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1 Motivation

As a child nearly everybody has played with a spinning top and was fascinated to see

how it spins. Imagine now this spinning top would start to float due to some force.

This is exactly what a levitron is doing, using a magnetic force counteracting gravity

to allow for levitation. It is rather tricky to operate it successfully and can take hours

or days of frustrating trials. After several attempts, it really is a magic moment, when

the spinning top is levitating for some seconds. Several physicists studied this system

in detail and tried to analyze its operational principle. The physics of levitrons is

Figure 1.1: A photo of a levitron [1]

similar to magnetostatic traps of neutral atoms [2] or ion traps. There it is important

to analyze the trajectories of charged particles trapped in force fields.

The intention of this work is to find solutions for the movement of a levitron. After

a short summary of the fundamental principles for the movement of rigid bodies, the

Hamiltonian will be calculated after formulating the kinetic and the potential energy.

To solve the equations of motions two different numerical methods will be discussed.

Identifying an invariant set of the equations of motion allows a considerable reduction

of the dimension of the problem. This reduced set of equations is then used to analyse

the operational space numerically and to find analytical solutions with a linearization

approach. This allows to quantify conditions under which a stable levitation of the

top is possible. Finally, the work is summarised.
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2 Theoretical background

M.V. Berry [3] showed, that there is a rather limited operational space to get a lev-

itating top with a minimum frequency to allow for a stable levitation. T.B. Jones,

M. Washizu and R. Gans [4] made experiments and compared them with their theo-

retical calculations. They proved that there cannot be any stable solution for a top,

when it is ”rigidly aligned with the vertical axis”. A small tilt of the rotation axis

is needed. They claimed that the locus is only 4mm in length and that the mass of

the top must be within a 1% margin. They also found an upper and a lower limit

for the rotation frequency of the top. Numerical solutions [5] were presented for the

full equations of motions and some solutions for stable and instable trajectories were

shown. H.R. Dullin [6] developed an improved model of a levitron. He found an

invariant set of equations which reduce the system to a four dimensional problem.

He also determined the critical spin rates using a linearization approach. The work

presented in this thesis follows mostly these publications trying to combine analytical

and numerical results for a better understanding of the system.

2.1 Kinematics

The dynamics of a levitron is determined by the theory of kinetics of spinning tops.

The top is described as a rigid body. In the following the different elements needed

for the theoretical description are introduced and discussed. The kinetic energy is

independent of the magnetic field. It can be split into two contributions: a translation

of the center of mass (cm) and a rotation about an axis.

The translational energy of the center of mass is

Ttrans =
1

2
mv2

cm =
1

2
m
(
ẋ2
cm + ẏ2

cm + ż2
cm

)
, (2.1.1)

where ẋ, ẏ and ż are the velocities in the x-,y- and z-direction of the space, respec-

tively. For the calculation of the rotation, the first step is to analyze a simple rotation
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2 Theoretical background

of a vector ~G(t).

(d~G)space = (d~G)body + (d~G)rot (2.1.2)

In the case of a rigid body, ~G is constant in body coordinates, therefore

(d~G)space = (d~G)rot = d~Ω× ~G , (2.1.3)

where d~Ω describes the differential vector angle belonging to the rotation. Defining

~ω as the angular velocity d~Ω
dt

it follows

d~Grot

dt
= ~ω × ~G . (2.1.4)

The angular velocity ~ω can be expressed by Euler angles (see Goldstein for defintion

of the angles [7]).

~ωφ =

0

0

φ̇

 ~ωθ =

θ̇ cosφ

θ̇ sinφ

0

 ~ωψ =

0

0

ψ̇

 (2.1.5)

The angular velocity along the z-axis of the system is denoted by ωφ, ωθ along the line

of nodes and ωψ is along the z′-axis. These three components of the angular velocity

need to be transformed into body coordinates. For this, the vectors are multiplied

with a rotation matrix, which can transform any vector in body coordinates.

Figure 2.1: definition of Euler angles [8]

Following Goldstein, this transformation matrix is the product of three rotations.

At first the coordinate system is turned anti-clockwise through the angle φ around the

z-axis (matrix R1). The new system is turned clockwise through an angle θ around

the ξ′-axis (matrix R2). In the last step the system is rotated anti-clockwise through

an angle of ψ around the resulting z′-axis (matrix R3). The complete transformation
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2.1 Kinematics

matrix is given by multiplication of these three matrices:

R1 =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 (2.1.6)

R2 =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (2.1.7)

R3 =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.1.8)

resulting in

R = R3R2R1 =

 cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ

− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ .

