisting of a) N = 12, b) N = 30 and c)
N = 55 ions. The shape of the Coulomb crystal is changing with the strength
of the axial trapping potential [10].

This thesis focuses on the investigation of the simplest form of electron Coulomb crystals,

consisting of only two electrons. The two electrons align along the weakest trapping axis,

which is the z-axis, forming a one-dimensional crystal. The presence of multiple charged

particles moving freely, i.e. in a ’gas state’ within the same trap, causes RF-heating.

16



2.3. Coulomb Crystals

Within this heating mechanism, energy is transferred from the RF-field to the trapped

ions or electrons. The process is described in detail in many publications such as [11] and

[12]. It results from Coulomb collisions between the particles in the alternating RF-field.

The RF-force can intensify Coulomb collisions and this way add energy to the system [12].

The crystal state is extremely advantageous, as it protects the particles from that heating

mechanism by preventing strong Coulomb collisions [11]. The motion of a two-electron

crystal has six degrees of freedom: three center-of-mass modes that follow the regular secular

frequencies ωax and ωrad of the trap and three vibration modes, i.e. the motion relative

to the center-of-mass. The relative motion in radial directions is referred to as ’zigzag’ or

’rocking’ mode and the axial relative motion as ’stretch’ or ’breathing’ mode. Zigzag and

stretch modes do not show the traps regular secular frequencies but oscillate at

ωzigzag =

√
ω2
rad − ω2

ax, (2.34)

ωstretch =
√

3 ωax, (2.35)

according to [13]. All motional modes have to remain bounded for a stable crystal state.

While the stability of the center-of-mass motion is achieved for the stable trapping zones of

the Mathieu diagram, the stability of the relative motion is less obvious. There exist stable

trapping regions in the Mathieu diagram that are ’crystal free’, meaning that no crystal

state will form even for low energies [14].

Indeed, the stability of Coulomb crystals is affected by several factors. Melting can be

induced by collisions with residual background gas as well as by noise. While cooling to

a low energy level is necessary for crystallisation, a too strong damping force can also

lead to a melting processes in adverse configurations, since the Mathieu stability regions are

modified by the additional force [14]. Crystal stability is a very complex topic and this thesis

investigates the dynamics and stability of two-electron crystals in terms of temperature and

noise. A better understanding is crucial for the development of two-electron qubits for

quantum processing.
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Chapter 2. Basic Physics

2.4. Resistive Cooling and Johnson Nyquist Noise

In order to form Coulomb crystals and to be used for quantum gate operations, ions or

electrons that serve as qubits need to be cooled down close to their motional ground state.

In order to achieve this, effective cooling mechanisms are necessary. They are also crucial

for overcoming common heating mechanisms within the trap, such as electrical surface

field noise and RF-heating, as explained in greater detail in [12]. For trapped ions, there

exist several common methods such as Doppler- or sideband-cooling, that rely on optical

excitation of the ion’s electronic states. These methods are therefore not an option for

electron cooling. Instead, the electron motion can be damped using a tank circuit. The

method was proposed by [1] and is depicted in figure 2.6. Its feasibility has already been

demonstrated in Penning trap experiments [15]. The electron with elementary charge e

oscillates in axial direction with velocity ż (in the figure denoted as v) within the electrodes.

The tank circuit can be described approximately as a plate capacitor with effective distance

deff , connected to a resistor with impedance Z and real part R = Re(Z). The electron’s

movement induces a current Iind = eż
deff

within the tank circuit, that can be used for

electron detection and generates a potential difference Uind = RIind on the plate capacitor.

The resulting damping force Fdamp = −eUind

deff
on the electron opposes its motion. Inserting

the above expression for the induced current, the damping force reads

Fdamp = −
(

e

deff

)2

Rż. (2.36)

Figure 2.6.: Illustration of the cooling circuit of the electron trap prototype by [1].
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However, the Johnson Nyquist noise, originating from the Brownian particle motion within

the resistor at nonzero temperature Tres, is equally transmitted to the electron’s motion.

The noise can be thought of as an additional fluctuating voltage Unoise(t), applied to the

capacitor plates. The Johnson Nyquist noise amplitude is Gaussian distributed with mean

〈Unoise〉 = 0 and variance 〈U2
noise〉 = 4kBTresR∆f , where kB is the Boltzmann constant and

∆f is the bandwidth of the frequency f , over which the noise is measured. In summary,

the total force acting on the electron in the cooling circuit reads

Fcircuit(t) = Fdamp(t) + Fnoise(t) (2.37)

= −
(

e

deff

)2

Rż(t)− e

deff
Unoise(t). (2.38)

The tank circuit is cooling the electron’s motion as long as it is above the Johnson Nyquist

noise level of the resistor. The tank circuit is kept at cryogenic temperatures to lower the

noise level as much as possible. In the equilibrium state, the electron’s motion is dominated

by the noise and its energy follows a Boltzmann distribution with the temperature equal

to the resistors temperature Tres. This has been experimentally shown for trapped ions by

[15].

In 1D the Boltzmann distribution in terms of energy E at temperature T takes the form

fE(E) =

√
1

πEkBT
exp

(
− E

kBT

)
. (2.39)

The ergodic hypothesis holds for the system, meaning that the time average of a single

particle is equivalent to the average over an ensemble of many particles at a fixed time. This

observation justifies the determination of the electron’s ’temperature’ Teq in the equilibrium

state. The equilibrium temperature in axial direction Teq,ax can be calculated by taking the

time average of the electron’s total axial energy 〈Eax〉
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Chapter 2. Basic Physics

Teq,ax =
π

kB
〈Eax〉 = Tres. (2.40)

This results from the 1D temperature definition for free gases, where the mean speed is

〈|v|〉 =

√
2kBT
πm and the mean kinetic energy is 〈E〉 = 1

2m〈|v|〉
2 = kBT

π . In the experiment,

the electron’s kinetic energy in axial direction can be determined by the strength of the

induced current on the pic-up-electrodes. The potential energy is not easily accessible but

the total energy can be estimated from the kinetic energy by making use of the Virial

theorem. It states that for a conservative potential of order k, the relation between kinetic

and potential energy is 〈Ekin〉 = k
2 〈Epot〉. Assuming an ideal quadratic potential where

k = 2, we find that 〈Ekin〉 = 〈Epot〉 and thus 〈E〉 = 2〈Ekin〉.

The autocorrelation function

cEE(t, t+ τ) = 〈E(t)E(t+ τ)〉 (2.41)

of the fluctuating energy follows a decaying exponential function with time constant τdecay.

This time constant is equal to the cooling time constant of the tank circuit [15].

In an ideal quadrupole potential, the motion in x-, y-, and z directions are independent

as long as there is only a single electron present in the trap. With multiple electrons in

the same trap, the directions are coupled to each other via the Coulomb interaction, which

is inverse proportional to the total distance of the electrons. In an experimental trap, the

anharmonicities provide another coupling between the directions, since they contain mixed

terms xy, xyz2, etc. The coupling leads to an energy exchange between the directions.

This means that cooling the axial direction could result not only in a lower axial energy

but also in a lower radial energy. One goal of this thesis is to determine the coupling

strength between axial and radial motion due to anharmonicities and Coulomb interaction.

