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1. Introduction

The Direct Simulation Monte Carlo (DSMC) method is used to simulate neutral particle dy-
namics in �uids of low density, where continuous models fail [1, pp. 203�] [2] [3]. It is a kinetic
method to approximate the collective behaviour of particle dynamics. For this, a large number of
particles of one species is combined into one pseudo-particle. This number is called weight of the
pseudo-particle. The trajectories of pseudo-particles are determined by their equation of motion.
For particles in electric or magnetic �elds these trajectories of pseudo-particles are identical to
the trajectories of the individual particles, because only the charge-to-mass ratio contributes to
the acceleration due to the Lorentz force. Neutral particles with zero charge are included here,
too. The interactions between particles on small length scales are simulated through a model of
binary collisions using random numbers. The model is valid for �uids of low density.

There are many physical systems that can be simulated with DSMC containing more than one
particle species. Many of these systems might contain a trace species which signi�cantly a�ects
the behaviour of the whole system e.g. a slightly ionized plasma or a reactive gas mixture.
For simulating such systems it is essential to carry a statistically meaningful number of pseudo-
particles of the trace species. For conventional DSMC methods the weight of all pseudo-particles
is identical, as the binary collision model only yields correct results for equal pseudo-particle
weights. For a correct statistical representation in a system with trace species, identical weights
means low weights for all pseudo-particles. But low weights for all pseudo-particles lead to a
large number of non-trace pseudo-particles that results in signi�cant computational e�ort with-
out contributing appreciable information. In other words, the trace species' weight needs to be
lower than that of the majority species for an acceptable computational e�ort.

Hence, conventional DSMC needs to be improved to variable pseudo-particle weights as initiated
by G. A. Bird [1, pp. 215f] and carried on by I. D. Boyd [2]. The purpose of this bachelor
thesis is to evaluate di�erent methods that extend DSMC to variable pseudo-particle weights.
The consequences for distribution functions and energy or linear momentum conservation are
discussed for the di�erent approaches.

After introducing the physical principles for DSMC, the algorithmic details of DSMC are dis-
cussed and existing concepts for non-linear weighting schemes are introduced. These concepts
are extended in chapter four by own ideas. In chapter �ve the numerical results of some physical
test cases using the previously discussed methods for non-linear DSMC are evaluated. It follows
a short conclusion and a prospect of further developments in chapter six.
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2. Physical principles

To understand DSMC it is necessary to become familiar with some basics about distribution
functions and with the binary collision model. A standard method to model interactions between
neutrals, the hard sphere model, will be explained.

2.1. Distribution functions

In classical physics a many-particle system can be described by its distribution function %(qk, pk, t),
where qk and pk are the generalized coordinates and momenta with k ∈ {1, . . . , 3N} where 3N
is the number of degrees of freedom [4]. The expectation value of a physical quantity A, like a
particle's velocity or energy, is given by the integral

〈A〉 =

∫
% ·A · d3Nq d3Np . (2.1)

For a �nite number N of particles with position ~rk and linear momentum ~pk the integral form
of the expectation value becomes a discrete sum over a discrete distribution function %d, so

〈A〉 =

N∑
k=1

A · %d (~rk, ~pk) . (2.2)

2.1.1. Maxwell-Boltzmann distribution

According to Boltzmann's H-theorem for ideal �uids in thermodynamic equilibrium the distri-
bution function turns through collision processes into a normal distribution in velocity, which is
called Maxwell-Boltzmann distribution:

%(vx, vy, vz) =

(
m

2πkBT

)3/2

· exp

(
−
m(v2x + v2y + v2z)

2kBT

)
(2.3)

with the Boltzmann constant kB and the absolute temperature T . A detailed derivation can be
found in [1, pp. 61�]. Using polar coordinates in velocity space it also can be written as a distri-

bution function of the absolute value v =
√
v2x + v2y + v2z of velocity. Taking the Jacobian deter-

minant into account integrating over the azimuthal and meridian angles the Maxwell-Boltzmann
distribution becomes

%(v) = 4π ·
(

m

2πkBT

)3/2

· v2 · exp

(
− mv2

2kBT

)
. (2.4)

2.1.2. Important velocities in a Maxwell-Boltzmann distributed gas

According to the principle of (2.1) the �rst and second moment of v can be calculated. The
expectation value of v is

〈v〉 =

∞∫
0

v · %(v) dv =

√
8kBT

πm
. (2.5)
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2. Physical principles

The second moment is calculated as the expectation value of v2

〈v2〉 =

∞∫
0

v2 · %(v) dv =
3kBT

m
. (2.6)

Analogously, the expectation value of the relative velocity between two particles subscripted with
1 and 2 can be calculated as

〈vr〉 =

〈√
(vx,1 − vx,2)

2
+ (vy,1 − vy,2)

2
+ (vz,1 − vz,2)

2

〉
(2.7)

=

∫
vr(vi,1, vi,2) · %(vi,1) · %(vi,2) d3vi,1d3vi,2 =

√
2 · 〈v〉 . (2.8)

2.2. Model of binary collision

For a statistically correct simulation of interaction processes between gas particles using random
numbers, it is necessary to know the reaction probability for the particular interaction process and
the mean collision number, respectively. If the density of the gas is low enough, it can be assumed
that a particle never interacts with more than one other particle so that only binary collisions
take place [3] [4]. Hence, this approach is called model of binary collision. The big advantage of
the model is that a binary collision process can be described completely with analytic methods.

2.2.1. Elastic binary collision

Elastic scattering is characterized by conservation of energy and of course by conservation of
linear momentum. Two-particle interactions are described in the center-of-mass frame such that
the velocities ~v1 and ~v2 of particles with masses m1 and m2 transform to relative velocity ~vr and
center-of-mass velocity ~V as [5, pp. 17-22]

~vr = ~v1 − ~v2 and ~V =
m1~v1 +m2~v2
m1 +m2

. (2.9)

Conservation of linear momentum thus becomes equivalent to ~̇V = 0. Conservation of energy on
the other hand can be written as

Ė =
m1 ·m2

m1 +m2
· ~vr · ~̇vr = 0 . (2.10)

So any elastic binary collision is described by a rotation of the relative velocity ~vr. Therefore,
the velocities after the collision can be written as

~v ′1 = ~V ′ +
m2

M
~v ′r = ~V +

m2

M
Â · ~vr = ~v1 +

m2

M
·
(
Â− 1̂

)
~vr = ~v1 +

m2

M
·∆~vr (2.11)

~v ′2 = ~V ′ − m1

M
~v ′r = ~V − m1

M
Â · ~vr = ~v2 −

m1

M
·
(
Â− 1̂

)
~vr = ~v2 −

m1

M
·∆~vr , (2.12)

where the prime ′ indicates post-collision properties, M = m1 +m2, Â is a rotation matrix with
det Â = 1 and 1̂ is the identity matrix. The generalization to inelastic collisions is performed
by maintaining momentum conservation and demanding Ė < 0 such that ~vr is rotated and de-
creased in absolute value.
For writing Â as a function of azimuthal angle ϕ and scattering angle θ consider the transfor-
mation of ~vr into relative velocity coordinate frame (see Figure 2.1) by

~̃vr = vr · ~ez = R̂(ψ, ξ) · ~vr , (2.13)
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2.2. Model of binary collision

where R̂(ψ, ξ) is given by

R̂(ψ, ξ) =

cos ξ cosψ cos ξ sinψ − sin ξ
− sinψ cosψ 0

sin ξ cosψ sin ξ sinψ cos ξ

 (2.14)

with

cos ξ =
(~vr)z
vr

and tanψ =
(~vr)y
(~vr)x

. (2.15)

Figure 2.1.: Transformation of ~vr into the relative velocity coordinate frame.