 .

(2.1.9)

This gives the angular velocity in body coordinates:

~ω′ = R~ωφ + R~ωθ + R~ωψ =

φ̇ sin θ sinψ + θ̇ cosψ

φ̇ cosψ sin θ − θ̇ sinψ

φ̇ cos θ + ψ̇

 . (2.1.10)

Using this, one obtains the kinetic energy as the sum of translation and rotation. In

the following a superscript T means the transpose of the vector.

T =
1

2
mv2

cm +
1

2
~ω′T I ~ω′ (2.1.11)

with the inertial tensor I given by

I =

∫
V

ρ(~r)(r2δa,b − xaxb) dV . (2.1.12)

Due to the x-y-symmetry of the levitron, the inertial tensor is constant in body
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2 Theoretical background

coordinates and can be written as

I =

A 0 0

0 A 0

0 0 C

 . (2.1.13)

A = 2, 2 10−6kgm2 and C = 1, 32 10−6kgm2 are the principal moments of inertia [9].

Finally the kinetic energy is calculated as

T =
1

2

[
m(ẋ2 + ẏ2 + ż2) + A(θ̇2 + φ̇2 sin2 θ) + C(ψ̇ + φ̇ cos θ)2

]
. (2.1.14)

2.2 Magnetostatic Potential

The potential energy U of the levitron is given by the sum of the gravitational energy

and the interaction potential of the magnetic levitron in the magnetic field of the

base plate

U = mgz − 〈 ~B(r), µR~ez〉 , (2.2.1)

where µ is the magnetic moment of the levitron.

For a magnetostatic problem the magnetic field ~B(~r) can be calculated from a scalar

potential ϕ with ~B(~r) = −∇ϕ(~r). Using the nabla operator on both sides of the

equation and with the Maxwell’s equation ∇B = 0 one gets Laplace’s equation

∆ϕ = 0, which has to be fulfilled by the scalar potential.

Due to the cylindric symmetry of the levitron, one can expand the potential ϕ(~r) [6]

using a Taylor expansion in r:

ϕ(r, z) = ϕ0(z) + rϕ1(z) + r2ϕ2(z) + . . . (2.2.2)

with r2 = x2 + y2. Using Laplace’s equation, one gets:

∆ϕ(r) = ϕ′′0(z) + rϕ′′1(z) + ϕ1(z)∆r + r2ϕ′′2(z) + ϕ2(z)∆r2 + · · · = 0 . (2.2.3)
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2.2 Magnetostatic Potential

The relation ∆rn = n2rn−2 will be used in the following, which can be proven easily:

∆rn =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
x2 + y2

)n/2
= 2n

(
x2 + y2

)n/2−1
+ 2n

(n
2
− 1
) (
x2 + y2

)n−4
2
(
x2 + y2

)
= 2nrn−2 + 2n

(n
2
− 1
)
rn−2 = n2rn−2

Arranging equation (2.2.3) to same orders of r and setting them separately to zero

results in:

ϕ1 = 0 ϕ3 = −1

9
ϕ′′1 ϕ5 = − 1

25
ϕ′′3 (2.2.4)

ϕ2 = −1

4
ϕ′′0 ϕ4 = − 1

16
ϕ′′2 ϕ6 = − 1

36
ϕ′′4 . (2.2.5)

As a consequence of the first equation, all ϕi with odd i are equal zero. For even i it

holds that ϕ2i+2 = −(1/(2i+ 2)2)ϕ′′2i. Substituting Φk(z) = dk

dzk
ϕ0(z) one gets

ϕ(r, z) = Φ0(z)− r2

4
Φ2(z)± . . . . (2.2.6)

B(r) can be expressed up to second order in terms of Φk(z):

B(r) = −∇ϕ(r) =


x
2
Φ2(z)

y
2
Φ2(z)

−Φ1(z) + r2

4
Φ3(z)

 . (2.2.7)

Following Jackson [10] the general expression for the scalar magnetic potential is