A possible approach is to observe the time constant of the cooling of the radial motion via

cooling of the axial motion. In the case of multiple trapped electrons, the coupling strength

varies significantly, depending on whether the electrons are in a crystal or gas state.
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2.4. Resistive Cooling and Johnson Nyquist Noise

For a two electron system coupled to a cooling tank circuit, the circuit is impacting the

center-of-mass motion of both electrons, but has no direct effect on their relative motion.

It is thus impossible to damp the electrons’ relative motion directly via a resistive cooling

method. The energy stored in the relative motion can prevent the system from freezing into

a Coulomb crystal or can lower the stability and lifetime of an already existing Coulomb

crystal. Therefore, it is necessary to understand, whether the relative motion can be cooled

indirectly via coupling effects between the different motional modes. This question is inves-

tigated later in this thesis.
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3. Simulation

The basic physics of electron trapping in Paul traps has been discussed in the previous

chapter. This chapter will concentrate on the properties of the specific Paul trap that is

investigated in this thesis. Special focus is laid on the trapping potential and how it is

calculated. Also, the Velocity Verlet integration is introduced, as it is the key element of

the particle simulations, performed within this thesis.

3.1. Simulated Trap

The particular electron trap that is investigated in this thesis is a planar three layer Paul

trap. It is currently in use for trapped electron experiments in the Trapped Ions Group

of Prof. Häffner at the University of California, Berkeley. The trap is designed to trap

electrons at motional frequencies of ωrad = 2π · 300 MHz and ωax = 2π · 30 MHz and is

operated at the driving frequency Ω = 2π · 1.6 GHz.

The trapping potential for the particle simulations is determined using the commercial

software Ansys Electronics. This software can be used to calculate the potential of any

given electrode configuration on a 3D grid, using a finite element algorithm (FEM). This

is carried out for both the DC- and RF-electrodes separately on a cubic grid of size 300

µm × 300 µm × 300 µm, with a step size of 1 µm, centered around the trap center.

For license reasons, the FEM calculations could only be carried out on a regular desktop

computer which limited the grid resolution to 1 µm. The potential data obtained by the

Ansys algorithm is then used to determine the coefficients Mj of the expansion 2.32 up to

order j = 4 by a least-squares fit for the DC- and RF-potential separately. Due to the linear

relation of applied electrode voltage and potential strength, it is sufficient and reasonable

to execute the Ansys FEM algorithm only once for the electrode configuration with 1 V

applied to each electrode and scale the resulting expansion coefficients Mj found by the fit

afterwards, according to the voltages that are actually applied in the experiment.
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Then, the full realistic potential is found by adding both the DC- and RF-components and

multiplying the RF-component by a cosine function with driving frequency

Φreal.(x, y, z, t) = Φreal.
DC (x, y, z) + Φreal.

RF (x, y, z, t) (3.1)

=

4∑
j=1

(
Mj,DC +Mj,RF cos(Ωt)

)
Yj(x, y, z). (3.2)

The basis functions Yj of the expansion up to j = 6, as well as the DC- and RF- expansion

coefficients Mj,DC and Mj,RF up to j = 4 can be found in the appendix at A.1 and A.2.

The order of the expansion has an impact on the values of the expansion coefficients Mj .

Fitting the same potential data to an expansion up to order j = 4 obtains not only less but

also different coefficients than fitting it to an expansion up to order j = 6.

Figure 3.1 shows a cross section of the raw data at z = 0 for the RF-potential. The potential

in different cuts in x, y, z, calculated by Ansys for voltages 1 V on the electrodes, is depicted

in figure 3.2. Also shown are the least-square fits to the expansion formula.

Figure 3.1.: Cross section of the RF-electrodes raw potential data at z = 0.
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3.1. Simulated Trap

(a) (b)

(c) (d)

(e) (f)

Figure 3.2.: DC- and RF- potential data and fit to spherical harmonics expansion on x-axis:
a) and b), y-axis: c) and d), z-axis: e) and f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3.: Realistic trap potential in comparison to the purely harmonic potential (deter-
mined in section 4.1.1) in a) x-, c) y- and e) z-direction. Also, the differences
of the realistic and harmonic potential Φreal. − Φharm. are shown for each com-
ponent in b), d) and f).

26



3.1. Simulated Trap

The voltages actually applied in the experiment are roughly UDC = 0.1 V and VRF = 90 V

(the voltages will be adjusted to give the desired motional frequencies). For the simulation,

the coefficients Mj,DC and Mj,RF are scaled accordingly. For a trapped electron, the DC-

potential is confining in axial direction and slightly repelling in radial directions. This does

not disturb the trapping, because the radial DC-repulsion is overcome by a strong confining

RF-saddle potential. The axial component of the RF-potential has almost no impact, being

smaller than the radial components by more than two orders of magnitude. This explains

also, why the fit to the spherical harmonics expansion is less accurate for this component.

A harmonic potential of the form 2.6 is used as reference in this work. The parameters U ,

V , etc., are determined in section 4.1.1, such that the harmonic potential provides the same

motional frequencies as the realistic trap. This allows a reasonable comparison. Figure 3.3

shows the comparison of the fitted RF-potential components in radial directions and the

DC-potential component in axial direction. Also shown is the difference of the realistic and

the harmonic potential Φreal.−Φharm. for each component. The deviation from the harmonic

potential is rather small. Overall, the realistic potential is slightly stronger in y direction

and slightly weaker in x- and z direction. The differences are increasing for larger distances

from the trap center. Due to the very small differences, very similar results for simulations

with the realistic and harmonic potential can be expected. If at all, the anharmonicities of

the realistic trap should only affect electrons with very high kinetic energies that travel far

out, probing the outer potential regions.
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3.2. Velocity Verlet Integration

The particle simulations in this thesis use the Velocity Verlet algorithm:

r(t+ dt) = r(t) + v(t)dt+
1

2
a(t)dt2, (3.3)

v(t+ dt) = v(t) +
a(t) + a(t+ dt)

2
dt, (3.4)

with velocity v = ṙ and acceleration a = r̈. The force acting on the electron with mass me

is calculated via the potential gradient as F = mea = eE = −e∇Φ with the electric field E.

The algorithm integrates the corresponding equation of motion. This integration scheme

is symplectic, meaning that for sufficiently small time steps it has no energy drift. Even

though the numerical energy is not strictly conserved, it oscillates around the exact energy

and remains bounded. This property is called quasi energy conservation and is very crucial

for long term simulations of physical dynamics.

Figure 3.4.: Comparison of Velocity Verlet (red) - and Euler integration (blue), showing the
total energy. In contrast to the Euler method, the Velocity Verlet integration
shows no energy drift. The energy drift of the Euler method can be reduced by
lowering the time step size (dashed line).
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3.2. Velocity Verlet Integration

Figure 3.4 shows a comparison of a Velocity Verlet- and an Euler integration of an electron

moving in a purely harmonic potential without micro motion. The electron’s numerical

total energy in the figure remains on a constant level for the Velocity Verlet integration

with time step dt = 10−12 s. The Euler method with the same time step size shows a strong

energy drift. This energy drift can be lowered by choosing a smaller time step, increasing

the computational cost. As shown by the dashed line, a decrease of the time step by more

than one order of magnitude would be necessary to get similar energy conservation as the

Velocity Verlet algorithm.
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4. Results

The basic research question of this thesis, i.e. the numerical investigation of the dy-

namics and stability of electrons in a Paul trap by particle simulations, can now be

studied, since all the necessary elements were introduced: basic physics and numerical tools

for the specific system. Results for an approximated, purely harmonic potential of the shape

2.6 with the same motional frequencies are used for reference. This allows a validation of

the simulations and makes it possible to determine the impact of the anharmonicities in

the realistic trap potential. After a first section presenting the motional frequencies, the

implementation and effects of a resistive cooling model are discussed. The coupling strength

between axial and radial motional modes is investigated, i.e. how much energy is transferred

between the motional modes. The result is of practical importance, because a strong cou-

pling would imply that cooling of the axial motion would also cool the radial modes. The

same would hold for heating. Finally, the formation and stability of two electron structures,

i.e. the simplest version of Coulomb crystals, is discussed.