In this frame (denoted by the wave ˜ ) rotation of relative velocity by azimuthal angle ϕ and
scattering angle θ arises (see Figure 2.2) as

~̃vr
′

= R̂T (ϕ, θ)~̃vr =
˜̂
A~̃vr , (2.16)

where R̂T is the transpose of R̂ and the inverse respectively, such that Â simply becomes

Â = R̂T (ψ, ξ) · R̂T (ϕ, θ) · R̂(ψ, ξ) . (2.17)

Figure 2.2.: Rotation of ~̃vr by scattering angle θ and azimuthal angle ϕ in relative velocity coor-
dinate frame. The rotation is the same as in Figure 2.1 but with opposite directions.
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2. Physical principles

2.2.2. Reaction probability, cross section

To derive the reaction probability one considers a gas with particle number N occupying a �xed
volume V such that the particle number density is n = N ·V −1 [1, pp. 7f]. In the model of binary
collsion, it is reasonable to assume that a reaction between two particles with relative velocity
vr takes place if, and only if, during the time interval ∆t both particles are located in the same
volume element σ · vr ·∆t with base area σ (see �gure 2.3). This depends on the relative velocity
vr. The reaction probability PR between the two particles then can be written as the ratio of
the volumes

PR(vr) =
σ(vr) · vr ·∆t

V
. (2.18)

The base area σ of the volume element is de�ned as cross section.

Figure 2.3.: Rest frame of both the green and the red particle, which have the same relative
velocity vr to the blue particle. But only the green particle is located in the volume
σ ·vr ·∆t around the blue particle and thus the green and the blue will collide during
∆t while the red and the blue will not.

2.2.3. Di�erential cross section

In many cases the di�erential cross section is of further interest delivering probabilities for scat-
tering into a spatial direction. It is de�ned as [1, p. 34]

dσ

dΩ
dΩ = bdbdϕ . (2.19)

Here, b is the distance of closest approach, also called impact parameter, dΩ the solid angle
element in which a particle is scattered and dϕ the azimuthal angle element of the location of
the incident particle. After substituting dΩ = sin (θ) dθ dϕ, (2.19) becomes

dσ

dΩ
=

b

sin (θ)

∣∣∣∣dbdθ

∣∣∣∣ . (2.20)

2.2.4. Mean collision numbers

Any gas particle could react with any other particle in the volume. The total collision probability,
which is also the expectation value of the total number of collisions 〈Nc〉, is the sum of all
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2.3. Application to the model of colliding hard spheres

individual collision probabilities [1, pp. 7f, 219f]. Hence the mean number of collisions 〈Nc〉s for
one single particle using N − 1 ' N is

〈Nc〉s =

N∑
k=2

PR(vr(1, k)) =

(
N∑
k=2

1

)
∆t

V
· 〈σvr〉s =

N − 1

V
∆t · 〈σvr〉s ' n∆t · 〈σvr〉s (2.21)

and altogether the mean number of collisions is

〈Nc〉 =

N−1∑
i=1

N∑
k=i+1

P i,kR =

(
N−1∑
i=1

N∑
k=i+1

1

)
〈PR〉 =

N(N − 1)

2V
∆t · 〈σvr〉 '

Nn

2
∆t · 〈σvr〉 . (2.22)

Here, 〈σvr〉 is the average of all products σ(i,k)v
(i,k)
r of particles i and k. If there are not just

one but two types of gas components, the upper limits in (2.22) have to be replaced by the total
number of particles in the volume of both types N1, N2 and the second summation has to start
with k = 1. Besides the supplement 1↔2 will be introduced to indicate the number of collisions
between species 1 and 2. Analogously to the calculation above

〈Nc〉s 1↔2 = n2∆t · 〈σvr〉s 1↔2 . (2.23)

is the number of collisions for one single particle of species 1 with the particles of species 2 and

〈Nc〉1↔2 = N1n2∆t · 〈σvr〉1↔2 . (2.24)

is the number of collisions between all particles of species 1 with species 2, respectively.

2.2.5. Mean collision time, mean free path

Knowing the mean collision number in the time interval ∆t for one single particle of species 1,
a collision frequency can be de�ned by division of 〈Nc〉s + 〈Nc〉s 1↔2 + ...+ 〈Nc〉s 1↔M given by
(2.21) and (2.23) through ∆t [1, pp. 7f]. Taking the reciprocal value instead de�nes the mean
collision time τ a particle of species 1 moves without collision:

τ =
∆t∑
〈Nc〉s

' 1

n · 〈〈σvr〉s〉
. (2.25)

Multiplying the mean velocity 〈v〉 in (2.5) by the mean collision time τ yields the mean free path

λmfp. As the name implies, λmfp is the distance a particle of species 1 covers on average without
a collision. For a gas containing only one species it is calculated as

λmfp = 〈v〉 · τ =
1

n
· 〈v〉
〈〈σvr〉s〉

. (2.26)

2.3. Application to the model of colliding hard spheres

One model for collisions that is often used to describe the interactions of neutrals is the hard
sphere model. Here, two particles are considered as hard spheres that collide elastically like
billard balls. There is no interaction unless both spheres contact each other at their surfaces. As
the Lennard-Jones potential that causes repulsion between neutrals scales like r−12 with distance
r the hard-sphere model yields good results for many types of neutrals [4].

2.3.1. Derivation of the cross section

The angle of re�ection has the same absolute value as the angle of incidence θ/2 (see Figure 2.4).
The impact parameter b then depends on the mean d12 of the diameters of both spheres and on
the scattering angle θ like [1, p. 39]

b = d12 · sin
(
θ

2

)
. (2.27)
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2. Physical principles

Figure 2.4.: Schematic representation of two colliding hard spheres.

