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1 Motivation

The Loveparade 2010 in Duisburg with 21 dead and 541 injured demonstrated again

how difficult it is to control and predict the dynamics of a large number of pedestrians,

especially if panic appears and dominates the reactions of a crowd. One reason for

this tragedy were mistakes in the planning phase for this event and a combination of

events leading to the development of local panic. Especially in evacuation szenarios

one needs to know the routes of the pedestrians to avoid jams and potential injuries.

Many accidents where crowds of pedestrians were involved, happened because of

planning mistakes and not because of mass panic. An overview about recent crowd

accidents can be found in [1]. The physical pressure produced by bottlenecks in

the mass dynamics was often the reason for injuries. A crowd moving into one

direction may be hindered in motion due to an obstacle or a bottleneck so that a

jam is triggered. At the same time, the following pedestrians keep their velocity and

exert pressure on the pedestrians in the jam with smaller velocities. A local panic

behaviour appears like at the Loveparade 2010, where only near the ramp between

the access tubes to the event terrain panic was observed [2].

The exact knowledge of pedestrian behaviour plays an essential role in the planning

of large constructions or for events, where high densities of pedestrians are expected.

Experiments with many people are expensive and simulating experimentally stress

situations like crowd disasters is almost impossible. Therefore, analysis of former

crowd disasters is one way to try to avoid them in future. In addition, pedestrian

dynamics is simulated with computer models, accounting within such models for

empirical observations. One promising approach followed the last decades is the use

of cellular automata models, instead of simulating the dynamics of individuals in

so-called agent-based models.

At the beginning the basics of pedestrian dynamics will be presented and self-

organizing phenomena in crowds will be explained. Afterwards, an overview about

cellular automata and their application to pedestrian dynamics will be given. The

algorithms used in this thesis will be expalined and validated. The validated model
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1 Motivation

will be applied to different scenarios trying to discuss the influence and importance

of panic for crowd dynamics. Finally, the work will be summarized.
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2 Pedestrian dynamics

To simulate pedestrian dynamics it is necassary to charaterize the important parame-

ters and behaviours. Here, both individual as well as crowd behaviour are important

to know. This will be the topic of this chapter.

2.1 Basics of individual pedestrian dynamics

In general one must consider pedestrians as individuals with different targets. If

several pedestrians have the same target they may try to reach it following different

routes. Every pedestrian has an individual velocity, however this is strongly influ-

enced by interactions with others. These interactions can reduce this velocity or even

stop completely the movement, e.g. in jams. In the following, the major properties

of pedestrian dynamics will be shortly summarized.

2.1.1 Route choice

Individual pedestrians try to minimze their effort to reach their target [3]. Detours

or even movements against the prefered direction are avoided. If the target is not

reachable directly, the pedestrians choose a series of intermediate targets, for which

they aim straight for [3]. Therefore, the route of pedestrians can be approximated

by a polygon [4].

Although pedestrians tend to use existing routes, trails between existing routes

can be formed in addition as shortcuts, ”they represent a compromise between the

shortest possible distance and using already existing ways” [5]. An example is shown

in Fig. 2.1.
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2 Pedestrian dynamics

Figure 2.1: Formation of trails at the campus of the university of Stuttgart [5]

2.1.2 Velocity distribution

Analysing the statistical properties of pedestrian dynamics one can describe the

favourite velocity of individual pedestrians as Gaussian distributed [6]. The average

of the Gaussian distribution is 1, 34m
s

with a standard deviation of 0, 26m
s

. Addi-

tional dependencies exist also, like variations of this prefered speed with external

influences. An example for this is the reduction of the average velocity with higher

temperatures.

2.1.3 Space requirement

Pedestrians try to keep a safety distance to other pedestrians and to walls or obstacles.

As described in [4] one has to distinguish between the space request in rest and during

movement. The dynamic space request if a pedestrian is moving is significantly

bigger than the space requested in rest. A larger safety distance is needed for moving

pedestrians to be able to react to a sudden slow down of others intersecting the

pathway and because of the pendulum motion of legs and arms during the movements.

At small pedestrian densities pedestrians may move with their individual favourite

speed. With increasing density pedestrians experience stronger interactions with

others and their speed decreases. Observations showed that there is no movement

any more for densities larger than 5.4 P
m2 .