4.1. Motional Frequencies

As a first step the electron’s motion of a single electron without Coulomb interaction at

cryogenic temperatures of T = 4 K is investigated. The electron is initialised in the trap

center with a kinetic energy corresponding to the most probable energy at this tempera-

ture, i.e. Ekin = 3
2kBT , equally distributed on the three directions. The Velocity Verlet

integration is carried out with time step dt = 10−12 s for a total time of tsim = 1 µs. This

is done for the realistic potential as well as for the harmonic potential. The trajectories

of the electron are discussed to determine how far it travels away from the trap center. In

both cases, the potential strength is scaled to match with the experimentally demonstrated

motional frequencies of ωrad = 2π · 300 MHz and ωax = 2π · 30 MHz.
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Chapter 4. Results

The motional frequencies are determined by performing a Fourier transform of the position

values over the full simulation time. Then, a Lorentzian function is fitted to the peaks of

the Fourier transformation to give an accurate frequency.

4.1.1. Harmonic Potential

Equations 2.18 and 2.19 can be used to select a set of parameters (z0 = 3146 µm, r0 = 1087

µm, U = 0.1 V, V = 90 V) that results in motional frequencies ωrad and ωax as pre-defined.

Using these parameters, the axial motional frequency agreed perfectly with the prediction

from 2.18, but the radial motional frequency showed some discrepancy. This can be expected

since 2.19 is just approximate. The RF-potential strength was fine tuned, setting r0 = 1130

µm. This potential produces the following motional frequencies: ωx = ωy = 2π · 294 MHz

and ωz = 2π · 30 MHz. Figure 4.1 shows the electron’s position in x, y, z direction within

the first 0.05 µs, as well as the Fourier transform F of each component as a function of

frequency. This reveals the motional frequencies in each direction. It is observed that the

axial motion follows a harmonic oscillation and the radial motion is additionally influenced

by the quick driving frequency. It can be concluded that the maximal amplitudes of the

electron in radial and axial direction at T = 4 K are max(rx, ry) ≈ 8 µm and max(rz) ≈ 4.5

µm, implying that the electron stays close to the central region. The electron has a slightly

larger maximal amplitude in y direction than in x direction, which is due to the initial

phase of the RF-field. Since the x- and y components of the RF-potential have different

signs (see equation 2.6), energy is added to one of the components and removed from the

other, depending on the phase of the cosine. Figure 4.2 shows a wider range of the Fourier

transform of the x- and y position, such that the first sideband frequencies are visible,

located at the driving frequency plus and minus the secular frequency Ω± ωsec.
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4.1. Motional Frequencies

(a) (b)

(c) (d)

(e) (f)

Figure 4.1.: The position of the electron as a function of time and the Fourier transform of
the position as a function of frequency for the harmonic potential in a) and b)
x direction, c) and d) y direction, e) and f) z direction.
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(a) (b)

Figure 4.2.: Fourier transform of the position as a function of the frequency in a) x- and
b) y direction for the harmonic potential, showing the secular frequency ωsec as
well as the first sideband frequencies at Ω± ωsec.

4.1.2. Realistic Trap Potential

For the realistic experimental trap potential, the voltages that have to be applied to the DC-

and RF-electrodes were determined to be UDC = 0.1 V and VRF = 90 V. As described in the

last chapter, the fitted potential expansion coefficients are scaled with these voltages to give

the correct potential strength. The resulting exact motional frequencies are ωx = 2π · 295

MHz, ωy = 2π · 296 MHz and ωz = 2π · 29 MHz. In contrast to the purely harmonic

potential, the motional frequencies in x- and y direction differ by ≈ 1 MHz. This shows that

the potential has a slightly different strength in x- and y direction due to anharmonicities.

Figure 4.3 shows the position in x, y, z direction within the first 0.05 µs, as well as the

Fourier transform F of each component as a function of frequency, giving the motional

frequencies. The mean electron position is not exactly located at the trap center x, y, z = 0,

but is slightly shifted, especially in x direction. 〈rx〉 = 0.574 µm, 〈ry〉 = 0.04 µm and

〈rz〉 = 1.46 µm are the coordinates of the traps potential minimum. To control the initial

kinetic energy of the electron, the real potential minimum must be known. Initialising the

electron at x, y, z = 0 would add potential energy to the system. The maximal deflection of

the electron’s motion from the potential minimum in x, y, z is similar as in the approximated

harmonic potential. Figure 4.2 shows the Fourier transform of the x- and y positions as

a function of frequency in a wider range, with the first sideband frequencies visible. In

comparison to the harmonic potential, the Fourier transform of the electron’s position shows

more contributions from different frequencies, besides the main secular frequency. They

originate from the anharmonicities that contribute to the potential.

34



4.1. Motional Frequencies

(a) (b)

(c) (d)

(e) (f)

Figure 4.3.: The electron’s position as a function of time and Fourier transform of the po-
sition as a function of frequency for the realistic trap potential in a) and b) x
direction, c) and d) y direction, e) and f) z direction.
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(a) (b)

Figure 4.4.: Fourier transform of the electron’s position in a) x- and b) y direction for the
realistic trap potential, showing the secular frequency ωsec as well as the first
sideband frequencies at Ω± ωsec.

The trapping stability of the trap’s potential can be tested in the simulation by varying the

initial energy. In the simulation, electrons of energies up to 220 meV (equally distributed

in x, y, z) are trapped reliably. This matches well with the stability found in some first

experiments on this trap, as verified in personal communication with the Trapped Ions

group.

4.2. Axial Cooling and Johnson Nyquist Noise

The ability to cool the trapped electrons is crucial for their feasibility as qubits. This is

realised via resistive cooling, using a tank circuit that is coupled to the electron’s motion,

as described in section 2.4. In this work only a single cooling tank circuit, applied in

axial direction, is assumed. This was the originally proposed experimental setup in [1]. The

resistive cooling itself can be implemented easily within the numerical integration by adding

a velocity dependent damping force to the equation of motion as described by equation

2.38. The Johnson Nyquist noise that comes along with this cooling method is modelled

as follows: an additional random force is generated during every integration time step,

following a Gaussian distribution, and applied during the current time step. This means

that a constant noise force is acting on the system for a duration of the time step length

dt. The Gaussian distribution of the noise has the mean 〈Unoise〉 = 0 and the variance

〈U2
noise〉 = 4kBTresR∆f .
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The Johnson Nyquist noise model desribed before is applied in a simulation of a purely

harmonic potential with motional frequencies ωax = 2π · 50 MHz and ωrad = 2π · 450

MHz. Further parameters used for the test case are the resistance R = 500 kΩ, resistor

temperature Tres = 0.4 K and effective distance deff = 300 µm, all in accordance with

former and prospective trapped electron experiment as discussed in [1]. Since the bandwidth

∆f of Johnson Nyquist noise in a resistor is not known, it is treated as a free parameter.