ϕ(r) = −∇
∫
V

M(r′)

|r − r′|
d3r′ (2.2.8)

with M as the magnetization of the base plate and volume V . With regards to

the geometry of the levitron (with a planar base plate), there is only a magnetic

charge density in one z-plane, so that M(r) = ρ(r)δ(z), where δ denotes the delta

distribution. This gives:

ϕ = −∇
∫
V

ρ(r)δ(z)

(r2 + z2)1/2
dz d2r . (2.2.9)
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2 Theoretical background

Integration over z results in

ϕ = z

∫∫
Base

ρ(r)

(r2 + z2)3/2
d2r . (2.2.10)

In this work, a disk of radius a with a hole of radius w is used to calculate the form

of the scalar potential. Therefore the integral is solved in polar coordinates:

ϕ = 2πz

∫ a

r=w

rρ(r)

(r2 + z2)3/2
dr = 2πzρ

(
1√

z2 + w2
− 1√

z2 + a2

)
. (2.2.11)

ρ can be taken out of the integration, because it is constant for w < z < a.

Of course there are other possibilities to describe the magnetic base plate, depending

on its exact geometry. But according to the work of Berry [3] the resulting differences

in the magnetic fields are small for such different geometries of levitrons like a disc,

a square plate or a disc with a central hole.

In order to compute the potential energy given by equation (2.2.1) the magnetic field

is needed and it depends on the first three spatial derivatives of the scalar potential

(2.2.7). These derivatives are given by:

Φ1 = 2πρ

(
1√

z2 + w2
− 1√

z2 + a2

)
+ 2πρz

(
z

(z2 + a2)
3
2

− z

(z2 + w2)
3
2

)
(2.2.12)

Φ2 = 4π ρ

(
z

(z2 + d2)
3
2

− z

(z2 + w2)
3
2

)

+ 2 π ρ z

(
− 1

(z2 + w2)
3
2

+
3 z2

(z2 + w2)
5
2

+
1

(z2 + d2)
3
2

− 3 z2

(z2 + d2)
5
2

)
(2.2.13)

Φ3 = 6π ρ

(
− 1

(z2 + w2)
3
2

+
3 z2

(z2 + w2)
5
2

+
1

(z2 + d2)
3
2

− 3 z2

(z2 + d2)
5
2

)

+ 2 π ρ z

(
9 z

(z2 + w2)
5
2

− 15 z3

(z2 + w2)
7
2

− 9 z

(z2 + d2)
5
2

+
15 z3

(z2 + d2)
7
2

)
(2.2.14)

With this scalar potential one is able to find the B-field and the expression for the

potential energy

U = mgz − µ(sinψ sin θBx + cosψ sin θBy + cos θBz) . (2.2.15)
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2.3 Hamiltonian

2.3 Hamiltonian

Knowing the kinetic and the potential energy one is able to formulate the Lagrangian:

L =T (ẋ2, ẏ2, ż2)− U(x, y, z)

=
1

2

[
m(ẋ2 + ẏ2 + ż2) + A(θ̇2 + φ̇2 sin2 θ) + C(ψ̇ + φ̇ cos θ)2

]
+ µ [sin θ sinψBx + sin θ cosψBy + cos θBz]−mgz (2.3.1)

The Lagrangian equations of motion define the generalized coordinates:

px =
∂L
∂ẋ

= mẋ (2.3.2)

py =
∂L
∂ẏ

= mẏ (2.3.3)

pz =
∂L
∂ż

= mż (2.3.4)

pθ =
∂L
∂θ̇

= Aθ̇ (2.3.5)

pψ =
∂L
∂ψ̇

= C(ψ̇ + φ̇ cos θ) (2.3.6)

pφ =
∂L
∂φ̇

= Aφ̇ sin2 θ + C(ψ̇ + φ̇ cos θ) cos θ (2.3.7)

The time derivatives q̇i can be written in a 6-dimensional vector form:

~̇q =(ẋ; ẏ; ż; θ̇; ψ̇; φ̇)

=

(
px
m

;
py
m
,
pz
m

;
pθ
A

;
pψ
C
− pφ cos θ − pψ cos2 θ

A sin2 θ
;
pφ − pψ cos θ

A sin2 θ

)
(2.3.8)