Looking at the horizontal projection of a pedestrian one gets a minimal space needed

per pedestrian of 0.15m2 [4], [5]. This results in a maximal pedestrian density of

6.6 P
m2 .
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2.2 Self organizing phenomena

2.2 Self organizing phenomena

Although pedestrians act on their own and independent, some interesting phenomena

can be observed in crowds. In [5] these phenomena are described. A simulation model

should reproduce as many of these effects as possible. Therefore, this work will use

some of them as test cases for the simulation model developed here.

2.2.1 Lane Formation

Moving within a certain spatial corridor as shown in Fig. 2.2, pedestrians in crowds

with different walking directions develop lanes. This is motivated by the fact, that

such newly formed lanes reduce the collisions between pedestrians and allow for a

higher flow.

Figure 2.2: Lane formation [4]

This effect gets even amplified if there are obstacles in the middle of the corridor.

These obstacles seperate even better the movement of the different groups from each

other. One example for this is the situation in undergrounds (Fig. 2.3).

If two flows of pedestrians cross the effect of striations can occur. Similar to the

effect of lane formation in a corridor such striations minimize the interactions between

pedestrians of different groups. In the case of striations this separation happens

temporarily, whereas in the case of lanes this is done spatially.

Above a certain critcial density the lane forming collapses and groups of pedestrians

with different targets get so close to each other that they are no longer able to move

at all. This is called ”freezing-by-heating”.
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2 Pedestrian dynamics

Figure 2.3: Lane stabilization by an obstacle [4]

2.2.2 Oscillations at doors

At bottlenecks an oscillating like in Fig. 2.4 change of the flow direction is observed.

Pedestrians waiting to get out of the door show an increasing impatience with time

and an increasing pressure from this group builds up. If the pressure on one side of

the door gets above a certain threshold this group will dominate the movement and

the flow direction switches until the reversed situation sets in.

Figure 2.4: Oscillations at bottlenecks [4]

The frequency of the direction changes decreases with increasing length [5], because

at longer bottlenecks the pedestrians have more diificulties to get an overview of the

situation and tend to be more patient. The pressure within bottlenecks is getting

larger and the pedestrians are blocked. This pressure is reduced with increasing size

of the bottleneck and the pedestrians can pass easier.
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3 Cellular Automata

In this section the concept of Cellular Automata and its possible application to

the problem of pedestrian dynamics is introduced. Cellular automata divide the

simulation domain into cells. These cells have to be regular, so that they form a

regular grid. Every cell has one certain state value from a finite set of possible states.

The probably best known example for a cellular automaton is the ”Game of life” by

John Conway. A rectangular grid is considered. A cell has just two possible states,

namely dead or alive. The change in the states are by the cells in the direct neigh-

borhood. The time development from generation t to generation t+ 1 is determined

by the following rules:

• A dead cell comes to life if it has exactly three living neighbors.

• Living cells with two or less living neighbors die because of solitude.

• Living cells with four or more living pedestrians die because of overpopulation.

The application fields of cellular automata are very wide spread, for example for

the simulation of sand and snow dunes [7].

In this work, a cellular automata approach is followed to describe the dynamics

of pedestrians. This is not strictly a classical cellular automata model, because the

population number per cell is limited to one pedestrian at maximum. This means,

that the movement of individual pedestrians is resolved in this approach and one gets

close to agent-based models, just with simpler movement rules.

All pedestrians with the same target are marked as one group. This leads to the

following states in a cell:

• cell is empty

• cell is an obstacle

• cell is occupied by a pedestrian of group 1
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3 Cellular Automata

• cell is occupied by a pedestrian of group 2

• ...

• cell is occupied by a pedestrian of group N

Pedestrians can move only to empty cells. The update of the state variables, which

represents the movement of the pedestrians, is done after each discrete timestep and

depends on the states of the neighboring cells and on a set of rules for the time

development t→ t+ 1.

In the following a detailed description for one cell of a cellular automaton is given

used to represent the dynamics of pedestrians following [4].

3.1 Grid structures

For practical purpose the grid has to be regular, what means that it is made only of

one sort of regular polygons . Three possible types of grids exist:

triangular grid rectangular grid hexagonal grid

To decide now which grid structure is most appropriate for the simulation one has

to look at the representation of pedestrians and walls or obstacles.

Pedestrians are often approximated by a circle which is nothing else than a polygon

with an infinite number of edges. Therefore, it is not surprising that a hexagon is

the best choice to represent pedestrians.