Initialised with temperature Tax = Trad = 4 K and corresponding thermal kinetic energy, a

single trapped electron is tracked with cooling and noise contributions over a time period of

50 µs. The resulting axial equilibrium temperature is determined by averaging the kinetic

energy in axial direction as described by 2.40. In this energy average, the first 10 µs are

neglected, since the active cooling period of the system can be assumed completed after this

time period. This can be determined by diagnosing the energy change over time.

Figure 4.5.: Axial equilibrium temperature Teq,ax as a function of the bandwidth ∆f for
three different time steps sizes. The target temperature is marked by the dashed
horizontal line.

Figure 4.5 shows the resulting axial equilibrium temperature Teq,ax as a function of the

bandwidth for three different time step lengths dt = 0.5 · 10−13 s (blue), dt = 1 · 10−13

s (red) and dt = 2 · 10−13 s (green). A larger bandwidth is equivalent to a larger noise

amplitude, resulting, as expected, in a higher kinetic energy and equilibrium temperature.

Another observation is that, besides the noise strength, the equilibrium temperature depends
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also on the chosen time step length. Longer time steps result in slightly higher temperatures

than shorter time steps. This can be explained as follows: a longer time step means that

the randomly distributed noise force, generated during every time step, acts on the electron

for a longer time and thus drags it further away from the average motion, adding more

energy to the system. However, it is not at all desirable to include an artificial time step

dependency for the model approach, because this is an artifact of the integration method.

To get rid of this, the bandwidth is set to be proportional to the inverse time step with a

bandwidth scaling constant Cbw, such that ∆f = Cbw

dt . The proportionality to the inverse

time step is reasonable, since frequencies much smaller than 1
dt do not have enough time to

contribute significantly to the noise, while contributions of frequencies that are much larger

will average out.

Figure 4.6.: Axial equilibrium temperature Teq,ax as a function of the time step dt. If the
noise amplitude is independent from the time step, the temperature rises slightly
with larger time steps (dashed curves). For a noise amplitude that is correlated
with the time step, the dependency of the temperature on the time step can
be eliminated (solid curves). The target temperature is marked by the dashed
horizontal line.

Figure 4.6 shows a comparison of the equilibrium temperature Teq,ax as a function of the

time step dt for uncorrelated noise amplitudes for three different fixed bandwidths (dashed

lines). The equilibrium temperature for correlated noise amplitudes that are dependent on

the time step dt and scaled with three different scaling factors Cbw (continuous lines) are also
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plotted. For the uncorrelated noise amplitudes with constant bandwidth, the temperature

increases slightly for longer time steps as shown before in figure 4.5. If the bandwidth is

correlated with the time step, the temperature stays on a constant level for increased time

steps. This means that the dependency of the temperature on the time step can be avoided

using this model for ∆f . The final temperature is then only dependent on the scaling factor

Cbw.

In the following, the resistive cooling model introduced before is implemented for simula-

tions of the particular electron trap investigated in this thesis with motional frequencies of

ωax = 30 MHz and ωrad = 300 MHz. All physical parameters are chosen according to pa-

rameters of current and future trapped electron experiments. The trap is kept at a cryogenic

temperature T = 4 K, which defines a corresponding initial energy of the trapped electron

in both radial and axial directions. Separately, the tank circuit for readout and cooling with

resistance R = 5 MΩ is kept at a lower temperature of Tres = 0.4 K. The resistance was

chosen larger than in the experiments to reduce the cooling time and thus the computation

time. The effective distance between the pick-up electrodes can be estimated within the

Ansys software as deff = 1 mm. It should be mentioned that the model discussed here

neglects all other sources of noise that exist in an experimental setup, besides the Johnson

Nyquist noise of the tank circuit’s resistor. A detailed overview of the impact of different

sources of electric field noise is provided in [16]. However, in the setup discussed in this

thesis the Johnson Nyquist noise of the tank circuit can be assumed to dominate. This is

achieved by the design, as the tank circuit used for resistive cooling is chosen to match the

electron’s resonance frequency. Another simplification assumed here is the modeling of the

tank circuit itself as a plate capacitor with the electron in between. This is not an exact

representation of the physical system. The electrodes do not provide a perfectly homoge-

neous electric field. Nevertheless, this approach is reasonable for cold electrons near the

trap center. The problem of noise in Paul traps for electrons is a rather complex problem,

with a large potential for further research.

The scaling factor Cbw is treated as a free parameter. The equilibrium temperature in the

axial direction is equal to the temperature of the resistor Teq,ax = Tres as known from former

experiments and described in section 2.4. By varying the scaling factor of the bandwidth

Cbw and thus the noise strength and monitoring the resulting equilibrium state, it is possible

to determine the correct value for Cbw. This is done in the following for both the realistic

trap potential as well as for the purely harmonic potential, simulating a single electron.
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The results of the bandwidth variations are shown in figure 4.7. They were found by

averaging the axial kinetic energy after the cool-down phase over a time period of 60 µs. The

longer the averaging time period, the more accurate is the resulting value of the equilibrium

temperature. Close to the matching factor which results in equilibrium temperatures close

to the target temperature of 0.4 K, the simulation was carried out repeatedly for four times

and the temperature average was taken. The best matching bandwidth scaling factor is

found to be Cbw = 0.16, implying a bandwidth of ∆f = 1.6 · 1012 Hz, for the realistic trap

potential as well as for the harmonic potential. With this value for the bandwidth scaling

factor, the average resulting equilibrium temperature is T harm.eq = 0.37 K for the harmonic

potential and T real.eq = 0.39 K for the realistic potential. This is sufficiently close to the

desired 0.4 K. A verification of the determined noise strength is only possible by measuring

the noise power experimentally. This should be done in future related trapped electron

experiments.

Figure 4.7.: Axial equilibrium temperature for the harmonic potential (red) and realistic
potential (blue) as a function of the Johnson Nyquist noise bandwidth ∆f , i.e.
the noise strength. The target temperature of 0.4 K is marked by the dashed
line.

The correct noise strength for modelling the experimental system has now been determined

and further investigations can be started. Since the system is following a stochastic process,
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simulation results will differ in detail, but follow similar dynamics. Figure 4.8 shows exam-

ples of the electron’s kinetic energy in axial direction as a function of time in the realistic

potential as well as in the harmonic potential. Within about the first 20 µs the motional

energy is damped with fluctuations from its initial value to the 0.4 K level. The electron’s

energy is following a 1D Boltzmann distribution, as shown in figure 4.9. This observation

is a good evidence for the quality of the noise model used for the simulations, as it matches

not only the theoretical expectations but also the experimental findings described in 2.4.

(a) (b)

Figure 4.8.: Axial kinetic energy for a) the harmonic potential and b) the realistic potential,
with resistive cooling and Johnson Nyquist noise modelling. The dashed hori-
zontal lines mark the initial (upper line) and target mean energy (lower line).
The vertical dashed line marks the beginning of the energy averaging time pe-
riod that was used to calculate the resulting axial equilibrium temperature.

