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1 Motivation

For spacecrafts the concept of ion thrusters presents a very efficient method
of propulsion. Ion thrusters generate a low thrust with much higher efficiency
than chemical propulsion systems [1] and are commonly used on satellites in
earth orbits, such as ”Gravity field and steady-state Ocean Circulation Explorer
(GOCE)” [2], or on long term deep space missions like ”Deep Space 1” [3] or
”Dawn” [4].

Thrust is generated by accelerating ions of a plasma discharge and exhausting
them into space. The plasma within the thruster channel is dominated by electric
and magnetic fields, plasma-wall-interaction and non-linear effects. The shape
and size of the plume have to be considered in the design of ion thrusters to
account for possible damages caused by ion sputtering, but experimental access
is difficult [1].

Plasma simulations offer the means to understand the plasma physics within
an ion thruster and can aid the design of new thruster concepts. A widely
applied method is the Particle-in-Cell (PIC) scheme, simulating the trajectories
of superparticles consisting of many real particles. The simulation of an ion
thruster is difficult since the electron Debye length of around 10−3 m has to be
resolved spatially on a domain that covers the dimensions of the thruster and the
plume that can extend to a distance from the thruster of some m. The electron
plasma frequency has to be resolved, resulting in timesteps of about 10−8 s, for
a simulation which should cover a time in the range of up to one second. Even
with modern hardware, state-of-the-art features such as similarity scaling [5]
and non-uniform grids [6] have to be used to make simulation of an ion thruster
conceivable for only short times.

The simulation of the plume is of great difficulty as plume effects become
important on the length scale of several meters, which can not be covered by the
PIC method. To make plume simulations possible, a hybrid PIC method can be
introduced, modeling the electrons as a fluid while retaining the kinetic ions. The
electron Debye length in the range of 10−3 m and electron plasma frequency of
∼ 108 Hz no longer have to be resolved, reducing computational costs significantly
as the new limiting length and time scales are the ion Debye length of ∼ 1 m
and ion plasma frequency of ∼ 104 Hz. As ion thruster plasmas are non-thermal
and dominated by the magnetic field and sheath effects, the fluid electron model
with a Maxwellian velocity distribution cannot be applied within the thruster
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Chapter 1. Motivation

channel. Although kinetic effects are transferred by the particles into the plume
as shown in [7], a hybrid model can still be applied as an approximation, since
particle interaction is minimal in that area. Hybrid plume models have been
used for Hall thrusters successfully [8].

In this thesis the application of a hybrid plume model to the simulation of the
Highly Efficient Multistage Plasma thruster (HEMP-T) will be presented, along
with a comparison to the results of the fully kinetic PIC scheme used for the
simulation of the thruster, to understand the benefits and limitations of such a
fluid model for ion thrusters. The first part of this thesis covers the basic concepts
of ion thrusters and a more detailed description of the HEMP-T. The second
part contains a detailed description of the electrostatic PIC scheme and a short
description of the code used to simulate HEMP-T. Newly implemented numerical
concepts for the hybrid plume model and their validation will be presented in the
third chapter. The fourth chapter will discuss the physical results of the hybrid
plume model along with a quantitative comparison between the fully kinetic PIC
scheme and the hybrid model for different applications.
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2 Electric propulsion using plasmas

In this chapter, a short overview of different thruster concepts used in space
propulsion is given. The basic equations of space propulsion are discussed along
with different thruster concepts. The chapter concludes with a more detailed
description of the HEMP-T.

2.1 Basics of electric propulsion

To enable movement in space, a propellant of mass m is expelled with exhaust
velocity vex from a thruster mounted on a spacecraft, generating a net thrust T .
For a straight line movement and constant vex the thrust is defined as

T = −dp

dt
= vex

dm

dt
,

with the craft’s momentum p(t) = m(t)v(t). An important characterization of
a spacecraft’s operating range is given by the change of velocity ∆v that can be
generated by the thruster. The mass of the craft m(t) is given as the sum of its
fuel mass mf and its empty mass m0. If a constant mass flow rate ṁ = ṁf is
assumed, ∆v is then given by the rocket equation [1]

∆v = vex ln

(
m0

m0 +mf

)
. (2.1)

It is obvious that an increase in the exhaust velocity of the propellant will increase
the spacecraft’s range. Vice versa this means for constant rocket mass that the
same ∆v can be achieved with a lower amount of fuel mass mf , hence increasing
the empty weight m0 of the spacecraft allowing more freight to be transported
in space. This results in an increase in payload ratio, the fraction of the mass of
the transported freight compared to the overall weight of the spacecraft.