With (2.20) and one trigonometric addition theorem it follows that the di�erential cross section
is constant

dσ

dΩ
=
d212
4

. (2.28)

Thus, the total cross section becomes

σ =

∫
dσ

dΩ
dΩ = 4π · dσ

dΩ
= π · d212 . (2.29)

2.3.2. Mean free path, mean collision time, limitations of DSMC

Due to the independence of the cross section from relative velocity, the mean free path and the
mean collision time can be calculated for a Maxwell-distributed hard-sphere gas exploiting (2.5),
(2.7), (2.26), (2.25) and (2.29):

λmfp =
1√

2nπd212
and τ =

1

4nd212

√
m

πkBT
. (2.30)

>From this, the limitations of validity for the binary collision model get clearer. The model is
only valid if the mean free path and the mean molecular spacing n−1/3 are much greater than the
mean molecular diameter λmfp � d12, n

−1/3 � d12. DSMC can be used safely if λmfp/d12 ≥ 10
[3, p. 405].
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3. Basics of Direct Simulation

Monte Carlo

As already mentioned in the beginning, DSMC is a simulation method that uses pseudo-particles
that represent a certain number of real particles. This number is called weight. In this chapter
DSMC is expounded quantitatively for equal pseudo-particle weights W . Later, some existing
concepts for di�erently weighted particles are introduced.
The interactions between the pseudo-particles at DSMC are implemented using the binary col-
lision model and its analytic description introduced in chapter 2.2. For this, the simulation area
is divided into cells, where each cell is treated as an independent interaction volume within one
time interval ∆t of the simulation [1, pp. 218�] [2] [3, pp. 409�]. One divides the simulated
pseudo-particles of each cell into pairs and let them perform a binary collision according to 2.2.1.
Afterwards, each pseudo-particle at location ~r with velocity ~v can be pushed to a new location
~r ′ = ~r + ~v∆t.
The number of reactions in (2.21) during the time interval ∆t de�nes the number of pairs which
have to be considered for collisions in one simulation time step. The local particle number N
has to be replaced by the number of pseudo-particles N/W of each cell and the mean num-
ber of collisions 〈Nc〉 has to be replaced by the cell-speci�c number of pairs of pseudo-particles
Np ≥ 〈Nc〉/W . The overline indicates, that this number is a number of pseudo-particles, not
of real ones. The particle number density n can be claculated by dividing the local number of
real particles N through the volume V of the cell.
It is important to note that one simulation time step needs to be of order of the mean collision
time and that one cell width needs to be of order of the mean free path. Otherwise, it is not
guaranteed that the simulated physics is correct.
As already mentioned above, the cross section is in general a function of relative velocity or,
alternatively, of energy. Therefore, it is necessary to replace the average 〈σvr〉 in (2.21) by the
maximum value. The number of pairs that are considered for a collision is then obtained as

Np =
Nn

2W
·∆t · (σvr)max . (3.1)

Not every selected pair is allowed to perform a collision. The reaction probability Pr for each
selected pair is given by

Pr =
σ(vr) · vr
(σvr)max

(3.2)

with relative velocity vr. This is then used to decide if a collision is accepted or not. This
probabilistic approach means that the number of simulated collisions is not deterministic equal
to the average number of collisions in (2.21), but creates a distribution very similar to the real
process. The simulation algorithm compares a random number with the collision probability
and accepts the collision if the random number is smaller than the probability. The velocity
dependent cross section values can be taken from experimental measurements [7].
Care must be taken by calculating the fraction of the number of collisions that cause a scattering
with scattering angle within the interval [θ, θ + dθ]. Di�erentiating (3.1) with respect to θ and
dividing the quotient through the initial equation (indicated by index 0) provides

1

Np,0

dNp

dθ
=

1

N0

dN

db

db

dθ
. (3.3)
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3. Basics of Direct Simulation Monte Carlo

As one can see the number of reactions within the interval [θ, θ+ dθ] is not necessarily constant
although the di�erential cross section for hard spheres is. It rather depends on the number of
incident particles with impact parameter in the interval [b, b+ db]. If the assumption is that the
incident particles are uniformly distributed in the plane perpendicular to the incident direction
of motion, their distribution function in b becomes for hard spheres

1

N0

dN

db
=

2b

d212
. (3.4)

Using (2.27) and (3.4) integrating (3.3) yields the probabilty of scattering angle θ within the
interval [0, θmax] as [5, pp. 27f]

Pθ(0 ≤ θ < θmax) =
∆Nc(θmax)

Nc,0
=

1

2
· (1− cos (θmax)) . (3.5)

The assumption of uniformly distributed incident particles also creates an uniform distribution
in azimuthal angle ϕ

Pϕ(0 ≤ ϕ < ϕmax) =
∆Nc(ϕmax)

Nc,0
=
ϕmax

2π
. (3.6)

The algorithm for calculating the particle interactions during each simulation time step in each
cell for conventional DSMC can now be summarized.

1. Calculate the number of pairs to be considered for collision by (3.1).

2. For each pair choose randomly two particles of the cell.

3. Use a random number to check if the selected pair will collide according to (3.2).

4. Randomly choose the impact angles θ and ϕ according to (3.5) and (3.6).

5. Calculate the rotation matrix Â by (2.17).

6. Calculate the post-collision velocities according to (2.11) and (2.12).

3.1. Existing concepts for non-linear weighting schemes

How the DSMC algorithm has to be modi�ed when variable pseudo-particle weights are intro-
duced to save valuable computation resources will be discussed in the following. As the number
of pairs considered for collisions is proportional to the number of pseudo-particles N/W , where
W is the constant pseudo-particle weight, it can be seen that this number is the �rst quantity
that has to be modi�ed, since W is varied. For this, consider the pseudo-particles with least
weight Wmin. If all particles have this weight the number of pairs will maximally become

Np =
Nn

2Wmin
·∆t · (σvr)max . (3.7)

Analogously to the introduction of (σvr)max there are now too many pseudo-particles selected
for collision. This can be corrected by reducing the reaction-probability. But before this can be
done an approach for treating the collision process between two di�erently weighted particles is
needed. For a selected pair of pseudo-particles with weights W1 and W2 the minimum of W1 and
W2 represents the number of real collisions. Thus, the collision probability has to be modi�ed to

Pr =
σ(vr) · vr
(σvr)max

· Wmin

min{W1,W2}
. (3.8)
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3.1. Existing concepts for non-linear weighting schemes

The correctness of this assumption can be proven by calculating the mean number of collisions

〈Nc〉 = 〈Np ·min{W1,W2} · Pr〉

=
Nn

2
·∆t · 〈σvr〉, (3.9)

which agrees with (2.22). If there are only pseudo-particles with either weight W1 or W2 the
number of pairs can be divided into a number of pairs between pseudo-particles of equal weight
W1, of equal weight W2 and of mixed weight W1 and W2

N
1↔1

p =
N1n1
2W1

·∆t · (σvr)max (3.10)

N
1↔2

p =
N1n2

min{W1,W2}
·∆t · (σvr)max (3.11)

N
2↔2

p =
N2n2
2W2

·∆t · (σvr)max . (3.12)

Their reaction probabilities then change to

P i↔jr =
σ(vr) · vr
(σvr)max

(3.13)

for any i, j ∈ {1, 2}. The advantage is that the number of pairs N2↔2

p can be reduced ifW2 > W1

as 1/W2 < 1/min{W1,W2}. But the treatment of the collision process itself can not be done
super�cially as the following discussion will show.