(a) (b)

Figure 4.9.: Axial kinetic energy distribution for a) the harmonic potential and b) the real-
istic potential, with resistive cooling and Johnson Nyquist noise modelling. The
distribution is calculated after the cool-down phase of 20 µs (red curve). Also
shown is the fit to a 1D Boltzmann distribution (dashed curve) and the target
standard deviation of the distribution (dashed vertical line).
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The damping constant of the tank circuit can be extracted from the energy auto-correlation

function cEE(t, t+τ) as discussed in section 2.4. The auto-correlation function is decreasing

exponentially with τdecay as shown in figure 4.10. The decay time constant τdecay is equal

to the tank circuit’s damping constant. It is in the range of 3 - 8 µs for various simulation

runs. The average over 4 simulations is τharm.decay = 5.3 µs for the harmonic potential and

τ real.decay = 5.8 µs for the realistic potential. The tank circuit cools the electron’s motion in the

realistic trap potential equally efficient as in the harmonic potential. The slight difference

between the cooling times is within statistical variations.

(a) (b)

Figure 4.10.: Auto-correlation function of the axial energy for a) the harmonic potential and
b) the realistic potential, showing an exponential decay. The dashed horizontal
line marks the 1/e decay level that is reached after a couple of µs. The dashed
curve shows the fit to an exponential decay function.

Calculating the theoretical estimate of the tank circuit’s cooling time constant via

τdecay =
med

2
eff

e2R
(4.1)

for the circuit’s values of deff and R gives the same order of magnitude: τdecay = 7 µs. It

matches quite well with the cooling constants observed in the simulated systems.
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A discrepancy of a couple of µs is consistent with statistical errors. Future work on the

simulation could determine a more accurate value of the cooling time constant by averaging

over more than just four simulations. Also, the average equilibrium temperature for the

used noise strength lies slightly below 0.4 K. This might explain why the average damping

constant lies also slightly below the theoretical expectation.

4.3. Coupling Strength between Axial and Radial Motion

To understand the dynamics of a two electron system it is important to investigate the

coupling of different motional modes. This is done in the following chapter for different

physical scenarios, using the realistic trap potential. The main question is the energy transfer

between different motional modes.

4.3.1. Without Coulomb Interaction

At first, the simplest scenario of a single trapped electron is investigated. It is initialised in

the trap center with kinetic energies corresponding to T = 4 K. The simulation is carried

out with time step dt = 10−12 s. The kinetic energy in x, y, z direction is tracked over a time

period of 80 µs and is shown in figure 4.11. The tank circuit applied in axial direction causes

a reduction of the kinetic energy in z direction, as discussed in the previous section. In the

observed period of time, the tank circuit has no impact on the radial energy. The kinetic

energy in radial direction remains on a constant level. It can be concluded that without

Coulomb interaction of multiple trapped electrons, the anharmonicities in the realistic trap

potential do not induce an energy transfer between radial and axial modes. This also implies

that it is not possible to reduce the radial motional energy using an axial cooling circuit.

Additional cooling circuits in radial direction are needed and can be implemented in the

experiment, as stated by Prof. Häffner during personal communication.
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(a) (b)

(c)

Figure 4.11.: Kinetic energy in a) x direction, b) y direction and c) z direction of a single
electron in the realistic trap potential.

4.3.2. Two Electrons in Gas State

Having two electrons, trapped in the same potential, the dynamics becomes more compli-

cated due to the Coulomb interaction. We initialise two electrons with energies correspond-

ing to Trad = 8 K in both radial directions and Tax = 0.4 K in axial direction. At these

energies the electrons move freely, i.e. they are in a ’gas state’. Their kinetic energy is

too high to form a quasi stable Coulomb crystal. It is sufficiently high to overcome the

Coulomb- and confining forces that ensure crystallisation for lower energetic electrons. Due

to the Coulomb interaction, a smaller time step of dt = 10−13 s is necessary for simulations

with more than one electron. Again we have the cooling tank circuit applied in axial direc-

tion and keep track of the sum of the kinetic energies of the electrons in x, y, z direction and

the sum of their total kinetic energies. The results are shown in figure 4.12. As mentioned

before in section 2.3, multiple electrons in a gas state within the same trapping potential are

affected by RF-heating. This heating mechanism results from Coulomb collisions between

the particles in the alternating RF-field, as described in section 2.3. We can observe this
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mechanism in the simulation. The kinetic energy in radial and axial directions is fluctuat-

ing strongly and overall it is increasing. The axial cooling circuit does not compensate this

heating mechanism. To overcome RF-heating and freeze a pair of electrons into a crystal

state, additional cooling is necessary, i.e. radial cooling and potentially stretch- and zigzag

mode cooling.

(a) (b)

(c) (d)

Figure 4.12.: Kinetic energies in a) x direction, b) y direction, c) z direction and d) total
kinetic energies of two trapped electrons in the gas state in the realistic trap
potential.

4.3.3. Two Electrons in Crystal State

We now start with two electrons in the crystal state. This is the case for initial energies

corresponding to Trad = 4 K and Tax = 0.4 K. These energies are low enough that the

Coulomb- and confining forces keep the electrons localised at their equilibrium positions.

The electrons’ relative positions are monitored as explained in the following section, to
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ensure the crystal stability throughout the whole simulation. The initial kinetic energy

is applied completely to the stretch- and zigzag modes, described in section 2.3. Now the

situation is fundamentally different from the previous discussed gas state, as shown in figure

4.13. As already mentioned in section 2.3, the crystal state prevents the system from RF-

heating because it suppresses strong Coulomb collisions. There is no overall heating visible

in the system, which is a huge advantage. The kinetic energy remains constant in radial

directions. In axial direction, the noise of the tank circuit influences the results. Also in this

direction there is no heating. Within the simulated time span of 80 µs, no energy transfer

from the high energy radial modes to the low energy axial mode is happening. This means

that there is no strong coupling via trap anharmonicities or Coulomb interaction in the

crystal state. As a consequence, just like in the single electron system, the radial modes

need separate and additional damping to achieve motional cooling.

(a) (b)

(c)

Figure 4.13.: Kinetic energies in a) x direction, b) y direction and c) z direction of two
trapped electrons in the crystal state within the realistic trap potential.
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4.4. Two-Electron Coulomb Crystals

In this final chapter the dynamics and stability of two-electron Coulomb crystals in the trap

is investigated in detail. The numerical simulation results can provide a prediction for future

experiments on trapped electron crystals. At first, the general dynamics of a two-electron

system in the Paul trap is discussed. Especially interesting is the electron motion relative

to the center-of-mass motion, i.e. the stretch- and zigzag modes. All simulations are carried

out with time steps dt = 10−13 s.

4.4.1. Stretch- and Zigzag Mode

We start with a very basic system to build a better understanding of the problem. Figure

4.14 shows an example of crystal dynamics in the realistic potential, without damping and

noise effects. We will refer to the two electrons as electron 0 and electron 1. They are

initialised at their equilibrium positions on the z-axis, 24 µm apart from each other, due to

the Coulomb repulsion. Initial thermal velocities corresponding to 0.4 K are applied in axial

and radial directions each, with opposite signs for electron 0 and electron 1. As a result

of these initial conditions, the center-of-mass motion is zero, while the relative motion is

oscillating out of phase in all three directions. In radial directions the oscillation is centered

around zero, while the electrons remain separated in axial direction.