The exhaust velocity thus is a measure of a thruster’s fuel efficiency. This is
expressed by the specific impulse [1]

Isp =
vex
g
,
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Chapter 2. Electric propulsion using plasmas

with the gravitational acceleration g ≈ 9.81 m/s2. As real mass exhaustion does
not occur in a straight line movement, both the thrust as well as the specific
impulse have to be adjusted using the half divergence angle αeff of the mass
exhaust

T = T0 cosαeff

Isp = Isp,0 cosαeff (2.2)

with the subscript 0 denoting the straight line quantities.

In space travel there are two commonly used types of thrusters relying on mass
exhaustion. The first and most well-known ones are called chemical thrusters.
The spacecraft either carries solid fuel or liquid fuel and oxidizer, which are
injected into the thruster’s combustion chamber and burned, resulting in an
exhaust of the ensuing reaction products. The maximum exhaust velocity is
around 2000 m/s [9], thus limiting the maximum efficiency of chemical thrusters
and resulting in a need to use different thruster concepts to gain higher efficiency,
such as ion thrusters. Chemical thrusters typically have a Isp of 100 s (solid fuel)
to 500 s (liquid fuel and oxidizer) but produce a large amount of thrust in the
range of some kN [10].

The other type which was developed only recently is the concept of an ion
thruster. The basic idea is that the fuel, usually a noble gas, is ionized within
the thruster channel using electrons and is then accelerated toward the thruster
exit, generating a thrust by exhaustion of ions. In the thruster channel a plasma
is formed. Ion thrusters are very fuel efficient compared to chemical thrusters
with an Isp ≈ 5000 s. An ion thruster’s efficiency µtot is given by the ionization
efficiency µion, the beam power efficiency µB and the half divergence angle αeff [1]

µtot = µB · µion · cos2 αeff .

The ionization efficiency is the ratio of ion current to total mass flow and the
beam efficiency is the ratio of beam power to total power consumption of the
thruster. In order to make an ion thruster more efficient it is necessary to limit
the ion beam divergence and to maximize ionization rates within the thruster
channel. Ion thrusters usually create a small thrust in the range of several mN [1],
thus making them appropriate for long term use on light-weight spacecrafts, such
as satellites orbiting the earth or for use on scientific exploration missions.

In space missions the integral thrust is of importance, denoting the overall
thrust generated over the lifespan of the propulsion device. As ion thrusters only
produce a low net thrust, the runtime of such a thruster increases in order to
generate an integral thrust comparable to that of a chemical thruster. In ion
propulsion the plasma-wall interactions limit the lifetime of such a device, either
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Chapter 2. Electric propulsion using plasmas

by sputtering of the grid on grid thrusters [1] or due to plasma-wall interactions
within the thruster channel, as is the case with hall thrusters [11]. Thus, it is
of great importance to create thruster concepts with as large of a lifetime as
possible by reducing the sputter rate. One such concept is that of the HEMP-T
which is presented in the next chapter.

2.2 The HEMP ion thruster

There are different types of ion thrusters, distinguished by their operating princi-
ple. The simplest design is to ionize the propulsion gas in an ionization chamber
using an electron beam and accelerating the ions in the thruster channel towards
the exit using an electrostatic field generated by an anode in the inner thruster
and a grid serving as cathode at the end of the channel. This design has only a
limited lifetime as the grid is sputtered by the ions passing through.

Figure 2.1: Basic structure of the HEMP-DM3a thruster with the cusp structure
of the magnetic field.