The Hamiltonian H is calculated as

H =~̇qT~p− L

=
1

2m

(
p2
x + p2

y + p2
z

)
+
p2
θ

2A
+
p2
ψ

2C
+

(pφ − pψ cos θ)2

2A sin2 θ

+ µ

[
sin θ sinψ

∂ϕ

∂x
+ sin θ cosψ

∂ϕ

∂y
+ cos θ

∂ϕ

∂z

]
+mgz . (2.3.9)
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2 Theoretical background

Then the derivatives of the generalized momenta follow from

ṗq = −∂H
∂q

. (2.3.10)

The calculation of the derivatives of the generalized coordinates results in the same

expressions like with the Lagrangian. For the momenta one gets:

ṗx = −∂xU (2.3.11)

ṗy = −∂yU (2.3.12)

ṗz = −∂zU (2.3.13)

ṗθ = −pψ (pφ − pψ cos θ)

A sin θ
+

cos θ(pφ − pψ cos θ)2

A sin3 θ
− ∂θU (2.3.14)

ṗψ = −∂ψU (2.3.15)

ṗφ = 0 . (2.3.16)

The full set of equations of motion are calculated with the computer algebra system

wxMaxima.
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3 Solving the equations of motion

3.1 ODE Solvers

Due to the complex expressions of the magneto static potential describing the mag-

netic field, it is impossible to solve the equations of motion without approximations

in an analytic form. However, one can use computational methods to solve this

system of ordinary differential equations (ODEs). In this work two different solvers

were tested and used. The first is the Euler method, which is the simplest one. The

other method is named after the two German mathematicians Carl Runge and Mar-

tin Wilhelm Kutta. Actually Runge-Kutta describes a whole family of ODE solvers,

but in this work the common fourth-order Runge-Kutta algorithm is applied. In the

next section these two algorithms will be described in detail.

3.1.1 Euler-Method

The Euler-method [11] is an explicit first order numerical method to find a solution

for an ordinary differential equation (ODE) with initial values. For each time step

the slope of the function determining the time-derivative is calculated by two points.

If the first point is known from the initial condition, one will be able to calculate the

slope of the first step. With this value one can find the point at the time t+h. With

h as a defined time step.

To formulate this in a mathematical way, one tries to find a solution for an ODE:

y′(t) = f (t, y(t)) (3.1.1)

with the initial value f(t0) = y0. The next point for every time step will be calculated

by its successor using a linear approximation

yn+1 = yn + hf(tn, yn) , (3.1.2)
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3 Solving the equations of motion

while the new time is tn+1 = tn + h. This method is represented in the picture 3.1.

Figure 3.1: scheme of the Euler algorithm [12].

The quality of this algorithm depends strongly on the chosen time step and the

particular system. To allow for larger time steps other methods are needed.

3.1.2 Runge-Kutta method

Runge-Kutta-methods are a whole family of ODE solvers. In this work, the common

fourth-order Runge-Kutta method [11] is used. Similar to the Euler method every

solution for a new time step is calculated by its successor. The difference between

the Euler and the Runge-Kutta method is only the way of finding the slope for the

next step. In contrast to the Euler method, that uses only one point, the Runge-

Kutta method uses 4 different points for the time advance improving the accuracy

considerably. Algorithmically, this is expressed in the following way. Here, the same

naming conventions are used as for the description of the Euler method:

yn+1 = yn +
h

6
(a+ 2b+ 2c+ d) (3.1.3)

with the coefficients defined as follows

a = hf(tn, yn)

b = hf

(
tn +

1

2
h, yn +

1

2
a

)
c = hf

(
tn +

1

2
h, yn +

1

2
b

)
d = hf(tn + h, yn + c) . (3.1.4)
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3.1 ODE Solvers

A comparison between Euler and Runge-Kutta method will be shown in the following

section.

3.1.3 Comparison of Euler method and Runge-Kutta method

In this section the accuracy of the Runge-Kutta and Euler method will be analyzed.

One compares the Taylor expansion of y in h at t0

y(t0 + h) = y0 + hy′(t0) +
1

2
h2y′′(t0) +O(h3) (3.1.5)

with the equation of the Euler method. Inserting y′ = f(t, y) and

y′′ =
∂f

∂t
(t0, y(t0)) +

∂f

∂y
(t0, y(t0)) · f(t0, y(t0)) (3.1.6)

into the Taylor expansion, the error of the Euler method is given by the difference of

the algorithmic definition of the Euler method and the analytical Taylor expansion:

1

2
h2

[
∂f

∂t
(t0, y(t0)) +

∂f

∂y
(t0, y(t0)) · f(t0, y(t0))

]
+O(h3) . (3.1.7)

For the fourth-order Runge-Kutta method the numerical error is of order h5 [11].