3.1.1. Non-conservative weighting scheme by Bird

One possibility to deal with di�erent particle weights was introduced by G. A. Bird [1, pp.
213f] [2]. It uses the ratio of two di�erent pseudo-particle weights as probabilities to change the
properties (momentum and energy) of the higher weighted particle. A big disadvantage of this
method is that energy and momentum are not conserved explicitly for any collision but only
over a large amount of collisions. As the usage of the non-conservative weighting scheme by
Bird is not suggested even by Bird himself the focus now is on conservative weighting schemes
or variations of them.

3.1.2. Conservative weighting scheme by Boyd

Another method was introduced by I. D. Boyd [2], where linear momentum is conserved exactly

at each collision by splitting a higher weighted particle with weight W̃1 into two particles. One
of those has the weight of the less weighted collision partner W̃2. The equally weighted particles
may then collide according to the conventional concept (see �gure 3.1). As the purpose of heigher
weights is a reduction of calculation time, it is necessary to merge the split particles after the
collision process again, because otherwise the number of pseudo-particles and with that the
computation time would increase with growing runtime. If the weights of the initial particles are
not equal (W̃1 > W̃2), there is a loss of energy ∆E in the merging process after the collision. It
can be calculated by

∆E = W̃2

(
1− W̃2

W̃1

)
· m1

2
(~v1 − ~v ′1)

2
, (3.14)

where m1 is the mass of one particle of species 1, ~v1 is the initial velocity of particle 1 and ~v ′1
is the post-collision velocity of the split o� part of particle 1. The idea is that the lost energy
∆E is added to the relative velocity of two subsequently colliding particles with equal weight, so
that both linear momentum and energy are conserved (see section 4.2.3).
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3. Basics of Direct Simulation Monte Carlo

Figure 3.1.: The blue and the green pseudo-particle are selected for collision (1.). Therefore
the green pseudo-particle is split into two (2.). Then, the collision for the equally
weighted pseudo-particles is performed (3.). Finally, the green pseudo-particles are
merged again to one (4.). In all images the radius corresponds with the pseudo-
particle's weight.
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4. Concepts for non-linear weighting

schemes

4.1. Direct conservation of both energy and momentum

As another possibility to deal with di�erently weighted particles one can collide them directly
according to (2.10) to (2.12), where the weights of the particles have to be introduced as a scaling
factor of the masses, such that

Ė = 0 =
W1m1 ·W2m2

W1m1 +W2m2
· ~vr · ~̇vr . (4.1)

The post-collision velocities then become

~v ′1 = ~v1 +
m2W2

m1W1 +m2W2
·∆~vr (4.2)

~v ′2 = ~v2 −
m1W1

m1W1 +m2W2
·∆~vr (4.3)

with

∆~vr =
(
Â− 1̂

)
~vr . (4.4)

At �rst sight this seems to be a great idea, but the numerical results in chapter 5 will show severe
restrictions.

4.2. Variations of the conservative weighting scheme

The concept of splitting higher weighted particles into two parts before doing a collision process
and merging them afterwards is studied in this section. The idea is to modify the merging
possibilities to either conserve energy or linear momentum or something in between. Thus,
consider the merging process of two particles with mass m, weights W1, W2 and velocities ~v1, ~v2
with the total energy

E =
mW1

2
~v21 +

mW2

2
~v22 (4.5)

and the total momentum

~p = mW1~v1 +mW2~v2 . (4.6)

The error ∆E in energy occuring by merging the two particles with two di�erent velocities to
one particle with one velocity then depends on the error ∆p that is allowed in linear momentum
as

∆E = E − (p−∆p)
2

2m (W1 +W2)
. (4.7)

For ∆p = 0, the equation above is equivalent to Boyd's method (3.14). Merging the two pseudo-
particles means to set their velocities such that their total energy is E−∆E and their total linear
momentum is (1−∆p/p) ·~p, respectively. The functional dependence ∆E(∆p) can be illustrated

13



4. Concepts for non-linear weighting schemes

as in �gure 4.1. The absolute value of the total linear momentum p de�nes the radius of the
green circle. The total energy E (actually

√
2m(W1 +W2)E) then de�nes the radius belonging

to the red circle. The di�erence between both circles then corresponds to the energy loss ∆E in
Boyd's method.

Figure 4.1.: The two small grey pseudo-particles shall be merged into the big grey pseudo-particle.
If linear momentum is conserved, the new pseudo-particle's vector of linear momen-
tum points up to the green circle (ω = 1, see section (4.2.1)). If energy is conserved,
it points up to the red circle instead (ω = 0). For ω ∈ (0,1) it points somewhere in
between (blue circle). For α = 1 all circles are at the same distance. Thus, both
energy and linear momentum can be conserved exactly for α = 1 ⇔ ~v1 = ~v2 (see
(4.9)).

As the solutions with minimal error in both energy and linear momentum are of interest, an
error function F can be de�ned from the squared relative errors in linear momentum ε := ∆p/p
weighted with ω and in energy weighted with (1 − ω). The relative error in energy is given by
(4.7) divided by E. Hence, the error function F is

F (α, ω, ε) = (1− ω)
(

1− α (1− ε)2
)2

+ ωε2 (4.8)

with

α =
p2

2m(W1 +W2)E
=

1 +
(~v1 − ~v2)2(√

W1/W2~v1 +
√
W2/W1~v2

)2

−1

∈ [0,1] . (4.9)

As this error function is going to be minimized with respect to ε, the parameter ω allows to
switch steadily between conservation of energy (ω = 0) and conservation of linear momentum
(ω = 1). In �gure 4.1 this means a continous decrease of the radius of the red circle (blue circle)
to the radius of the green circle.

14



4.2. Variations of the conservative weighting scheme

4.2.1. Di�erent solutions for minimizing the error function

The minimization of the error given by F in (4.8) depending on α and ω is done by setting

∂F

∂ε

∣∣∣∣
ε0(α,ω)

= 0 and F (α, ω, ε0(α, ω)) ≤ F (α, ω, ε) ∀ε ∈ R . (4.10)

As F is a non-negative polynomial of degree four in ε, for a given pair (α, ω) it has at least one
and at most two local minima. If there is more than one local minimum only the global minimum
out of the two of them has to be selected. If F is equal for both minima such that both local
minima are global minima, it is of interest for which local minimum the overall error is minimal.
The ε ful�lling this is from now on called ε0,ω(α). The minimized overall error is given by the
sum of squared variation coe�cients(

∆E

E

)2

+

(
∆p

p

)2

≡ 2F

(
α, ω =

1

2
, ε0,ω(α)

)
=: 2F1/2 (α, ω) . (4.11)

Conservation of energy

For ω = 0, the condition for minimization (4.10) is equivalent to conservation of energy such,
that the minimal relative error in linear momentum becomes

ε0,0(α) = 1−
√
α−1 ≤ 0 . (4.12)

General solutions

For all ω > 40/91 it is shown in A.1, that F is minimal at

ε0,ω>40/91 = 1−

 3

√√√√q

2
+

√(
q

2

)2

+
1

27α3
(αq − 1)

3
+

3

√√√√q

2
−

√(
q

2

)2

+
1

27α3
(αq − 1)

3

 ,

(4.13)

where

q =
ω

2α2(1− ω)
, (4.14)

substituting (A.3) into (A.2). The solution can be retained if 27q2 + 4
(
q − α−1

)3
> 0 such that

the roots can be chosen real. Otherwise, the general solution is given by

ε0 = 1∓
√

4

3
(α−1 − q) cos

(
1

3
arccos

(√
27q2

4 (α−1 − q)3

)
+ β

)
, (4.15)

with β ∈ {−π/3, 0} so constituted that F (α, ω, ε0(β)) is minimal. The sign is negative if β = 0.