If the axial oscillation is out of phase as in this example, a strong stretching and compressing

of the Coulomb crystal is observed. Therefore, this is called a stretch mode, as mentioned in

section 2.3. From equations 2.34 and 2.35 we obtain: ωstretch = 2π·50 MHz, ωxzigzag = 2π·294

MHz, ωyzigzag = 2π · 295 MHz for the realistic trap potential and ωharm.stretch = 2π · 52 MHz,

ωharm.zigzag = 2π · 293 MHz for the harmonic potential. The frequencies of the stretch- and

zigzag modes can be obtained by applying a Fourier transform F on the relative electron

position rrel. This is shown in figure 4.14 for the realistic trap potential. Depicted are the

relative positions of both electrons as a function of time, as well as their Fourier transform

as a function of the frequency. The same simulation was done for the harmonic potential.

The Fourier transform is applied over a time of 0.5 µs. We find ωstretch = 2π · 52 MHz,

ωxzigzag = 2π ·292 MHz, ωyzigzag = 2π ·293 MHz for the realistic trap potential and ωharm.stretch =

2π · 53 MHz, ωharm.zigzag = 2π · 290 MHz for the harmonic potential. This is in good agreement

with the above predictions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14.: Dynamics of a two-electron crystal in the realistic trap potential at 0.4 K.
Shown are the relative positions of both electrons as a function of time a), c),
e) as well as their Fourier transform as a function of frequency b), d), f). Based
on the initial conditions, the electrons are oscillating out of phase. In radial
directions a) and c) the oscillation is centered around zero. In axial direction
c) the electrons remain separated. The corresponding Fourier transform F of
the relative position give the frequencies of the zigzag modes b) and c) and of
the stretch mode f).
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The electrons are aligned on the weakest trapping axis, i.e. the z-axis. Therefore the axial

separation is dominating the total distance of the electrons as shown in figure 4.15 for

Tax = 0.4 K and Trad = 4 K. Depicted is the distance between both electrons split into x-,

y- and z components, as well as the total difference as a function of time. As a criterion

of the crystal state, the signs of the relative electron positions in z are used. If the signs

flip, the electrons have switched positions. If such events happen, it is no longer possible

to determine which electron is located on which side. Therefore the crystal is ’broken’ in

terms of serving as qubits.

Figure 4.15.: Distance of electrons in a two-electron crystal at Tax = 0.4K and Trad = 4K.
The total distance is mainly dominated by the distance in z, while the distance
in x and y is comparably small.

Resistive cooling can only be used to reduce the kinetic energy of the center-of-mass mode.

It has no direct impact on the stretch mode. Whether there is energy transferred between

the stretch- and center-of-mass mode is not yet answered. It could still be a balancing effect

due to Coulomb interaction and trap anharmonicities that would allow cooling of the stretch

mode. A simulation is carried out on a two-electron crystal, tracking the kinetic energy of

both the stretch- and center-of-mass mode. The radial zigzag modes are initialised with

Trad = 0.4 K each, the axial stretch mode with Tax = 1 K. With these initial conditions

the crystal remained stable within the time simulated. Initially, the center-of-mass motion

is zero. The cooling tank circuit is applied in axial direction with Tres = 0.4 K.
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(a) (b)

Figure 4.16.: Kinetic energy in z direction as a function of time, split into a) stretch mode
and b) center-of-mass mode.

Figure 4.16 shows the resulting kinetic energy in the stretch- and centre-of-mass mode

over the simulated time period of 160 µs. Within this time period, there is no energy

transfer from the high energy stretch mode to the low energy center-of-mass mode. The

stretch mode energy remains constant while the center-of-mass energy is following the tank

circuit’s Johnson Nyquist noise. It is ’heated’ up from the initial zero energy level to the

tank circuit’s 0.4 K. Cooling of the stretch mode is thus not possible with this method. The

problem of cooling the stretch mode can be overcome with other strategies. One possible

option is cooling the electrons separately, before merging them into a cold crystal.

4.4.2. Crystal Stability

Whether a Coulomb crystal is stable or not depends crucially on the stretch- and zigzag

mode energy. High relative energies allow the electrons to switch positions, overcoming the

force of the trapping potential and their own Coulomb repulsion. Therefore, this section

focuses on investigating this dependency further. Simulations are carried out with two-

electron crystals, initialised with kinetic energy only in the stretch- and zigzag modes and

no kinetic energy in the center-of-mass modes. This scenario is equivalent to the scenario

discussed in the section above. The electrons are oscillating out of phase. In addition, the

tank circuit in axial direction is applied. For various initial energies it is observed, whether

and after what time period the electrons switch positions, i.e. the crystal ’breaks apart’ for

the use as a qubit. This time span before a switching event occurs will be referred to in

the following as the crystal ’lifetime’. The simulations are stopped after a time of 160 µs.

Therefore, this is the maximal lifetime a crystal can reach in this study.
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A first scan is carried out for different radial initial energies, i.e. zigzag mode energies. The

axial energy is always initialised corresponding to Tax = 0.4 K and, due to the tank circuit,

follows a Boltzmann distribution of this temperature. Figure 4.17 shows the resulting crystal

lifetimes as a function of the radial energy. For a better visualisation, the same results are

shown on log scale as well. The graphs show the average lifetime over three simulations.

The results for the realistic trap potential are compared to the harmonic potential. In both

cases, the crystal is surviving the 160 µs simulation for radial energies below Trad = 3.5 K.

For larger radial energies, the lifetime is dropping exponentially.

(a) (b)

Figure 4.17.: Lifetime of two-electron Coulomb crystal, measured for various radial energies
in the realistic trap potential (red) and in the harmonic potential (blue). Figure
a) uses a log scale, figure b) uses a linear scale. The dashed line marks the end
of the simulation time at 160 µs.

Another scan is carried out to find the dependency of the crystal lifetime on the axial

energy. Again, the results are averaged over three simulations. This time the radial initial

energy is fixed at Trad = 0.4 K. The axial initial energy in the stretch mode is varied.

The temperature of the axial tank circuit Tres = 0.4 K is kept constant. The results are

shown in figure 4.18, again for simulations of the realistic trap potential and the harmonic

potential. Overall, the behavior is similar to that of the first scan. Obviously, the crystal

is more sensitive to an increase of the axial stretch mode energy than to an increase of the

radial zigzag mode energy. The crystal lifetime is in general smaller for the same kinetic

energy. The crystal survives the whole 160 µs simulation only for low axial stretch mode

energies below Tax = 1.5 K. This is due to the potential strength, which is weaker in the

axial direction than in the radial directions.
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(a) (b)

Figure 4.18.: Lifetime of two-electron Coulomb crystal, measured for various axial energies
in the realistic trap potential (red) and in the harmonic potential (blue). Figure
a) uses a log scale, figure b) uses a linear scale. The dashed line marks the end
of the simulation time at 160 µs.

Overall, there is no systematic difference between the crystal stability in the realistic trap-

ping potential in comparison to the approximated harmonic potential. For future investiga-

tions on this particular electron trap this means that it is sufficient to do calculations with

the harmonic approximation. This saves a lot of effort and simulation time.

Still, some open questions remain. For high energies, the lifetime shown in the figure

seems to be a quite accurate measurement. The fluctuations are low because the lifetime is

not determined by the Boltzmann distribution of the axial energy, but only by the initial

conditions. For low initial energies, the lifetime is determined by the Boltzmann distribution.