Also the arrangement of many pedestrians looks quite naturally within a hexagonal

grid as shown in Fig. 3.1
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3.2 Neighborhood

Figure 3.1: Distribution of pedestrians at high densities [4]

Walls or obstacles are again differently represented in these grids:

Figure 3.2: Depiction of walls with the different grid structures [4]

A rectangular grid is perfectly suited for walls, because most rooms are rectangular.

Hexagonal and triangular grids are not appropriate to represent straight walls, but

are more flexible for obstacles with complex shapes.

Both rectangular and hexagonal grids seem to be possible choices, wheras triangular

grids have no advantage.

3.2 Neighborhood

For the change of the cell states in cellular automata only information from neigh-

bouring cells are taken into account. In principle, any definition of neighborhood is

possible. The only restriction is that the same definition has to be used for all cells.

Mostly one of the two following neighborhoods is used:

• Von-Neumann neighborhood: Just the neighboring cells which share one side

with the basic cell are taken into account:
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3 Cellular Automata

Figure 3.3: Von Neumann neighborhood in the different grid types [4]

• Moore neighborhood: All cells sharing at least one corner with the basic cell

are considered as neighbors:

Figure 3.4: Moore neighborhood in the different grid types [4]

As one can see the neighborhood for the hexagonal grid is the same for both cases.

The problem of forbidden moves by using the Moore-Neighborhood is mentioned

in [4]. There may occur crossing moves using triangular and rectangular grids:

Figure 3.5: Forbidden moves by using the Moore neighborhood in triangular and
rectangular grids [4]

Because of the isentropy of hexgonal grids there the problem does not appear.

The triangular grid was never a good choice in all comparisons of grids. One can say

that this grid structure is not suitable for the simulation of pedestrian dynamics and

will no longer be discussed in this work. For a realistic representation of pedestrians

hexagonal grids fit best. Their disadvantages are that they are not able to represent
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straight walls as good as rectangular grids and that they are quite difficult to im-

plement. One alternative approach is the mapping to an rectangular grid [4]. The

rectangular grid is not as good for representing pedestrians as the hexagonal grid,

but it is very easy to implement. It was also already used succesfully before [8], [9].

Therefore, this thesis is also following this approach.

To complete the description of the cellular automata algorithm the update rules for

the cells are needed.

3.3 Update rules

The update rules ensure a time development from timestep t→ t+ 1. Generally, one

has to distinguish between parallel and sequential update rules.

By using parallel update rules the moves of all pedestrians are done simultaneously.

In that case there might arise conflicts if two or more pedestrians want to enter the

same target cell. Only the winner of the conflict is allowed to move, the others have

to stay in their cells. In contrast to that movements of pedestrians proceed one by

one by using sequential update rules. There are no conflicts, so a higher flow might be

generated. Strictly seen the sequential update is not representing a classical Cellular

Automaton, because all cells have to be treated equally.

Because conflicts are an important element of pedestrian dynamics only (stochastic)

parallel update rules are considered in this thesis, but nethertheless in the following

various implementation approaches for parallel and sequential update rules are pre-

sented as well. To give an overview a detailed description of the single update types

is given in [10].

3.3.1 Stochastic parallel update

In general this class of update rules includes all parallel update rules based on sta-

tistical processes. In this thesis the following concept is used:

First every pedestrian has to choose which cell he wants to enter. For every pedes-

trian a transition matrix T is calculated. According to the von Neumann neighbor-

hood a pedestrian is only allowed to move horizontally or vertically:

T =

 0 p10 0

p01 p11 p21

0 p12 0
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3 Cellular Automata

How the elements of the transition matrix are calculated is discussed in section 4.2.

The elements of T act as transition probabilities. Therefore, T must be normalized:

2∑
i=0

2∑
j=0

Tij = 1

p11 is the probability for a pedestrian to stay in a cell. Now a random number is

used to decide what is the prefered move. If two or more pedestrians want to enter

the same target cell a conflict appears. To resolve the conflicts for every target cell

a 3 x 3 collision matrix C is created to represent the direct neighborhood of the cell.

If a pedestrian decide to enter a free cell, then the transmission probability of the

pedestrian towards the free cell is saved as the element in the collision matrix of the

free cell corresponding to the current location of the pedestrian. The sum over all

elements of C can be unequal 1.

After all pedestrians determined which is their prefered move, the collision matrices

are filled with the transition probabilities of the pedestrians who want to enter a cell.