Conservation of linear momentum

For ω → 1 it follows q →∞ such that (4.13) provides conservation of linear momentum ε0,1 = 0
as expected such that the relative error in energy becomes

∆E0,1

E
=
√

(F (α, 1, 0)) = 1− α ≥ 0 . (4.16)

Substituting α by (4.9) and E by (4.5) yields

∆E =
W1W2

W1 +W2

m

2
(~v1 − ~v2)

2
, (4.17)

which is the limit of Boyd's method (3.14) with m1 = m, W̃2 = W2 and W̃1 = W1 +W2.
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4. Concepts for non-linear weighting schemes

Minimal sum of the squared variation coe�cients

Now, take a look at the overall error given by the sum of the squared variation coe�cients
2F1/2(α, ω). It is obvious, that this sum is minimal if F (α, 1/2, ε) is minimal, which is given for
(4.13) setting ω = 1/2 in (4.14):

ε0,1/2(α) = 1− 1
3
√

4α2

 3

√√√√
1 +

√
1 +

16α

27

(
1

2α
− 1

)3

+
3

√√√√
1−

√
1 +

16α

27

(
1

2α
− 1

)3

 .

(4.18)

This is the least relative error occuring in either energy or momentum. It is shown in �gure 4.2,
that it indeed is a minimum for any given α compared with conservation of energy (ω = 0) or
linear momentum (ω = 1). For conservation of energy the overall error diverges for α→ 0. This
is obvious, as α→ 0 ⇔ ~p→ 0 and coincides with (4.12).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

2F
1
/
2
(α
,ω

)

α

ω = 1ω = 1
2

ω = 0

Figure 4.2.: The minimized sum of the squared variation coe�cients 2F1/2 as a function of α for
ω = 0 (conservation of energy), ω = 1/2 (minimal F1/2) and ω = 1 (conservation of
linear momentum).

4.2.2. Recap of the collision process with minimal error

Using the minimized relative error ε0,ω(α) the collision process can be summarized. The number
of selected pairs is still given by (3.7) or (3.10) to (3.12), the reaction probability by (3.8) or
(3.13) and the angular distributions by (3.5) and (3.6). The post-collision velocity of the higher
weighted particle ~v ′> is then given by the post-collision velocity of its fraction part and of its
initial velocity. As the linear momentum of the merged particle is set to

~p ′> = (1− ε0,ω(α)) ·m>

(
(W> −W<)~v> +W<

(
~v> ±

m<

m< +m>
·∆~vr

))
(4.19)

= (1− ε0,ω(α)) ·m>

(
W>~v> ±W<

m<

m< +m>
∆~vr

)
(4.20)
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4.2. Variations of the conservative weighting scheme

the post-collision velocities are

~v ′> = (1− ε0,ω(α))

(
~v> ±

W<

W>

m<

m< +m>
∆~vr

)
(4.21)

~v ′< = ~v< ∓
m<

m< +m>
∆~vr , (4.22)

where < de�nes the properties of the less weighted and > of the higher weighted pseudo-particle.
The choice of the sign depends on the de�nition of ~vr = ±(~v> − ~v<).

4.2.3. Correction of errors in energy and momentum

For numerical simulations it might be necessary that the errors in both energy and momentum
are diagnosed and corrected in later collisions, because otherwise dissipation is created. Following
Boyd's idea of adding the error in energy to the relative velocity at later collisions, the error of
linear momentum can be added to the center-of-mass velocity. Therefore, consider a collision
between two equally weighted pseudo-particles with weight W and mass m with post-collision
velocities

~v ′1 = ~v1 +
∆~p

2Wm
+
κ

2

(
Â− 1̂

)
· ~vr (4.23)

~v ′2 = ~v2 +
∆~p

2Wm
− κ

2

(
Â− 1̂

)
· ~vr . (4.24)

With this approach an error in linear momentum ∆~p that occurred in former collisions can be
corrected. The parameter κ has to be chosen such that energy is conserved with respect to an
error ∆E. By solving

~v ′21 + ~v ′22 = ~v21 + ~v22 +
2∆E

Wm
(4.25)

for κ, using ~vr · Â~vr = v2r cos θ and Â~vr · Â~vr = v2r yields

κ =
1

2
±

√
1

4
+

(
2∆E − (~v1 + ~v2) ∆~p− ∆~p2

2Wm

)
·
(

1

Wmv2r (1− cos θ)

)
, (4.26)

where θ is the scattering angle. The case ∆E = ∆~p = 0 delivers κ = 1, so (4.23) and (4.24) are
identical to (2.11) and (2.12). Hence, the negative sign is not reasonable as for ∆E = ∆~p = 0
there would be no collision (~v ′1 = ~v1 and ~v ′2 = ~v2). It is obvious that this correction should be
done at collisions between highly weighted particles (W large) since then the relative correction
is small as the terms of correction are proportional to W−1. Moreover, it is important to note
that the radicand might become less than zero. To avoid this ∆E can be increased such that the
root becomes zero. The di�erence ∆E′ then becomes the new error in energy for this collision.
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5. Numerical results for a 1D simulation

In the following some numerical tests are performed for the DSMC procedure. The output is
generated by a C-program that uses di�erent collision methods for non-linear DSMC simulating
a gas in a pipe. The program is one-dimensional in position-space such that the pushing of the
pseudo-particles in axial direction (z-direction) is performed, but the pushing in perpendicular
direction is ignored. In velocity-space the gas is simulated three-dimensional as the description of
the binary collisions requires this. With the numerical tests the behaviour of conserved quantities
and distribution functions for di�erent collision methods will be examined and it will be shown
to what extent relaxation processes in gases with di�erent weights coincide with a reference test
with equal weights.

5.1. Evolution of a Maxwell-distributed gas

As a �rst numerical test a Maxwell-distributed gas is considered with density n = 1019 cm−3 and
temperature T = 300 K containing two types of Argon pseudo-particles. The �rst type is weighted
with W1 = 2.4 and the second with W2 = 100W1. Each type has 200000 pseudo-particles. The
gas is spread homogeneously in the pipe of radius r = 5λmfp and length zmax = 25000λmfp

divided into 5000 cells. The boundary condition in z-direction is set periodically. As the initial
gas is already in thermodynamic equilibrium nothing should happen to the gas' distribution
functions for 100 timesteps of 0.5 τ . In the following, the four collision methods (direct collisions,
ω = 0, ω = 1/2 and ω = 1) are compared varying the method of selecting pairs of pseudo-particles
once with and once without correction of conservation.