To avoid such effects, gridless ion thruster concepts have been developed, most
notably the Stationary Plasma Thruster (SPT), as described in [12], and the
High Efficient Multistage Plasma Thruster (HEMP-T). The HEMP-DM3a de-
sign, as shown in fig. 2.1, possesses a rotational symmetry. The bottom of the
channel contains the anode with a voltage of 500 V, with the cathode supplied
by an electron beam outside the channel which also serves as electron source
and neutralizer for the exhausted ions. The thruster channel is surrounded with
permanent magnet rings of opposite magnetization. This results in a nearly con-
stant magnetic field at the symmetry axis of the thruster with the exception of
cusp regions, where two rings with opposite magnetization are located next to
each other. The inner boundary of the thruster channel is made up of a dielec-
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Chapter 2. Electric propulsion using plasmas

tric ceramic consisting of Boron Nitrite which has a high threshold to reduce
sputtering [13]. The thruster is concluded with a grounded metal plate attached
outside the dielectric at the thruster exit. A more detailed description of the
thruster can be found in [14].

Thruster channel length L = 5.1 cm
Thruster channel radius R = 0.9 cm
Discharge voltage Ua = 500 V
Approx. magnetic field B = 0.1 T
Electron Larmor radius rL,e = 4.8× 10−3 cm
Electron plasma frequency (channel) ωp,e = 8.98 GHz
Electron plasma frequency (plume) ωp,e = 564 MHz
Electron Debye length (channel) λD,e = 1.49× 10−5 m
Electron Debye length (plume) λD,e = 1.49× 10−3 m
Ion Larmor radius rL,i = 2.3 cm
Ion plasma frequency (channel) ωp,i = 18.3 MHz
Ion plasma frequency (plume) ωp,i = 14.8 kHz
Ion Debye length (channel) λD,i = 1.49× 10−5 m
Ion Debye length (plume) λD,i = 1.49 m
Neutral density nn = 1021 − 1019 m−3

Electron and ion density ne = ni = 1018 m−3

Electron and ion temperature Te = Ti = 14 eV
Neutral temperature Tn = 0.069 eV (800 K)

Table 2.1: Operational parameters of the HEMP-DM3a thruster model inside the
thruster channel.

During operation the thruster channel is filled with Xenon gas. The electrons,
generated by the neutralizer in the plume, are accelerated into the thruster chan-
nel by the electric field building up from the anode to the exit. Near the thruster
axis the electrons are accelerated toward the anode, ionizing the gas and creating
mostly Xe+− ions. Away from the axis the cusp structure acts as a magnetic
mirror, trapping and kinetically heating the electrons, thus strongly increasing
ionization efficiency and lifetime of the electrons within the thruster channel.

Due to the strong parallel transport of charged particles near the axis, the
potential has a flat structure throughout the channel with only little deviations
in the cusp regions. The radial acceleration of ions is minimal, with ion energies
below the sputtering threshold of the dielectric channel walls, minimizing erosion
of the dielectric channel walls. A large potential drop occurs at the thruster exit,
accelerating the ions into the plume, which is similar to a grid thruster [10] but
without a grid that is subject to sputtering damage.
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Chapter 2. Electric propulsion using plasmas

The plume is of great importance, as a high beam divergence leads to a reduced
thruster efficiency, as given in eq. (2.2). Radially accelerated ions may also lead to
sputtering damages of spacecraft structures in a large distance from the thruster
exit. Hence knowledge of a thruster’s plume structure and beam divergence is
crucial. To reduce radial acceleration, the ions are partially neutralized by the
electron source. The grounded metal further reduces beam divergence. The
HEMP-DM3a reaches a specific impulse of up to 2300 s with a thrust > 44 mN
[15]. The operational parameters are listed in table 2.1. To be able to understand
the physics of ion thrusters kinetic plasma models are needed, which will be
introduced in the next chapter.
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3 Simulation of plasmas

3.1 Basic plasma description

Before introducing the PIC simulation method for plasmas, the basic plasma
properties and an introduction to its theoretical description is given. Further-
more, the fluid description of plasmas, plasma sheath effects and collisional effects
in plasmas are discussed.