If two or more pedestrians want to enter the same cell a conflict arises. Based on

the values of the collision matrix a random number is generated that decides which

pedestrian wins the conflict and is allowed to execute his move. All other pedestrians

have to stay in their current cell.

3.3.2 Deterministic parallel update

In difference to stochastic parallel update rules there are no random numbers are

used in the update rules. This means, that the system is totally predictable for a

given starting configuration. A possible definition of that kind of rules might be:

For all pedestrians:

1. Create transition matrix & normalize T .

2. Go through T : T11 → T12 → ...→ T33.

3. The Tij with the highest value is the prefered move, if there are more than one

cell sharing the highest value the prefered move is that cell, where it appears

first.

4. Save Tij in the collision matrix C of the target cell.

For all collision matrices:
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3.3 Update rules

1. Get the highest value of C.

2. If there are more than one cell sharing the highest value the one where it

appears first wins.

3. Execute step.

3.3.3 Ordered sequential update

In case of ordered seuqntial update rules a fixed order is given, which after the

pedestrians move. Thereby the order has an influence on the development of the

system. One possible implementation of this rules might be:

1. Go through the floor field F : F11 → F12 → ...→ FRC with R : number of rows

and C : number of coloumns.

2. If Fij is occupied by a pedestrian:

• Create transition matrix & normalize T .

• Choose per random number what is the prefered move. The elements of

T act again as transition probabilities.

• Execute step.

3.3.4 Shuffled sequential update

By using shuffled sequential update rules the order after that the pedestrians move

is randomly choosen after every timestep. One can implement this as follows:

1. Save the coordinates of every pedestrian in a list

2. Do until the list is empty:

• Draw a random number q between 1..N assuming there a N elements in

the list.

• Create transition matrix & normalize T for the pedestrian at position q

in the list.

• Choose per random number what is the prefered move. The elements of

T act again as transition probabilities.

• Execute step.

• Remove element from list with position q.

15





4 Model

There are many approaches for describing crowd movements based on Cellular Au-

tomata. The model used here is based on [9]. In the following a rectangular grid and

the von Neumann neighborhood is used. For a validation of the model, an evacuation

situation with randomly distributed pedestrians that want to leave a room with only

one exit door is considered.

A key idea for the model is to introduce complex interactions in the form of potential

fields. The dominant drive for the movement of the pedestrians is the minimzation

of the distance to the goal. This is represented numerically in a static potential field

describing the metrics for the pedestrians and will be explained in detail in the next

section. Afterwards, the infuence of long range effects triggered, e.g. by panic, will

be included in the model using a dynamic potential field affecting the movement of

the pedestrians.

4.1 Static floor field S

First one defines a static potential field S to determine the pedestrian dynamics. For

that many definitions are possible. In this static field the influence of the ground,

obstacles and the attraction by doors are taken into account. First, an approach as

in [11] is used.

The value of the static field of the cell with coordinates (i, j) are given by the euclidic

distance to the nearest exit:

S̃ij = min
l

√
(xij − xEl

)2 + (yij − yEl
)2

xEl
and yEl

are the coordinates of the lth exit. In the next step the maximum value

of S̃ij is computed:

m := max
ij

S̃ij

17



4 Model

The resulting static floor field S is now given through:

Sij = m− S̃ij

So the ”field values increase with decreasing distance to an exit and is zero for the

cell farthest away from the door” [11].

There are no obstacles considered in this definition of the static floor field. Because

of that and because of the von Neumann neighborhood it is appropriate to use the

manhattan distance metric. The distance between a point ~p1 = (i, j) and the exit

~p2 = (xEl
, yEl

) is given by:

d = |xEl
− x1|+ |xEl

− y1|

The value of a cell is equal to the minimal number of steps needed to reach the exit.

By implementing the Manhattan distance metric one has to consider that obstacles

will enlarge the minimum number of needed steps, because one has to go around

them. The implementation can be done following [8]:

1. The exit doors are assigned the value 0.

2. Set a counter c = 0.

3. Do until all cells are evaluated:

• All vertical and horizontal adjacent cells of cells with value c if the adjacent

cell is still unevaluated.

• Increase the counter by 1.

After that the same procedure as before is done to insure that the field values

increase with decreasing distance to the exit.