5.1.1. Unsorted selection of pairs without correction

At �rst, the pairs of pseudo-particles are combined without paying attention to the weight of the
pseudo-particles, but with modi�ed reaction probability. Moreover, no correction of any error
which arises from the merging process is performed. Doing so, one gets distribution functions
shown in �gure 5.1.
One can see that for conservation of linear momentum (a) ), which is Boyd's method without con-
servation of energy, the qualitative behaviour for both low and high weighted pseudo-particles'
distribution functions is still conserved after 100 timesteps, but quantitative di�erences appear.
This is evident as the merging process is accompanied by dissipation, which is con�rmed by the
time-evolution of the relative error in energy shown as green line in �gure 5.2.
For conservation of energy (b) ) the qualitative behaviour of the distribution function after sim-
ulation is only similar to the start distribution for the low weighted particles (red points). For
the high weighted pseudo-particles the distribution function shows a strong drop for low abso-
lute values in velocity. This becomes clear remembering that an error is created in the merging
process for each collision between di�erently weighted pseudo-particles. As the merging process
for ω = 0 always leads to an increase of absolute value of linear momentum, the mean absolute
value of velocity for the high weighted particles increases with each time step. The case ω = 1/2
(c) ) can be understood as a superposition of ω = 0 and ω = 1. For this, it is important to
note that the developments of the relative error in linear momentum might be di�erent, because
the absolute value of 〈pz〉(0) is close to zero. Therefore, the relative error in linear momentum
is susceptible to slight deviations in linear momentum. For many collisions the error manifests
itself and propagates on average to an increasing relative error into a preferred direction.
Finally, consider the direct collisions. One can see, that the distribution function of the high
weighted pseudo-particles is still close to Maxwellian, while the low weighted pseudo-particles
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5. Numerical results for a 1D simulation

are uniformly distributed. As the weights between the particles are very di�erent, a collision
between one low and one high weighted particle induces on average an energy transfer from the
high to the low weighted particle (see (4.2) and (4.3) for W2 � W1). This leads to a severe
heating of the low and to a slight cooling of the high weighted pseudo-particles.
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Figure 5.1.: The velocity distribution function at time t = 50 τ for the low weighted particles
W1 (coloured points), for the high weighted particles W2 = 100W1 (black bounded
diamonds), the overall velocity distribution function at time t = 0 (black squares)
and its theoretical behaviour (grey line) for the four collision methods.
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Figure 5.2.: The time evolution of the relative error in energy (coloured line) and of the z-
component of linear momentum (black crosses) for the four collision methods.

5.1.2. Unsorted selection of pairs with correction

Now, the collision method is changed by correcting the error according to (4.23) and (4.24). As
this does not change anything for the method of direct collisions and because the case ω = 1/2
is in essence some kind of superposition of the cases ω = 0 and ω = 1, both cases are left out
here. It can be seen in �gure 5.3 a) that linear momentum is again conserved exactly and that
the relative energy does not approach to zero but to a constant value. Its di�erence from one
can be explained by the fact that it is not granted that each high weighted pseudo-particle that
loses energy will collide in the same time step again with another high weighted pseudo-particle.
Hence, at least a small part of energy loss will be carried from one time step to the next with
the result that for many time steps the relative energy converges to a �xed value. It can be
argued very similar for case b) with the di�erence, that the error in linear momentum occurs in
all directions with the same probability. Hence, linear momentum is conserved on average over
a large amount of collisions.
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Figure 5.3.: The time evolution of the relative error in energy (coloured line) and of the z-
component of linear momentum (black crosses) for the two collision methods.

Now, considering the distribution functions, there are the same errors as in the non-conserving
method discussed before but now at steady state: after a su�ciently long time there is no loss
in temperature anymore for a). This is recognizable by detecting the di�erent stretching factors
of the parabolas in a) after the same runtime, which agrees with �gure 5.3 a).
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Figure 5.4.: The velocity distribution function at time t = 50 τ for the low weighted particles
W1 (coloured points), for the high weighted particles W2 = 100W1 (black bounded
diamonds), the overall velocity distribution function at time t = 0 (black squares)
and its theoretical behaviour (grey line) for the two collision methods.

5.1.3. Sorted selection of pairs without correction

The next modi�cation of the collision method is done without correction of the errors, but with
sorted pairs. This means that at �rst the collisions between two low weighted pseudo-particles
are performed followed by the collisions with di�erent weights and �nally by the collisions with
high weights.
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Figure 5.5.: The time evolution of the relative error in energy (coloured line) and of the z-
component of linear momentum (black crosses) for the two collision methods.

Comparing the relative errors in �gure 5.5 to �gure 5.2, a severe reduction of the error after the
same number of time steps can be detected. This is obvious, because the number of collisions
between pseudo-particles with di�erent weight, which cause the error, are proportional to

〈Nc〉1↔2 ∝ 1

2

(N1 +N2)2

2
(5.1)

for the unsorted, and

〈Nc〉1↔2 ∝ N1 ·N2 (5.2)

for the sorted method. As in the given example the ratio of the number of real particles N2/N1 =
100, there are more than 25 times more collisions between di�erently weighted particles using
the unsorted method than using the method of sorted pairs. This reduction of the error can also
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5.1. Evolution of a Maxwell-distributed gas

be seen at the distribution functions in �gure 5.6. Now there is only a slight error in temperature
for a) and in contrast to the conserving method with unsorted pairs almost no error for b).
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Figure 5.6.: The velocity distribution function at time t = 50 τ for the low weighted particles
W1 (coloured points), for the high weighted particles W2 = 100W1 (black bounded
diamonds), the overall velocity distribution function at time t = 0 (black squares)
and its theoretical behaviour (grey line) for the two collision methods.

5.1.4. Sorted selection of pairs with correction
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Figure 5.7.: The velocity distribution function at time t = 50 τ for the low weighted particles
W1 (coloured points), for the high weighted particles W2 = 100W1 (black bounded
diamonds), the overall velocity distribution function at time t = 0 (black squares)
and its theoretical behaviour (grey line) for the four collision methods.

23
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As a last step both collision methods are combined. Now the pseudo-particles are sorted for
dividing them into pairs and the errors arising for collisions between di�erently weighted parti-
cles are corrected afterwards during the same time step, when the collisions between the high
weighted particles are performed. For this, the case ω = 1/2 is retrieved and also the in�uence
of sorted pairs on direct collisions is going to be tested.