3.1.1 Kinetic description of plasmas

The kinetic description of a plasma species s is given by the distribution function
fs(~x,~v, t), which in general is seven dimensional. The evolution of fs is obtained
with the total time derivative of fs, resulting in the kinetic equation

∂fs
∂t

+ ~v∇~xfs +
~F

ms

∇~vfs =

(
∂fs
∂t

)
coll

, (3.1)

with the force ~F acting on the particles and ∇~x and ∇~v denoting the gradient
in coordinate and velocity space, respectively. The term

(
∂fs
∂t

)
coll

denotes the
change of fs in time due to collisional effects [16].

To describe a plasma entirely it would be sufficient to solve this equation for
each species s. The difficulties lie in the high dimensionality of fs since it is
seven-dimensional as well as the modeling and calculation of the right hand side,
which denotes the change of fs in time due to collisional effects.

Additional equations have to be solved self-consistently to calculate ~F . The
calculation of the Coulomb force acting on each particle, which scales with the
square of the particle number, can be replaced by solving macroscopic fields on
a mesh, which are then obtained by solving Maxwell’s equations, scaling linearly
with the number of particles. In the description of the HEMP-T, only the electro-
static case is of interest, as ion currents are so small, that the induced magnetic
field is negligible compared to the outside field. Thus, Maxwell’s equations are
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Chapter 3. Simulation of plasmas

reduced to the set

~E(~x, t) = −∇Φ(~x, t) (3.2)

∆Φ(~x, t) = −n(~x, t)

εε0

(3.3)

for the electric field ~E (~x, t) and the electrostatic potential Φ (~x, t), along with
the charge density n (~x, t). The force then acting on each particle with velocity
~v is the Lorentz force

~FL (~x,~v, t) = q
(
~E (~x, t) + ~v × ~B (~x, t)

)
(3.4)

with an external magnetic field ~B (~x, t).
Depending on the type of plasma considered, the kinetic equation eq. (3.1)

takes different forms. If the plasma particles move with high energy, the collision
term nearly vanishes, resulting in Vlasov’s equation for collisionless plasma. If
the molecular chaos assumption is used, the Boltzmann equation is obtained.
A binary collision approximation leads to the Fokker-Planck equation. A more
detailed description can be found in [17].

If the distribution function is known, the macroscopic plasma properties are
obtained by calculation of the moments of the distribution function. The most
important moments are the 0th moment, giving the species’ charge density

ns (~x, t) = qs

∫
fs (~x,~v, t) d~v

and the first moment in velocity space giving the mean velocity

~us (~x, t) =
1

n (~x, t)

∫
~vfs (~x,~v, t) d~v

of s. From the above equations one can see that the distribution function may
be written as

fs(~x,~v, t) =
1

qs
ns (~x, t) f̂s (~x,~v, t) (3.5)

with a normalized velocity distribution function∫
f̂s (~x,~v, t) d~v = 1 . (3.6)

A thermodynamic equilibrium may be assumed by each species separately, gener-
ating a partial thermodynamic equilibrium. In this case, the distribution function
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takes the form of a Maxwell-Boltzmann-distribution [16]

fms ((~x,~v, t) =
1

qs
ns (~x, t)

(
ms

2πkBTs

)3/2

exp

[
− |~v|

2

v2
th,s

]
(3.7)

with species temperature Ts and thermal velocity

vth,s =

√
2kBTs
ms

(3.8)

for each degree of freedom. This distribution gives an average velocity 〈|~v|〉 and
a root-mean-square velocity vrms =

√
〈~v2〉 of

〈|~v|〉 =

√
8kBTs
ms

(3.9)

vrm,s =

√
3kBTs
ms

. (3.10)

In a fully equilibrated plasma all species have the same temperature. A thermo-
dynamic equilibrium is assumed in a collision dominated plasma, with no sheath
effects present. Particle motion then resembles a random movement with a mean
velocity as in eq. (3.9), similar to Brownian motion [16].