18



4.2 Friction

4.2 Friction

First one has to calculate all T probabilities. For that, the static floor field is used:

Tij = N · nij · exp(kS · Sij)

With N as a normalization factor and kS as a parameter to adjust the influence of

the static floor field.

The pedestrians get a certain probability µ to stay in their cells in case of a conflict

even if they are permitted to move. Now the evacuation time as a function of the

parameter kS is considered for different friction parameters µ, for a grid size of 63 x 63

and one exit door with a width of 1 in the middle of one wall. As mentioned in [12] kS

acts as an effective velocity towards the exit. For small kS the pedestrians perform a

random walk. For big kS the transition probability towards the cell next to the door

is much bigger than the others, so the pedestrians accumulate infront of the door.

As a consequence more collisions appear and the flow of the pedestrians decreases

(”Faster-is-slower effect”). This corresponds to the results for high friction paramters

µ shown in Fig. 4.1.
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Figure 4.1: Evacuation time depending on kS for various friction parameters µ
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4.3 Dynamic floor field D

There is no interaction existing between the pedestrians except collisions and the

effect that a pedestrian cannot access an occupied cell. To include interactions be-

tween pedestrians beyond this short range one can use an approach like in [9] and

define a dynamic floor field D through which Pedestrians are affected by the traces

of other pedestrians.

D is defined as follows:

At the beginning of the simulation all values of D are 0. Every pedestrian move

affects the dynamic floor field D. If a pedestrian moves from cell (i, j) to another

cell, D of the original cell is increased by one:

Dij → Dij + 1

D is interpreted as a kind of ”bosonic field” [9] and underlies effects of decay and

diffusion. It decays with a probability δ and diffuses with a probability α to one

of its neighbored cells. Further one can define a coupling constant kD to adjust the

influence of the dynamic floor field. Because the pedestrians also would be influenced

by their own trace, the Boson created in the last step will be corrected such that this

self-effect is taken out. Therefore, every pedestrian has its own individual dynamic

floor field D [13].

In the here developed program the update of the dynamic field is done at the

beginning of each timestep. The particle created in the last step already might has

decayed or diffused. For small decay constants δ the trace of a pedestrian lasts longer.

This makes it neccassary to correct out more particles than only the ones created in

the last step.

The transition matrix is given through:

Tij = N · nij · exp(kS · Sij + kD ·Dij)

To validate the code with cases from literature [9] one can test how the evacuation

time changes for different kD and α with δ = 0.3 fixed.

Results are shown in Fig. 4.2 for a grid size of 63 x 63 and for only one exit door

with a width of 1 in the middle of one wall.

The curve agrees qualitatively with [9]. Remaining differences originate probably

from differences in the implementation of the update rules from the dynamic field,

which are not well documented in the reference publication.
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Figure 4.2: Evacuation time depending on kD for various diffusion parameters α

4.4 Additional changes

4.4.1 Modification of kS

As seen in [6] the velocity of the pedestrians is Gaussian distributed. With kS as a

kind of effective velocity towards the exit one can assume that every pedestrian has

his own kS. In the following kS is chosen to be equally distributed in the interval

[kS0 − σ, kS0 + σ] with an additional parameter σ to adjust the spread of kS. Now

one can compare the evacuation time for different σ by kS = 1.0, kD = 0.0, all other

parameters are as before.

The pedestrians with kS = kS0 − σ determine the evacuation time. Because of the

small effective velocity towards the exit they tend to perform a random walk, which

enlarges the evacuation time as one can see in Fig. 4.3.

Of course this is not a real multispeed model, because the pedestrians are allowed to

make only only one step per timestep. An possible implementation of a multi-speed

model is described in [10].
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4.4.2 Modification of the dynamic field coupling

Following [14] the coupling factor of the dynamic floor field can be interpreted as an

indicator for the extent of the herding behaviour of pedestrians. In panic situations

the influence of the dynamic floor field will dominate over the influence of the static

field. As seen in [2] ”panic” tends to occur in regions of jamming. Instead of a fixed

static coupling the influence of the dynamic field will be different for every pedestrian.

Pedestrians far away from a region of jamming will be less influenced by the dynamic

floor field. kD will act as a basic coupling parameter supplemented by an additional

factor ci. One can choose a similar approach as for the dynamic floor field:

1. Initially ci is 0 for every single pedestrian.

2. Every collision increases ci by one.

3. If a pedestrian is longer not involved in collisions, ci shall decrease because of

decay.