As shown in �gure 5.7 the distribution functions are retained for all collision methods except
direct collisions. Here, there is no in�uence of sorted pairs, at least not if the collisions between
the low weighted pseudo-particles are performed before the collisions of the di�erently weighted
pseudo-particles. The conservation of the distribution functions also agrees with the conservation
of both energy and linear momentum, shown in �gure 5.8.
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Figure 5.8.: The time evolution of the relative error in energy (coloured line) and of the z-
component of linear momentum (black crosses) for the four collision methods.
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5.2. Evolution of a Maxwell-distributed gas with beam

5.2. Evolution of a Maxwell-distributed gas with beam

As a next step the initial velocity in z-direction is increased about v0 =
√

32 kBT/(πm), such
that there is a beam of particles in z-directions. Therefore, it is of interest if the anisotropic
distribution function

%z(vz) =

√
m

2πkBT
· exp

(
−m (vz − v0)

2

2kBT

)
(5.3)

is retained for the four collision methods with sorted pairs and correction in both energy and linear
momentum. Since there are periodic boundaries it is expected that the beam in thermodynamic
equilibrium is retained very well.
It can be seen in �gure 5.9 that the anisotropic distribution functions are retained for all methods
except for direct collisions, for which the di�erent weights are treated as di�erent masses. For this
method, the deviation is very similar to that of the test without beam. The uniform distribution
of the low weighted particles can not be seen, because only the overall distribution function is
plotted, which is dominated by the high weighted pseudo-particles.
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Figure 5.9.: The z-fraction part of the overall velocity distribution function at time t = 50 τ
(coloured points), at time t = 0 (black squares) and its theoretical behaviour (grey
line) for the four collision methods.
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5. Numerical results for a 1D simulation

5.3. Relaxation of a gas with elliptic velocity distribution

function

As a next test a relaxation process of Maxwell-distributed gas with di�erent temperatures in
axial and perpendicular directions is examined. The initial velocity distribution function is

%(v⊥, vz) =

(
m

2πkB

)3/2

· T−1⊥ · T
−1/2
z · exp

(
− mv2⊥

2kBT⊥

)
exp

(
− mv2z

2kBTz

)
. (5.4)

Since this is not the equilibrium distribution function, it will take some time for the system to
relax. The relaxation time should be independent of the particles weights if the physical condi-
tions are the same. Hence, the total number of both real and pseudo-particles are not modi�ed,
but only both weights W1 and W2 instead. The exponential �ts of the results in �gure 5.10 show
ratios τ̃1/τ̃1000 ' 20 of the relaxation times τ̃ = t/ ln (∆T (0)/∆T (t)) of a system with equally
weighted pseudo-particles (W2/W1 = 1) and one with weight ratio W2/W1 = 1000.
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Figure 5.10.: The time evolution of the relative temperature di�erence of axial and perpendicular
temperatures (blue points) and its exponential �t (grey line).

Although here only the results for ω = 1/2 are shown the other methods produce for the same
pseudo-particle weights the same relaxation times, even for direct collisions. This indicates that
collisional e�ects are too strong and the calculation of the number of pairs has to be adjusted.
Probably, the weigths of individual collisions for the di�erent collision categories have to be
modi�ed to guarantee the correct physical scaling. This is rather complicated, because a mix
of collisions between large weighted particles, between large and small weighted particles and
between small weighted particles appears simultaneously in the algorithm. The individual scal-
ing factors for these di�erent collisions have to be determined analytically such that the same
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5.3. Relaxation of a gas with elliptic velocity distribution function

collisional e�ects (and by this the same relaxation times) are produced like in the case of indi-
vidual real particles. This work is beyond the scope of this thesis, but will be the topic of future
research to turn the approach developed here into a practical algorithm applicable in complex
simulations. Such numerical artefacts appear also in a test case with self-di�usion of the gas
with di�erent weights shown in A.2
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6. Conclusions and outlook

The extension of DSMC for systems with trace species requires non-linear weigthing schemes
and the accomplishment of collisions between di�erently weighted pseudo-particles. Advantages
and disadvantages of di�erent approaches have been compared. One of the methods enforces
both energy and linear momentum conservation by treating the di�erent weights as di�erent
masses performing direct collisions, but does not guarantee a Maxwellian distribution function
in equlibrium. The others use splitting of pseudo-particles with large weights into smaller weights
for collisions with lower weighted particles. A merging process performed afterwards causes an
error in either energy or linear momentum or both. This error can be minimized further for
individual collisions. In the statistical limit of a large number of collisions this error per time
step depends on the number of collisions between di�erently weighted pseudo-particles.

To obtain the right number of collisions there are di�erent ways to calculate the number of
pairs considered for collisions and their reaction probabilities. One possibility is to modify the
reaction probability, but not the number of pairs. However, this does not reduce the number of
pairs compared with equally weighted pseudo-particles, and the number of collisions between two
di�erently weighted pseudo-particles is very large. This causes a large error in energy or linear
momentum. Alternatively, the number of pairs is modi�ed by sorting them according to their
weights without changing the reaction probability. However, this method is only applicable for a
large number of pseudo-particles with equal weights. Otherwise it is at the expense of statistical
accuracy.

A general observation is that a Maxwellian distribution function can not be obtained after a
large number of timesteps if the error caused by the merging process is not corrected. This cor-
rection can be done in later collisions between pseudo-particles with large weights. If the ratio
of the di�erent weights is of the order of W2/W1 � 102 problems occur for methods that do not
conserve linear momentum: a further correction can not be implemented for all cases, as there
might arise some negative radicants. These can only be introduced as zeros resulting in energy
errors.

The collision methods using splitting and merging for sorted pairs with correction conserve en-
ergy and linear momentum very well and guarantee a Maxwellian distribution even for test cases
where particle beams are used. However, even if the qualitative development of the systems
considered look good, a full quantitative correct time evolution of physical systems is not guar-
anteed. The most promising approach is Boyd's method of conserving linear momentum exactly
and adding the error in energy to the relative velocity. In addition, there are no problems in
correcting the error for low weight ratios in contrast to all other approaches. Therefore, it is
recommended to set the focus on this method for further applications.

In realistic applications, additional complications arise due to other processes, such as ionization
and charge-exchange. If a low weighted electron collides with a high weighted neutral pseudo-
particle it can perform an electron impact ionization. This creates a broader distribution of
weights by reducing the weight of neutrals subsequently in each ionization. The same holds for
charge-exchange collisions coupling the di�erent weight distributions of ions and neutrals. There-
fore, it will be necessary to develop non-linear DSMC for broad distributions of pseudo-particle
weights. A possible ansatz can be to introduce variable boundary values for categorization of
low and high weight particles. It might be useful to mix both modi�cations of number of pairs
and reaction probability. The groups of pseudo-particles for the di�erent categories of low and
high weight would then be de�ned by di�erent thresholds.
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A. Appendix

A.1. Minimization of the error function

The function that yields the error occuring in energy and momentum by merging particles is
given by

F (α, ω, ε) = (1− ω)
(

1− α (1− ε)2
)2

+ ωε2 . (A.1)

Its minimum, which is dependent on the particles parameter α and the weighting ω of the error
in momentum in relation to the whole error, can be found by setting the derivative with respect
to ε to zero, which is equivalent to

(1− ε)3 −
(

1

α
− ω

2α2(1− ω)

)
(1− ε)− ω

2α2(1− ω)
= 0 .