In the following, a gyration motion was used to check the quality of these two ODE

solvers. For this test one uses a centripetal force, which holds the mass point on a

circular path according to the formula:

F = −v
2

r
. (3.1.8)

After finishing one turn the mass point should reach the starting point again. Due

to the accumulation of the numerical errors over the large number of time steps the

starting point will not exactly be reached. This error after each turn can be measured

and can be used to quantify the quality of the solver.

In figure 3.2 the error of the integration schemes are plotted as a function of the

number of turns. As expected, the Runge-Kutta method is more precise than the

Euler method. The error of the Euler method increases with the number of steps.

For the Runge-Kutta method it oscillates at very low values.

Another test of the ODE solver is to vary the time step for the same centripetal

movement and check the conservation of energy. If the variation was more than one

17



3 Solving the equations of motion
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Figure 3.2: numerical error as a function of number of turns for Euler (green) and
Runge-Kutta (red)

percent of the starting energy, the integration was stopped. This stopping time can

be used to compare energy conservation of the two approaches. The result is plotted

in figure 3.3. To reach the same total run-time with energy conservation, the Euler

method needs a much smaller time step than the Runge-Kutta method. So, for the

same time step the Runge-Kutta method guarantees a better energy conservation,

which is a very big advantage of this method. Therefore, the Runge-Kutta algorithm

allows longer times to be simulated while having better energy conservation.

3.2 Reduction of the system

Following the idea of Dullin [6] the system of the equations of motion is reduced to

a much lower number of dimensions, reducing the workload for solving the problem

numerically and allowing even analytical analysis. To do this an invariant set of

equations will be introduced and the Hamiltonian and the corresponding equations

of motion will then be solved. In order to find out, whether a system of equations

is really defining an invariant of the system, one has to check the derivatives of the

respective variables. To simplify the system the problem will reduced by the general

assumption that the spin axis of the top is vertical and its center of mass is on the

18



3.2 Reduction of the system
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Figure 3.3: number of steps with energy conservation variation below one percent as
a function of time step: green - Euler, red - Runge-Kutta

z-axis. This seems to be a good approximation according to the symmetry of the

system, in other words the system is invariant under a torus action. Then the set I
is given by:

I = {x = y = 0, θ = φ = 0, px = py = 0, pθ = pφ = 0} . (3.2.1)

To remove the singularity in the equations of motion from chapter 2.3 from 1
sin θ

ap-

pearing for vertical orientation. This can be removed by a variable transformation

following Dullin [6].

One introduces new angles with the following conventions. ϕ describes a rotation

about the x-axis, ϑ about the y-axis and ζ about the z-axis of the laboratory coor-

dinate system. So the transformation matrix is calculated as

R = Rx(ϕ)Ry(ϑ)Rz(ζ) (3.2.2)

with three rotational matrices of the R3:

Rx(ϕ) =

1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

 (3.2.3)
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3 Solving the equations of motion

Ry(ϑ) =

 cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ

 (3.2.4)

Rz(ζ) =

 cos ζ sin ζ 0

− sin ζ cos ζ 0

0 0 1

 (3.2.5)

R(ϕ, ϑ, ζ) =

 cos ζ cosϑ sin ζ cosϑ sinϑ

− sinϕ cos ζ sinϑ− cosϕ sin ζ cosϕ cos ζ − sinϕ sin ζ sinϑ sinϕ cosϑ

sinϕ sin ζ − cosϕ cos ζ sinϑ − cosϕ sin ζ sinϑ− sinϕ cos ζ cosϕ cosϑ

 .

(3.2.6)

To compute the expression for the rotational energy in the new coordinates, the

angular velocity ~ω is still missing. To evaluate it, the following steps have to be

done. The change of the transformation matrix in laboratory coordinates has to be

expressed in a base of the SO(3) group:

(RT ·dR
dt

) =

 0 ϕ̇ sinϑ+ ζ̇ −ϕ̇ sin ζ cosϑ+ ϑ̇ cos ζ

−ϕ̇ sinϑ− ζ̇ 0 ϑ̇ sin ζ + ϕ̇ cos ζ cosϑ

ϕ̇ sin ζ cosϑ− ϑ̇ cos ζ −ϑ̇ sin ζ − ϕ̇ cos ζ cosϑ 0

 .