3.1.2 Fluid description of plasmas

Instead of using the kinetic equation or following each particle’s trajectory, a
plasma may be described as a fluid carrying electric charge. For species s the
fluid equation is obtained by multiplying the equation of single particle motion
with the species’ charge density ns

msns
d~us
dt

= qsns

(
~E + ~us × ~B

)
and applying the convective derivative on the species’ average velocity ~us

d~us
dt

=
∂~us
∂t

+ (~us · ∇~x) ~us

to observe the fluid elements in a fixed spatial frame. The thermal motion of
particles has to be taken into account by the equation as well, generating a
pressure force proportional to −∇~xPPP , with the stress tensor PPP . The collisionless

11



Chapter 3. Simulation of plasmas

fluid equation of motion then becomes

msns

[
∂~us
∂t

+ (~us · ∇~x) ~us
]

= qsns

(
~E + ~us × ~B

)
−∇~xPPP . (3.11)

To obtain a self-consistent solution, the equations for the electric field, eqs. (3.2)
and (3.3), as well as the continuity equation

∂ns
∂t

+∇~x (ns~us) = 0 (3.12)

have to be solved.

The stress tensor PPP is often obtained with the assumption of a Maxwellian
velocity distribution for s. If the distribution is isotropic in all dimensions and
heat flow is neglected, the stress tensor reduces to the scalar pressure ps = nskBTs
per unit volume. Most times such a Maxwellian distribution for ions is assumed
as a more complicated model for the stress tensor would increase the comlplexity
of the model tremendously.

In the fluid description of a plasma it is often beneficial to neglect the mass of
Maxwellian electrons, meaning they follow changes of the electric field instanta-
neously. For this case the Boltzmann relation for electron density

ne (Φ) = ne0 exp

[
e (Φ− Φ0)

kbT

]
(3.13)

can be derived from eq. (3.11) [16]. This leads to a reduced calculational ex-
pense in solving the set of fluid equations. This relation holds if only forces on
timescales much larger than that of the electron plasma frequency are considered,
such that electron inertia can be neglected.

To further reduce model complexity, approximations to the fluid model may
be used. One such approach links the species’ temperature to its charge density

Ts = Tref,s

(
ns
nref

)α−1

. (3.14)

The parameter α is chosen to be in the range of ∈ [1, 5/3], the lower limit resulting
in constant temperature and the upper limit chosen to be the adiabatic constant
for a monoatomic gas. This model as been previously applied to plume modeling
of ion thrusters with good success [8].

The fluid description is best suited for species’ in a Maxwellian regime, espe-
cially for electrons if the Boltzmann relation eq. (3.13) can be used. This simpli-
fies the plasma description significantly when compared to the kinetic description
eq. (3.1). A Maxwellian distribution is assumed if a plasma is dominated by col-
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lisions, or vice versa, if particles do not move in a straight line for long times and
distances. That means the mean free paths for particle collisions need to be small.
But straight line motion is also limited by external fields, via ~E × ~B−drift and
gyration around magnetic field lines in non-magnetized plasmas. Such systems
may be described suitably by the fluid approach. Respectively, magnetized plas-
mas with effective transport along the magnetic field lines with long mean free
paths are not suitable for a fluid description. Also plasma sheaths and regions
with strong kinetic effects, such as particle heating are not described well by this
approximation, as these present a deviation from the equilibrium assumption.

As the HEMP-T electrons are dominated by magnetic transport, electron heat-
ing in the magnetic cusp regions and plasma wall contact, it is not to be expected
that a fluid description of the electrons will work well within the thruster chan-
nel, reducing the applicability of an electron fluid model to regions outside the
thruster channel.
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Figure 3.1: Simulation results for the axial distribution of the z-component of
electron velocity [7]

The simulation results for the electron energy distribution of [7], as shown
in fig. 3.1, further support that fact. On the left the axial distribution of the
z−component of electron velocity shows that electron heating takes place mostly
in the magnetic cusp region of the thruster at r = 20 mm, where kinetic effects
are dominant. Thus, a fluid description of electrons in the thruster channel is
not expected to be suitable.

3.1.3 Plasma sheath

The plasmas in ion thrusters are strongly influenced by plasma wall interactions.
The plasma sheath is dominated by a negative potential drop ∆Φ near the wall,
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due to plasma electrons with higher mobility being absorbed by the wall, re-
sulting in a negatively charged boundary. Ions are thus accelerated towards and
neutralized close to the wall, while electrons with energies lower than e∆Φ are
reflected. Hence particle densities decrease near the wall, with a stronger re-
duction in electron density. This situation in a plasma sheath is represented in
fig. 3.2.