This equation is of the form r3 + k · r + q = 0, which has exactly one real solution[8]

r = 3

√
−q

2
+
√
D + 3

√
−q

2
−
√
D (A.2)

if the discriminant

D =
(q

2

)2
+

(
k

3

)3

≥ 0 . (A.3)

This means that the roots in the equation are real roots. This can be proven by substituting
r and D into the initial equation and by showing that multiplying the individual summands in
(A.2) with the two di�erent complex third roots of unity yields two more truly complex solutions.
To get dependencies for α and ω such that D is greater than zero, consider

D =
(q

2

)2(
1 +

4k3

27q2

)
> 0 .

Hence follows 27q2 > −4k3 which is equivalent using k = −q − α−1 =: q − α−1 to

27q2 + 4
(
q − α−1

)3
> 0 . (A.4)

As the parameters ω and α have to be chosen from (0,1), q = ω/(2α2(1− ω)) ≥ 0, so (A.4) can
be complied with by

27q2 >
4

α3
. (A.5)

Substituting q yields

ω

1− ω
>

4√
27

√
α (A.6)

which due to ω ∈ (0,1) is equivalent to

ω >
1

1 +
√
27

4
√
α

, (A.7)

which is full�lled for any α if

ω >
40

91
as

40

91
=

4

4 + 3 17
10

>
1

1 +
√
27
4

≥ 1

1 +
√
27

4
√
α

. (A.8)
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A. Appendix

A.1.1. General solution for numerical calculations

If the discriminant can be calculated numerically for given values of α and ω, the solution can
be generalized using q ≤ 0 to [8]

r = ±
√
−4

3
k cos

(
1

3
arccos

(√
q2

q2 − 4D

)
+ β

)
, (A.9)

where β is ±π/3 or 0 and the sign is positive, if β = 0. As in this case there are two local minima
and one local maximum it has to be guaranteed that the second derivative of F with respect to
ε is greater than zero, which is equivalent to

r2 >
2α(1− ω)− ω

6α2(1− ω)
= −k

3
.

Deliberations about possible values of the arcusfunction lead us to

r2 ∈ −4

3
k ·


[
0, 14
]

β = π
3[

1
4 ,

3
4

]
β = −π3[

3
4 ,1
]

β = 0

.

Hence β = π
3 is the local maximum. Considering the special cases ω = 0 or ω ≥ 40/91 it is clear,

that 1 − ε0 = r < 0 for the �rst case and r > 0 for the second case. As the cosine is for any
relevant case non-negative, the parameter β determining the global minimum of F changes at
least one time from −π/3 to 0 when ω is increased from 0 to 1. Thus the remaining solutions
(β = −π/3 and β = 0) have to be substracted from one and the result has to be substituted as
ε0 into (A.1) to compare them to get the global minimum for a given pair of α and ω.

A.2. Di�usion

According to the third law of thermodynamics a temperature of absolute zero can never be
achieved [4]. This is why particles in a �uid are always in motion. This motion is named after
its discoverer as Brownian motion. It causes a mingling of the particles, which is called di�usion,
and regarding particle interactions it leads to assimilation of the particle properties up to a
relaxation to thermodynamic equilibrium. The process of di�usion is described by the di�usion
equation, which is obtained from Fick's �rst law and the continuity equation [4] [6]:

∂n

∂t
= ∇ · D̂∇n . (A.10)

The factor D̂ is called di�usivity, which is in general a symmetric second-order tensor and a
function of time and space. If only the di�usion along one of the main axes is of interest and if
the di�usion coe�cient is independent of space, the di�usion equation reduces to

∂n

∂t
= Dz

∂2n

∂z2
, (A.11)

where Dz is the di�usion coe�cient along the z-axis given by [4]

Dz =
∆z2

2∆t
. (A.12)

Here, ∆z de�nes the mean step of movement in z-direction during the time interval ∆t. If the
initial condition is n(t = 0) = Θ(z), where Θ is the Heaviside step function, and boundary
conditions n(z → −∞) → 0 and n(z → ∞) → n0, the solution of the di�usion equation with
constant di�usion coe�cient Dz is given by the error function [4]

n(z, t) =
n0
2

(
1 + erf

(
z

2
√
Dzt

))
. (A.13)
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A.2. Di�usion

Such a di�usion case is used to test the in�uence of di�erent pseudo-particle weights. For rea-
sons of statistical signi�cance and computation time a pipe of length 1200λmfp is divided into
62 cells of size 20λmfp each. The temperature is 300 K and the density is n = 1019 cm−3. In
the �rst 31 cells, a Maxwell-distributed set of 363636 pseudo-particles with weight W1 = 106
is inserted. In the second 31 cells there are 36363 pseudo-particles with weight W2 = 10W1 at
the beginning. The numbers of pseudo-particles are chosen in order to have the same number
of real particles of each kind and because the number of pseudo-particles is limited due to com-
putational e�ort to 400000. As a reference test the weights are set to W1 = W2 = 193 and the
number of pseudo-particles to 200000 for each kind. After 1000 timesteps of 5 τ , an error function
similar to (A.13) can be �tted to the density distribution of each kind. By comparison of the
di�usion coe�cients to the reference test the quality of the simulation methods can be estimated.
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Figure A.1.: The relative particle densities of the low weighted (�lled points, left) and of the
high weighted pseudo-particles (bounded diamonds, right) at time t = 0 (black)
and t = 5000 τ (coloured) with their via Dz �tted error-function according to (A.13)
(grey line).

In �gure A.1 b) a large deviation of the density distribution functions to the �tted curves can
be seen. Also, for ω = 0 the energy increases after some time which comes from some negative
radicants in (4.26). As mentioned above, these radicants can be set to zero, producing an addi-
tional error in energy ∆E′ < 0. Hence, for a low weight ratio (W2/W1 = 10) there is a growth
of energy after some time.

However, for equally weighted pseudo-particles the system shows the expected behaviour (see
�gure A.2). The solution is given by (A.13) as

n(z, t)

n0
=

1

2

(
1 + erf

(
z − z0
2
√
Dzt

))
(A.14)
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with z0 = 620λmfp and Dz ' 1.2 · 10−5 m2s−1, which is of realistic order for a gas.
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Figure A.2.: The relative particle densities of the �rst (�lled points, left) and of the second half
of the equally weighted pseudo-particles (bounded diamonds, right) at time t = 0
(black) and t = 5000 τ (magenta) with their via Dz �tted error-function according
to (A.13) (grey line).

It is not trivial to explain the deviations of the density distribution functions in �gure A.1 from
the one in �gure A.2. It seems like the di�erent species of pseudo-particles behave like species
with di�erent di�usion coe�cients, which leads to density �uctuations, that are accompanied by
spatial dependencies in the di�usion coe�cients.

This coincides with the weight-dependent behaviour of the relaxation time in 5.3. In both cases,
too many collisions compared with the real system are performed for the high weighted pseudo-
particles which leads to unrealistic quantitative time evolution of physical systems.
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