A peak in the energy drives the switching of the electrons positions. To determine a reliable

average lifetime for this noise-dominated regime, far more than three simulations on each

initial energy are needed. Due to limited computation time, this could not be achieved within

this thesis, but is a point of interest for future research. The same applies for simulation

times longer than 160 µs. Simulations in the range of ms to s are of special interest for

trapped electron experiments on two-qubit operations. The gate time of an electron two-

qubit gate is estimated to be 2 µs as discussed in [1]. If we strive for a gate fidelity of 10−4,

crystal lifetimes of at least 20 ms are necessary. At least an order of magnitude should be

added to the bare gate time for pre- and post-processing, which gives time scales of several

hundreds of ms.
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(a) (b)

Figure 4.19.: Relative z position of both electrons for simulations with initial radial energies
of a) Trad = 0.4 K and b) Trad = 5.5 K in the realistic potential.

(a) (b)

Figure 4.20.: Relative z position of both electrons as they switch sides after 64 µs in the
simulation with Trad = 5.5 K. Figure a) shows the dynamics over a time period
of 4 µs to give an overview, b) shows it over 0.5 µs to reveal more detail.

For additional visualisation on the dynamics of the two-electron crystal, figure 4.19 shows

the relative z position of both electrons in the realistic trap potential for two different initial

radial energies. A time period of 80 µs is covered. Both simulations are done with initial

energy only in the relative motion with Tax = Tres = 0.4 K. The left picture a) shows the

dynamics of a very stable crystal, initialised with low radial energy Trad = 0.4 K. Both

electrons remain strictly within a very well-defined region. They come not even close to

switching positions. The right picture b) shows the results of the same simulation with

higher initial radial energy of Trad = 5.5 K. With regard to figure 4.17, this corresponds

to an unstable crystal. The energy is not high enough to break the crystal immediately, it

survives a little more than 60 µs before the electrons switch positions due to a peak in the
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Boltzmann distribution of axial energies. Also, within the first 60 µs the dynamics of the

crystal is less uniform compared to the previous case. The electrons approach each other far

more. The critical switching region after approximately 64 µs is depicted in greater detail

in figure 4.20. Mostly, the electrons remain on one side of the center-of-mass for a couple

of oscillation cycles, before they switch sides again.
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In this chapter, the thesis is summarized with respect to the research question of numerical

investigation of the dynamics and stability of electrons in a Paul trap. Finally, a

short outlook of potential further research is given.

Within the scope of this thesis, particle simulations of electrons were performed using the

realistic potential of a 3-layer planar Paul trap. The trap is currently in use for experiments

at the University of California Berkeley. It is designed for secular frequencies of ωrad =

2π · 300 MHz and ωax = 2π · 30 MHz. The realistic potential of the trap was found

numerically with a finite element algorithm, using the Ansys Electronics software. To create

a continuous potential out of the grid points, the numerical data was fitted to an expansion

of the trapping potential in spherical harmonics. As reference, a harmonic potential was

used. To assure energy conservation, the particle simulation uses symplectic Velocity Verlet

integration.

As a first test application of the simulation, the motional secular frequencies and first

sideband frequencies of electrons in the trap were calculated. They match well with the

theoretical predictions and the experimental observations.

A model for resistive cooling in axial direction and the associated Johnson Nyquist noise

was introduced, implemented and tested. Key parameter of the model is the noise strength.

It was determined empirically to match the experimental observation, i.e. an equilibrium

temperature of the electron, equal to the resistors temperature. In this work it was Tres = 0.4

K. For the particular trapping potential the noise strength was found to be 〈U2
noise〉 =

4kBTresR
Cbw

dt with the simulation time step dt and scaling factor Cbw = 0.16. The cooling

time constant observed in the simulation lies in the range of 3− 8 µs with an average of 5.3

µs, which is close to the theoretical prediction of 7 µs. It would be interesting to measure the

noise strength and cooling time in future experiments to compare them with the predictions

made here. Further work using the simulation could focus on determining a more accurate

cooling time constant by averaging over a larger number of simulations.
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Another aspect investigated in this thesis is the coupling of axial and radial motional modes

due to anharmonicities and Coulomb interaction. This is studied for the realistic potential

in terms of energy transferred between the modes. It was found that no energy is exchanged

between the axial and radial modes of a single electron. The same holds for a two-electron

crystal. As a consequence, implicit cooling of the radial modes through direct axial cooling

and vice versa is not possible. On the other hand, heating of a singled motional mode does

not affect any of the other modes as well. The decoupling of the radial and axial motional

modes, observed within this particular trap, does not necessarily hold for other Paul traps.

In traps with a stronger impact of anharmonicities, the behavior might be different. Also,

RF-heating of two electrons in the gas state was observed. This demonstrates the big

advantage of the crystal state that prevents the system from RF-heating. The axial cooling

does not overcome the heating. For future experiments on electron qubits, these observations

imply that additional radial cooling is necessary. In fact, radial cooling circuits are already

being discussed and will be implemented in future electron trap experiments. Radial cooling

can be implemented in the simulation in future work, following the same principles as already

discussed for axial cooling.

Finally, the dynamics and stability of two-electron Coulomb crystals, which is the simplest

possible crystal structure, were studied. The frequencies of the zigzag and stretch mode

were calculated. They match very well with the theoretical predictions. Also, the coupling

between the axial center-of-mass mode and stretch mode were investigated. It was found

that no energy is transferred between the modes. Since resistive cooling only affects the

center-of-mass motion, this implies that an alternative method is needed to remove energy

from the relative motion. One possibility is to merge two electrons into a crystal, that have

already been cooled separately.

The stability of the crystal was tested by measuring its lifetime for various initial kinetic

energies in the zigzag- and stretch mode, while the axial center-of-mass mode was following

the Johnson Nyquist noise. For an initial stretch mode energy of 0.4 K, the crystal is

surviving a 160 µs simulation for zigzag mode energies below 3.5 K. For higher energies the

lifetime is dropping exponentially. Similarly, for an initial zigzag mode energy of 0.4 K the

crystal is surviving 160 µs for stretch mode energies below 1.5 K. This implies, that the

crystal is more sensitive to stretch mode energy than to zigzag mode energy.