Figure 3.2: Situation in a plasma sheath: red arrows indicate ion motion, blue
arrows indicate electron motion and orange arrows indicate neutral
motion. [18]

In steady state the particle fluxes of electrons and ions are assumed to be equal.
If one also assumes zero net current ji = je and quasi-neutrality the potential
drop can be calculated, according to [19], to be

e∆Φ ≈ −kBTe ln

(√
mi

2πme

)

14
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with the electron current density

je = −ne
4
〈ve〉 exp

[
− e∆Φ

kBTe

]
.

This model neglects effects such as sputtering of the plasma wall and secondary
electron emission (SEE) with coefficient γ. If the latter is considered the effective
potential drop, according to [20], is modified to be

e∆Φeff ≈ −kBTe ln

(
(1− γ)

√
mi

2πme

)
.

The potential drop is thus reduced, leading to a larger number of electrons in
the sheath, resulting in lower electron energies within the plasma. For high SEE
coefficients γ ≈ 1, which can be found in ion thrusters, the classical Debye sheath
transforms into a double layer structure with a potential well near the wall that
can trap a fraction of the electrons. Spatial sheath oscillations with frequencies
in the GHz range can occur, leading to sheath instabilities [21].

3.1.4 Collisional effects in the HEMP-T

In order to fully understand the physics of the HEMP thruster, the influence of
collisional effects in the plasma has to be considered. In order to quantify the
influence, the mean free path of an electron within the thruster is considered.
If the mean free path is of the order of the thruster dimensions, the electrons
will not have a Maxwellian velocity distribution, as the plasma is not dominated
by particle collisions. The shortest mean free path is that of charge exchange
collisions between ions and neutrals in the channel. An estimate of the mean
free path is given by

λmfp,CX =
vn

〈σCXvion〉nn
,

which will be considered to quantify the collisional effects. Due to very strong
coupling of ions and neutrals by charge exchange collisions both have similar
temperatures in the channel, hence the velocities vion and vn cancel each other.
The neutral density in the channel is estimated to be about 5 · 1019 m−3 and the
cross section for charge-exchange collisions can be calculated according to [22].
Therefore, the estimated mean free path is

λmfp,CX =
1

1.57 · 10−14 cm2 · 5 · 1013 cm−3
≈ 1.2 cm . (3.15)
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Chapter 3. Simulation of plasmas

As this is the smallest collisional length scale in the thruster channel, one can see
that the channel plasma cannot be Maxwellian, as this length scale is still larger
than the channel radius of 0.9 cm and the channel plasma is not collision domi-
nated. The mean free paths for the electrons in particular are larger, resulting
in kinetic effects dominating throughout the thruster channel and even reaching
into the plume. This non-Maxwellian behavior is further supported by fig. 3.3,
showing the electron energy distribution at different axial positions. In this log-
arithmic plot, a Maxwellian energy distribution function would correspond to
a straight line, but for all positions on the thruster axis the electron distribu-
tion differs from such. It can be better described by a disturbed Maxwellian
distribution [23].
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Figure 3.3: Simulation results for the electron energy distribution at 10 mm (red),
35 mm (green) and r = 51 mm (blue) [7]

As shown above, these non-Maxwellian effects extend into the plume due to the
long mean free paths in the system. Hence, a fluid model for the electrons in the
plume would only be an approximation. But as the focus in plume simulations is
on the ions, as these generate the thrust and are the cause of sputtering damages.
With only small particle densities and collision frequencies in the plume, the fluid
electron model can still be suitable to describe the plume physics.

3.2 The Particle-in-Cell scheme

One method to simulate a plasma is the Particle-in-Cell scheme. It was first
introduced in the late 1950s by Bunemann and Dawson [24] and has developed
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into an often applied method not only in plasma physics but in other fields as
well. This approach has proven to be better applicable than direct solution of the
kinetic equation eq. (3.1), where difficulties arise due to the high dimensionality
and coupling of the equations.