4. A pedestrian is in panic, if ci is larger than a certain value P .

5. If a pedestrian is in panic he increases the ci of pedestrians in the neighborhood

by 1 at every iteration.
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4.4 Additional changes

The transition matrix is now given as:

Tij = N · nij · exp(kS · Sij + (kD + ci) ·Dij)

Now one can investigate the influence of ci on the evacuation time for densities %

with P = 5, kS = 0.4, µ = 0.0 fixed:

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
v
a

c
u
a

ti
o
n

 t
im

e

ρ

with panic
without panic

Figure 4.4: Evacuation time depending on the pedestrian density %

As one can see in Fig. 4.4 the evacuation times are equal for low densities. With

increasing density the amount of panic increases. As a consequence the evacuation

time compared with the case without panic increases.

4.4.3 Modification of the static floor field S

In evacuation situations humans tend to use the door through which they entered a

room [2]. This must be considered in the static floor field. For every pedestrian it is

randomly chosen through which door one enters the room.

Therefore, a static field Si for every exit is created. The resulting static floor field

S is given by:

S =
∑

ai · Si
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4 Model

Note that every pedestrian may have his own set {ai}, so every pedestrian is influ-

enced by a different S.

The ai are parameters to adjust the influence of the exits on the pedestrians.

Now one can investigate how the evacuation time changes for different densities ρ

and for two cases:

1. The pedestrians aim only for the nearest exit. In that case all ai are 0 except

the one belonging to the nearest exit, so after every timestep the nearest exit

must be computed for every pedestrian.

2. The pedestrians aim for the exit through which they entered the room. One

can assume that the exits are equally distributed between the pedestrians.

Usually, the majority of the pedestrians chooses the main entrance. One can assume

that 50% of the pedestrians shall take one entrance and the others are equally dis-

tributed on the remaining entrances. This yields for a grid size of 63 x 63, kS = 0.4,

µ = 0.4, kD = 0.0 and an exit in the middle of each wall:
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Figure 4.5: Evacuation time depending on the density

As one can see in Fig. 4.5 the evacuation time increases in the case that the majority

of the pedestrians wants to leave the room through the main entrance. This must be

considered in the evacuation plannings of buildings.
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5 Applications

In chapter 4 the model for simulating pedestrian dynamics was described. In this

part results of the model for typical applications are presented.

5.1 Obstacle in front of an exit

In the following the influence of an obstacle in front of an exit will be investigated.

Naively one would expect, that obstacles increase the evacuation time, because pedes-

trians have to walk around them. As mentioned in [13], the obstacle acts like a

”breakwater”. As a consequence less conflicts occure and the pedestrian flow is

higher than for a configuration without an obstacle. To consider the obstacles in the

static field the manhattan distance metric, as in section 4.1 introduced, is used.

Different forms and locations of obstacles in front of the exit are studied:

a) A 3x3 obstacle in front of the

exit

b) A 3x3 obstacle in front of the

exit shifted by one cell
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5 Applications

c) Obstacle formed like an

arrowhead

d) Obstacle to imitate a round

pillar

For the different obstacles the evacuation time as a function of the friction parameter

µ is shown in Fig. 5.1. The results are presented for kS = 5.0, 1000 pedestrians,

a grid size of 46 x 46 and kD = 0.0. In case of kD = 0.0 the simulation represents

an ordered evacuation. The influence of the obstacles is only visible for high friction

parameters µ.
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Figure 5.1: Evacuation time depending on µ for various forms of obstacles
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5.1 Obstacle in front of an exit

The effect on the evacuation time by a pillar of 3 x 3 cells positioned one cell shifted

away from the exit is stronger than for a pillar direct in front of the exit. Because of

the shifting an asymmetry in the flow of the pedestrians around the obstacle occurs,

so that more pedestrians take one side of the obstacle. In that case the number

of collisions in front of the exit is stronger decreased than for a symmetric flow of

pedestrians. Therefore, less friction in front of the exit occurs and the evacuation

time decreases. Other obstacle forms with more complex geometries, e.g. with

serrated forms of obstacles, can also be tested. In contrast to the simple expectation

that a kind of funnel effect occurs reducing the evacuation time almost the same

evacuation time is observed in the simulations. One can conclude that the parts of

the arrowheaded obstacle has no influence.