(3.2.7)

The base of the SO(3) group is given by [13]

S1 =

0 0 0

0 0 −1

0 1 0

 S2 =

 0 0 1

0 0 0

−1 0 0

 S3 =

0 −1 0

1 0 0

0 0 0

 . (3.2.8)

With the help of this base the vector components of the angular velocity can be

identified from the matrix (3.2.7). Writing them as a vector gives:

~ω =

−ϑ̇ sin ζ − ϕ̇ cos ζ cosϑ

−ϕ̇ sin ζ cosϑ+ ϑ̇ cos ζ

−ϕ̇ sinϑ− ζ̇

 . (3.2.9)

With these calculations it is possible to express the rotational energy, which was the

problem when trying to reduce the system, in these new variables:

Trot =
1

2

[(
ϕ̇ sinϑ+ ζ̇

)2

C +
(
ζ̇2 + ϕ̇2 cos2 ϑ

)
A

]
. (3.2.10)
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3.2 Reduction of the system

The whole Hamiltonian can then be written as:

H =
1

2m

(
p2
x + p2

y + p2
z

)
+

1

2

[(
ϕ̇ sinϑ+ ζ̇

)2

C +
(
ζ̇2 + ϕ̇2 cos2 ϑ

)
A

]
+ µ (sinϑBx + sinϕ cosϑBy + cosϕ cosϑBz) +mgz . (3.2.11)

Now, the reduction can be done with the formulated invariant set of equations I.

This leads to a reduced form of the Hamiltonian:

HI(z, ψ, pz, pψ) =
p2
z

2m
+
p2
ψ

2C
+ µΦ1(z) +mgz . (3.2.12)

Of course the derivatives of the variables that occur in the invariant set are all equal

to zero. So the system of 12 dimensions can be reduced to a system of four degrees

of freedom:

ż =
pz
m

ṗz = −Uz(0, 0, z, 0, 0)

ψ̇ =
pψ
C
≡ σ ṗψ = 0 .

The spin rate of the top is defined as σ and is constant for the invariant set. With

the ODE solvers, which were introduced above, these equations of motion can be

integrated and the solutions can be plotted. For the variable z one gets the phase

portrait shown in figure 3.4. One can realize that there are stable trajectories.
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Figure 3.4: phase space pz(z), every color represents another energy
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3 Solving the equations of motion

3.3 Stability and Linearization

The potential from the reduced Hamiltonian is given by:

UI = mgz + µΦ1(z) . (3.3.1)

To find an equilibrium condition for z the potential has to be differentiated with

respect to z and the roots of this equation are needed:

U ′I(z) = mg + µΦ2(z) = 0 . (3.3.2)

We can visualize this equation by plotting both terms and search for intersection

points:
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Figure 3.5: equilibrium condition for z: green - mg, red - −µΦ2

left: without hole, right: with hole

Dullin [6] calculated a base plate without a hole. In this work the simulations reflect

a toy levitron with a hole in the base plate. The top weighs 28,4g, which is lower

than the mass of Dullin’s top. Therefore, the line of the gravitational force mg is

at greater values resulting in different intersection points where the forces balance.

For the base plate of radius 10cm with a hole of 3cm these equilibrium points are at

7,62cm and 15,68cm. There are huge differences for small z between the cases, where

the base plate is taken without a hole and the one with a hole, but for larger z the

differences get smaller (figure 3.6).
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3.3 Stability and Linearization
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For a stable solution, the position of the top should be in a potential minimum,

thus the second derivative has to be greater than zero, so:

U ′′I (z) = µΦ3(z) > 0 . (3.3.3)

So the first intersection point is an unstable solution at zu, the second intersection

point is a stable solution for equilibrium at zs. Notice that in figure 3.5 −µΦ2(z)

was plotted. Due to the different masses of the top, Dullin gets a lower stable point

compared to this work. For the stable solution, one can write the z-dependence of

the system in the following way:

z = zs ż = 0 . (3.3.4)

For ζ it looks like:

ζ = σt pζ = σC . (3.3.5)

The eight degrees of freedom, which are left, can be calculated from the Hamiltonian
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3 Solving the equations of motion

from equation (2.3). Afterwards the system can be linearized and written as follows:

∆ẋ =
1

m
∆px

∆ẏ =
1

m
∆py

∆ϑ̇ =
1

A
∆pϑ

∆ϕ̇ = −pζ
A

∆ϑ+
1

A
∆pϕ

∆ṗx =
µΦ3

2
∆x+

µΦ2

2
∆ϑ

∆ṗy =
µΦ3

2
∆y +

µΦ2

2
∆ϕ

∆ṗϑ =
µΦ2

2
∆x+

(
µΦ1 −

p2
ζ

A

)
∆ϑ+

pζ
A

∆pϕ

∆ṗϕ =
µΦ2

2
∆y + µΦ1∆ϕ .

Obviously, Dullin had some typos in his publication with wrong signs in these ex-

pressions. But the final results are in agreement. Defining two complex variables

u = ∆x + i∆y and v = ∆ϑ + i∆ϕ the system can be converted into an equation of

the form ẅ = Aw + Bẇ:(
ü

v̈

)
=

(
µΦ3

2m
µΦ2

2m
µΦ2

2A
µΦ1

A

)(
u

v

)
+

(
0 0

0 −iσC
A

)(
u̇

v̇

)
. (3.3.6)

Such an equation is solved by the ansatz w(t) = w0eλt, yielding:

w0λ
2eλt = Aw0eλt +Bw0λeλt . (3.3.7)

Dividing both sides by w0eλt and move the left term to the right, one gets:

A + λB− λ21 = 0 . (3.3.8)

To solve this equation one has to calculate the determinant, leading to the following

polynomial expression:

P (λ) = λ4 − iσ%λ3 − µ
(

Φ1

A
+

Φ3

2m

)
λ2 + iσ%µ

Φ3

2m
λ+ µ

2Φ1φ3 − Φ2
2

4mA
. (3.3.9)
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3.3 Stability and Linearization

This polynomial has to be zero for stable solutions. % is the quotient of the moments

of inertia C
A

and the Φi are computed at the stable point in z direction zs. This

polynomial can be transformed into a more manageable form by substituting λ = iσ%t

and dividing by (σ%)4. Furthermore the following identities should be introduced [6]:

g1 =
µΦ1(zs)

σ2%2A
g2 =

µΦ2(zs)

2σ2%2
√
mA

g3 =
µΦ3(zs)

2σ2%2m
. (3.3.10)

So one gets the following polynomial in t:

N(t) = t4 − t3 + (g1 + g3)t2 − g3t+ g1g3 − g2
2 . (3.3.11)

To guarantee stability the stability condition from equation (3.3.2) for z movements

must be fulfilled and the polynomial N(t) has to have four real roots [6]. In other

words, one has to search for coefficients for which the discriminantG(g1, g2, g3) ofN(t)

is equal zero. For a polynomial of order four the computational software Mathematica

computed the discriminant

G(g1, g2, g3) =16g1g
5
3 − 4g5

3 − 16g2
2g

4
3 − 64g2

1g
4
3 + 48g1g

4
3 − 8g4

3 + 192g1g
2
2g

3
3 − 60g2

2g
3
3

+ 96g3
1g

3
3 − 88g2

1g
3
3 + 32g1g

3
3 − 4g3

3 − 128g4
2g

2
3 − 352g2

1g
2
2g

2
3

+ 124g1g
2
2g

2
3 − 12g2

2g
2
3 − 64g4

1g
2
3 + 48g3

1g
2
3 − 8g2

1g
2
3 + 512g1g

4
2g3

− 48g4
2g3 + 192g3

1g
2
2g3 − 196g2

1g
2
2g3 + 36g1g

2
2g3 + 16g5

1g3 − 4g4
1g3

− 256g6
2 − 128g2

1g
4
2 + 144g1g

4
2 − 27g4

2 − 16g4
1g

2
2 + 4g3

1g
2
2 . (3.3.12)

The gi have to fulfill further constraints. For equilibrium in z direction µΦ2 = −mg
and since g2 is proportional to µΦ2 it must be fulfilled that g2 < 0. For vertical

stability the inequality µΦ3 > 0 has to be satisfied, hence g3 > 0. As mentioned

earlier in this work, the magnetic field is pointing upwards on the z-axis, so −Φ1 > 0

and following g1 > 0.