In the PIC cycle, a grid is introduced, dividing the simulation region into cells.
This enables treatment of large systems by calculating the elctrostatic potential
only on the grid instead of N2 direct particle interactions. Collisional effects are
only taken into account within each cell seperately.

The PIC cycle starts at a given time t0 by initializing the system and calcu-
lating the macroscopic quantities, such as the particle density, on the grid points
using the particle positions and velocities. The forces acting on the particles are
calculated on the grid and then reassigned to each particle, resulting in a change
of the particle’s position and velocity. After calculating further particle interac-
tions, i.e. particle collisions and surface interactions, the system is advanced by a
discrete timestep ∆t and returns to the start of the cycle. To assure stability, the
timestep has to be chosen small enough to resolve the fastest particle movement,
so it has to be of the order of the electron plasma frequency

ωP,e =

√
neqe
εε0me

. (3.16)

The grid spacing has to be of the order of the electron Debye length

λD,e =

√
ε0kBTe
neqe

(3.17)

to resolve these scales.

In a plasma the force acting on a charged particle is the Lorentz force eq. (3.4).
Along with Newton’s third law the equations of motion for the charged particles

d~xi
dt

= ~vi

d~vi
dt

=
1

mi

~F (~xi, ~vi) =
qi
mi

(
~E(~xi) + ~vi × ~B(~xi)

)
, (3.18)

with i = 1...N as particle index, are obtained. In plasma physics the number of
particles in a system is very large (& 1012) so that superparticles consisting of
many physical particles are introduced. Due to the fact that the mass-to-charge
ratio is constant for superparticles and real particles it is not necessary to rescale
the laws describing the plasma [25]. Up to 108 computational particles may be
simulated on modern computers within reasonable computation time [26].

The electric field ~E(~x) and and the elctrostatic potential Φ (~x) are calculated
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by first solving Poisson’s eq. (3.3) on the grid and then solving eq. (3.2), using
the particle density n(~x) on the grid. The electrostatic PIC cycle consists of the
following steps:

i) Calculate n(~x) on the grid by weighting the particle positions onto the grid
points using a given shape function.

ii) Integrate the field equation eq. (3.3) and calculate ~E(~x) on the grid via
eq. (3.2).

iii) Calculate the force on each particle with the same weighting function as
before.

iv) Integrate the equations of motion eq. (3.18) and move each particle.

v) Check boundaries for boundary effects, particle loss or others.

vi) Calculate particle collisions.

This cycle is visualized in fig. 3.4. The collisions may be neglected in some
approximations resulting in the collisionless PIC scheme.

Figure 3.4: Basic steps of the PIC-cycle

3.2.1 Particle weighting and shape function

In PIC the macroscopic quantities calculated on the grid depend on the particle
charge densities that have to be known on the grid as well. A shape function
S(~x − ~xi) is applied to each particle giving it a spatial distribution. The same
function has to be chosen for each particle, containing at least one grid point.
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Furthermore, it must be greater or equal to zero, has to satisfy charge conserva-
tion and has to be isotropic in space or numerical artifacts can occur [5]. The
density is then calculated on a grid point ~xj as

n(~xj) =
N∑
i=1

qiS(~xj − ~xi) . (3.19)

For a linear weighting function this is called a Cloud-in-Cell (CIC) approach and

the weighting process is known as mapping. After the forces ~F (~xj) = ~Fj are
calculated on the grid points ~xj with j = 1, ..., Ng, they are mapped back onto
the particles using the same shape function to avoid numerical artifacts. Thus,
the force acting on the ith particle is

~Fi =

Ng∑
j=1

~FjS(~xj − ~xi) . (3.20)

The use of the same shape function for both mapping and backmapping ensures
momentum conservation and avoidance of self forces on equidistant grids.