No significant difference in the lifetime was found between the realistic trap potential and

the harmonic potential. For further investigations on this trap the harmonic approximation

of the potential is sufficiently accurate, which can save a lot of calculational resources.
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Future simulations can extend the observation time up to 1 s, which is the time required

for practical use in quantum computation. Furthermore, the lifetime should be determined

with higher precision by averaging over more simulations. Also, the Johnson Nyquist noise

in radial direction can be considered. The crystal stability can be investigated with respect

to the center-of-mass mode, as for now only the energy in the relative motional modes was

varied. Electron crystals are most likely experimentally implemented in Paul traps with

higher motional frequencies, since they promise better stability. Concrete plans exist in the

Berkeley Trapped Ions group about a trap with motional frequencies of ωrad = 2π·1 GHz and

ωax = 300 MHz. This trap is not yet designed and therefore could not be simulated within

the work of this thesis. However, it might already be interesting to simulate a harmonic

potential with these motional frequencies. Another point of interest is the simulation of

larger Coulomb crystals, consisting of more than two electrons. In general, direct comparison

with experimental results are needed, but this is still a long way to go. The simulation

methods proposed within this thesis can support future trapped electron experiments by

giving predictions and verifying the observed behavior.
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A. Appendix

A.1. Spherical Harmonics Basis Functions

Table A.1 presents the spherical harmonics basis functions Yj of the expansion 2.32 in

Cartesian coordinates up to the order l = 6.

l m j Yj(x,y, z)

0 0 1 1

1

0 2 z

1 3 −x

-1 4 −y

2

0 5 −1
2 x

2 − 1
2 y

2 + z2

1 6 −3xz

-1 7 −3 yz

2 8 3x2 − 3 y2

-2 9 6xy

3

0 10 z3 − 3
2

(
x2 + y2

)
z

1 11 3
2 x

3 + 3
2 xy

2 − 6xz2

-1 12 3
2 x

2y + 3
2 y

3 − 6 yz2

2 13 15
(
x2 − y2

)
z

-2 14 30xyz

3 15 −15x3 + 45xy2

-3 16 −45x2y + 15 y3

4

0 17 3
8 x

4 + 3
4 x

2y2 + 3
8 y

4 + z4 − 3
(
x2 + y2

)
z2

1 18 −10xz3 + 15
2

(
x3 + xy2

)
z

-1 19 −10 yz3 + 15
2

(
x2y + y3

)
z
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2 20 −15
2 x

4 + 15
2 y

4 + 45
(
x2 − y2

)
z2

-2 21 −15x3y − 15xy3 + 90xyz2

3 22 −105
(
x3 − 3xy2

)
z

-3 23 −105
(
3x2y − y3

)
z

4 24 105x4 − 630x2y2 + 105 y4

-4 25 420x3y − 420xy3

5

0 26 z5 − 5
(
x2 + y2

)
z3 + 15

8

(
x4 + 2x2y2 + y4

)
z

1 27 −15
8 x

5 − 15
4 x

3y2 − 15
8 xy

4 − 15xz4 + 45
2

(
x3 + xy2

)
z2

-1 28 −15
8 x

4y − 15
4 x

2y3 − 15
8 y

5 − 15 yz4 + 45
2

(
x2y + y3

)
z2

2 29 105
(
x2 − y2

)
z3 − 105

2

(
x4 − y4

)
z

-2 30 210xyz3 − 105
(
x3y + xy3

)
z

3 31 105
2 x5 − 105x3y2 − 315

2 xy4 − 420
(
x3 − 3xy2

)
z2

-3 32 315
2 x4y + 105x2y3 − 105

2 y5 − 420
(
3x2y − y3

)
z2

4 33 945
(
x4 − 6x2y2 + y4

)
z

-4 34 3780
(
x3y − xy3

)
z

5 35 −945x5 + 9450x3y2 − 4725xy4

-5 36 −4725x4y + 9450x2y3 − 945 y5

6

0 37 − 5
16 x

6 − 15
16 x

4y2 − 15
16 x

2y4 − 5
16 y

6 + z6 − 15
2

(
x2 + y2

)
z4 + 45

8

(
x4 + 2x2y2 + y4

)
z2

1 38 −21xz5 + 105
2

(
x3 + xy2

)
z3 − 105

8

(
x5 + 2x3y2 + xy4

)
z

-1 39 −21 yz5 + 105
2

(
x2y + y3

)
z3 − 105

8

(
x4y + 2x2y3 + y5

)
z

2 40 105
8 x6 + 105

8 x4y2 − 105
8 x2y4 − 105

8 y6 + 210
(
x2 − y2

)
z4 − 210

(
x4 − y4

)
z2

-2 41 105
4 x5y + 105

2 x3y3 + 105
4 xy5 + 420xyz4 − 420

(
x3y + xy3

)
z2

3 41 −1260
(
x3 − 3xy2

)
z3 + 945

2

(
x5 − 2x3y2 − 3xy4

)
z

-3 42 −1260
(
3x2y − y3

)
z3 + 945

2

(
3x4y + 2x2y3 − y5

)
z

4 42 −945
2 x6 + 4725

2 x4y2 + 4725
2 x2y4 − 945

2 y6 + 4725
(
x4 − 6x2y2 + y4

)
z2

-4 44 −1890x5y + 1890xy5 + 18900
(
x3y − xy3

)
z2

5 45 −10395
(
x5 − 10x3y2 + 5xy4

)
z

-5 46 −10395
(
5x4y − 10x2y3 + y5

)
z

6 47 10395x6 − 155925x4y2 + 155925x2y4 − 10395 y6

-6 48 62370x5y − 207900x3y3 + 62370xy5
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A.2. Expansion Coefficients for Two Layer Trap

The table A.2 shows the coefficients Mj,DC and Mj,RF of the spherical harmonics expansion

of the DC- and RF- potential up to l = 4 or correspondingly j = 25. They were determined

by fitting the potential data of the corresponding electrode configurations to the expansion.

For better clarity the coefficients in the table are split into a number Mj / dp and it’s decimal

power dp. This provides an overview of the amount that each polynomial of the expansion

contributes to the trapping potential. When reading the table it should be recognised that

coefficients of order l are multiplied by a polynomial of order l, effectively increasing the

decimal power dp by l. However it is visible that for both the static and the dynamic

potential the higher order harmonics contribute less than the lower order harmonics. For

each order l the most dominant values are highlighted in red. While for the DC-potential

the quadratic polynomials of order l = 2 have a contribution of 10−7 · 102 = 10−5, the

polynomials of order l = 4 have only a contribution of 10−13 · 104 = 10−9. Similarly for the

RF-potential the quadratic polynomials of order l = 2 have a contribution of 10−7 · 102 =

10−5, the polynomials of order l = 4 have only a contribution of 10−14 · 104 = 10−10. This

observation justifies to cut off the expansion after l = 4.
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l j Mj,DC / dp dp

0 1 3.06 -02

2 2.3 -06

3 -1.14 -041

4 -1.14 -06

5 -9.57 -07

6 -1.17 -08

7 -1.96 -11

8 1.34 -07

2

9 -2.39 -09

10 8.35 -12

11 -1.91 -11

12 -1.37 -12

13 2.18 -12

14 -5.75 -14

15 -4.19 -12

3

16 -3.19 -13

17 1.61 -13

18 8.83 -15

19 8.42 -15

20 -8.72 -14

21 4.93 -15

22 -8.61 -16

23 1.38 -15

24 -4.58 -15

4

25 5.74 -16

l j Mj,RF / dp dp

0 1 8.07 -01

2 -3.72 -08

3 1.44 -071

4 3.42 -08

5 8.44 -10

6 -4.88 -10

7 5.26 -10

8 -2.64 -07

2

9 2.66 -10

10 -7.51 -12

11 -7.46 -13

12 2.43 -12

13 -1.55 -13

14 -2.33 -13

15 -1.4 -12

3

16 -2.75 -13

17 5.15 -14

18 -4.34 -15

19 -1.53 -14

20 -2.21 -15

21 -1.53 -15

22 -1.67 -16

23 -6.26 -16

24 6.15 -15

4

25 -2.51 -16

Table A.2.: Expansion coefficients Mj,DC and Mj,RF up to l = 4 found by fitting the numer-
ical DC- and RF-potential to the spherical harmonics expansion. The dominant
coefficients are marked in red.
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