The next step will be to compute the critical spin rates for stable solutions following

the approach of Dullin [6]. The space of all possible gi is defined as a coefficient space

and the subset G is the set, where N(t) has four real roots. A change of the spin

rate determines a ray through the origin in coefficient space. Then, the critical spin

rates are simply the points where the ray intersects the subset G of the coefficient

space. For points inside G and on the ray one gets a relative equilibrium. The ray

is described by l(g1, g2, g3) with l a real parameter. Therefore the critical spin rates

25



3 Solving the equations of motion

were given by special values of l. These values can be calculated by setting the

polynomial L(l) equal zero:

L(l) = G(lg1, lg2, lg3)
!

= 0 . (3.3.13)

To eliminate the trivial solution l = 0, one can divide the equation by l3 and get an

polynomial of order three. To solve this the variables g21 = −g2
g1

, g31 = −g3
g1

and α,

which is an effective length and is calculated by
√

A
m

, are introduced:

g21 = −α Φ2(zs)

2Φ1(zs)
g31 = −α2 Φ3(zs)

2Φ1(zs)
. (3.3.14)

A position z can be found for which Φ3 is equal zero, so that the vertical equilibrium

is assured. zc is associated with the maximum weight of the top at which this vertical

equilibrium is still assured. Then it follows, that

g21 = −α Φ2(zc)

2Φ1(zc)
<

1√
12
. (3.3.15)

Now the polynomial equation L(l) = 0 can be written by dividing by l in the following

way:

L(l, g31 = 0) = −16(4g2
21 + 1)2l2 + (144g21 + 4)l − 27g2

21 . (3.3.16)

To simplify the solutions one can make the approximation of small g21 and use the

Taylor series. Then the solutions are given by:

l1 =
1

4
(1 + g2

21) ≈ 1

4
(3.3.17)

l2 =
27

4
g2

21 (3.3.18)

Now these values for l must be transformed into values for the critical spin rates

σi. For this one has to look at the definition of g2 in equation (3.3.10) and use the

equilibrium condition −mg = µΦ2:

g2 =
µΦ2

2σ2%2
√
mA

=
−g

2σ2%2α
=
−gA

2σ2%Cα
=
−mgα2

2σ2%Cα
. (3.3.19)
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3.3 Stability and Linearization

Solving this equation for σ2 gives:

σ2 = − mgα

2%g2C
. (3.3.20)

Setting the critical value −lig21 for g2 one gets:

σ2
i =

mgα

2%lig21C
=

gA

2%lig21αC
=

g

2%2lig21α
=
−gΦ1

%2liα2Φ2

. (3.3.21)

For the last step it is used that g21 = −αΦ2

2Φ1
. Including zc for which Φ3 = 0 one gets

for the first critical spin rate:

σ1 ≈ −4
gΦ1(zc)

Φ2(zc)α2%2
. (3.3.22)

The second spin rate can be written as follows:

σ2 ≈ −
4gΦ1(zc)

27g2
21α

2%2Φ2(zc)
= − 16Φ3

1g

27α4Φ3
2%

2
=

16

27

(
−Φ1

Φ2

)3
g

α4%2
. (3.3.23)

The critical spin rates as a function of g21 are shown in figure 3.7
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Figure 3.7: critical spin rates as a function of g21

At point zc one gets σ1
2π
≈ 17Hz [6]. This is nearly the same as one can measure
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3 Solving the equations of motion

in experiments [9]. One can compare these results with numerical analysis scanning

the tilt and the spin rate for stable trajectories [5]. The results of this approach are

shown in figure 3.8 and show similar values of spin and tilt rates as presented before.

Figure 3.8: stable solutions as a function of spin and tilt [5]

To get persistent levitation it is necessary to have a small tilt and a convenient

spin rate, here expressed in a normed parameter connected with the spin rate. It is

important to realize that too large tilts as well as a too fast or too slow spinning of

the top leads to unstable trajectories.
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4 Conclusions

The goal of the work was to examine the physics of a levitron. Following classical

mechanics one can formulate the equations of motion from the Hamiltonian. To

simplify the analytical solutions, an invariant of the system was introduced. For

this invariant set of equations the Hamiltonian was reduced. Using a linearization

approach the stability of the system was analyzed. The comparison of critical spin

rates obtained with this approach agreed with other numerical scans from literature.

The theory of a levitating top is as challenging as playing with it as a physical toy.
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