In real evacuation situation panic may occur. Therefore, also the influence of the

dynamic field has to be considered. Panic, or a stronger herding behaviour of the

pedestrians, may be simulated by using high coupling parameters kD of the dynamic

field D to mimic panic. As one can see in Fig. 5.1 the differences in the evacuation

times only occur in case of high friction parameters µ. Therefore, it is reasonable

to investigate the dependence of the evacuation times on kD for a large friction

parameter µ = 0.8. This is shown in Fig. 5.2. Also one can choose a high value of kD

and repeat the simulation shown in 5.1. The results for that case are shown in 5.3.

One can see that also in panic situations the obstacles have a positive influence on the

evacuation time. But in contrast to the ordered evacuation the form of the obstacles

do not matter. By large kD the attraction between the pedestrians is very strong.

One can say the pedestrians ”stick” together. This can be compared to a large

viscosity, whereby the pedestrians just slowly get around the obstacle. Therefore,

the detailed geometry of the obstacle has no influence anymore, but the existence of

an obstacle regulating the outflow is always beneficial.
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Figure 5.2: Evacuation time as a function of kD for various forms of obstacles for
µ = 0.8
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Figure 5.3: Evacuation time as a function of µ for various forms of obstacles and for
kD = 8.0
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5.2 Long corridor

5.2 Long corridor

To test the lane formation a long corridor with two groups of pedestrians is consid-

ered. The groups of pedestrians move through the corridor in opposite directions.

Initially, the pedestrians are distributed randomly as shown in Fig. 5.4. Pedestrians

in blue move to the right while pedestrians in red move to the left.

Figure 5.4: Initial distribution of the pedestrians

Because the groups move in opposite directions there is one static field for each

group needed. The static fields are S1 = x for pedestrians moving to the right and

S2 = xmax − x for the other group.

Pedestrians following other pedestrians of their group are involved in less collisions

than pedestrians facing pedestrians moving in the opposite direction. Furthermore,

pedestrians act attractive on pedestrians of their own group while they act repulsive

on pedestrians of the other group.

The transition probabilities for group 1 are given by:

pij = N1 · exp(kS · S1[i][j]) · exp(kD · (D1[i][j]−D2[i][j]))

Analogous the transition probabilities for group 2 are:

pij = N2 · exp(kS · S2[i][j]) · exp(kD · (D2[i][j]−D1[i][j]))
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To simulate a long corridor periodic boundary conditions for the entrance/exit of

the corridor are used. If a pedestrian reaches the end of the corridor it re-appears on

the opposite side of the corridor and is considered in the collision treatment.

Now one can investigate how the system behave for kS = 5.0 and kD = 15.0. In

Fig. 5.5 one can see the formation of lanes, but the separation is rather incomplete.

Figure 5.5: Lane formation

The simulation is repeated with a line of obstacles in the middle with enough space

in between that. pedestrians are able to change the lanes.

Figure 5.6: Lane stabilisation

As can be seen in Fig. 5.6 the effect of lane formation is amplified with a much

better separation. This corresponds to the self organizing phenomena discussed in

section 2.2.1.
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6 Conclusion and outlook

Within this thesis a model for the simulation of pedestrian dynamics based on cel-

lular automata with parallel update rules was implemented. The influence of the

spatial structure on the pedestrians was taken into account by a static field S. A

dynamic field D allows to introduce pedestrian interactions acting on longer ranges,

particularly important to represent panic. Using a friction parameter µ to study

effects of jamming the ”faster is slower” effect could be observed. By increasing the

relative strength of the dynamic field the herding behaviour of pedestrians gets more

pronounced as observed in panic situations.

The influence of obstacles in front of an exit in evacuation szenarios was investigated.

The results correspond to other works [15]. Phenomena like lane formation and lane

stabilisation by obstacles could be reproduced successfully.

The model is still incomplete, because some other effects, like oscillations at bottle-

necks, can not be reproduced. This needs a full agent-based approach resolving in

more detail the movement of individual pedestrians and their interaction. Another

example of a short-coming of the existing approach is the fact pedestrians only ex-

ecute one move per timestep at maximum. Again, an agent-based model would not

suffer from this problem. Approaches to extend a cellular automata model to a multi

speed model are given in [10].

The biggest challenge for all models of pedestrian dynamics is the correct treatment

of panic which requires knowledge of human sociology, human psychologically and

quantative descriptions of forces on pedestrians in crowds. This complexity defines

this area of research as a typical example where further progress will only be possible

with an interdisciplinary approach.
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