Figure 3.5: Visualization of the NGP and CIC shape functions

Within the requirements stated above the shape function can be chosen arbi-
trarily but two factors should be considered. The choice of shape function can
be the cause of numerical noise. The nearest grid point (NGP) approximation,
mapping the entire particle onto the closest grid point, is proven to cause sub-
stantially more noise than other shape functions [27]. A better choice is the CIC
approach, where the particle shape covers at least two grid points. Secondly, the
shape function should be chosen so that the mapping eq. (3.19) and backmap-
ping eq. (3.20) will be computed efficiently. Some choices of shape functions are
given in fig. 3.5.
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The clouds around each particle do not interfere with each other, thus modi-
fying the short range coulomb force neighbored particles experience.

3.2.2 Field solve phase

Finite difference scheme

To calculate the electric field on the grid, Poisson’s eq. (3.3), an elliptical partial
differential equation has to be solved. The solutions will be acquired by intro-
ducing a finite difference scheme for the spatial second order derivatives. For a
two dimensional M ×N cartesian grid (xi, yj) with constant permittivity ε and
the charge density n = ni − ne eq. (3.3) takes the form

∆Φi,j =

(
∂2Φi,j

∂x2
i

+
∂2Φi,j

∂y2
j

)
=

(
Φi−1,j − 2Φi,j + Φi+1,j

∆x2
+

Φi,j−1 − 2Φi,j + Φi,j+1

∆y2

)
= − n

εε0

, (3.21)

creating a system of linear equations to be solved instead. If the grid spacing is
equal in both dimensions, i.e. ∆x = ∆y = ∆, and the array Φi,j is aligned as a
(M ·N)−dimensional vector, the above scheme can simply be written as

1

∆2
AΦ = − n

εε0

. (3.22)

The used five-point finite difference scheme is accurate of the order of ∆2, which
may be increased by incorporating more points into the difference scheme, i.e. us-
ing a nine-point scheme, which increases computation time by additional matrix
entries [28].

The (M · N) × (M · N)−dimensional matrix A = (aij) has a characteristic
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block structure

A =


D I 0 · · · 0

I D I
. . .

...

0 I
. . . . . . 0

...
. . . . . . . . . I

0 · · · 0 I D



with D =


−4 1 0 · · · 0

1 −4 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −4

 (3.23)

The tridiagonal matrix D then has a dimension of M ×M and I is the M ×M
unity matrix. Each line and column contains N such block matrices. This basic
structure neglects the inclusion of boundary conditions or boundary points but
is suitable to discuss the basic properties of A.

A is symmetric and regular, with all eigenvalues greater than zero, meaning
it is positive definite. These properties do not depend on the choice of grid or
geometry, they are also valid for non-uniform grids and varying coefficients ε [28].
A is a sparse matrix, as for each row a maximum of five elements are unequal to
zero, making matrix operations less expensive and reducing the amount of RAM
necessary to store the matrix.

The boundary conditions of eq. (3.3) are applied to the matrix as well. Con-
stant (Dirichlet) boundary conditions leave Φi,j constant

Φi,j = Φ0
i,j (3.24)

while the diagonal element in the matrix A is a one, with no other entries in the
same row and column. The value of the right-hand-side is given as Φ0

i,j. The
other possible boundary condition fixes the flux (Neumann boundary conditions).
This is achieved by fixing the difference in potential between to neighbored grid
points. Often a no-flux condition is chosen which leads to the condition (applied
at a boundary in y direction)

Φi,j − Φi,j−1 = 0 . (3.25)

The matrix entry then becomes a one in the diagonal and a −1 below it with no
other entries in the same row or column.

PIC codes for plasma simulations are rarely full three-dimensional codes but
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rather use a radial symmetry, reducing the problem to two spatial dimensions.
Thus, cylindrical polar coordinates can be used. Also in a real plasma the per-
mittivity is not constant but can change from one grid cell to another. After
transformation, Poisson’s equation in cylindrical coordinates takes the form

1

r
ε
∂Φ(z, r)

∂r
+

∂

∂r

(
ε
∂Φ(z, r)

∂r

)
+

∂

∂z
ε
∂Φ(z, r)

∂z
= − n

ε0

, (3.26)

where the angular derivative was already dropped. If the finite difference scheme
is applied on a two-dimensional grid with spacing (∆r,∆z) at the point (ri, zj)
(for ri 6= 0) a modified form of eq. (3.21) can be derived [29] and gives(

1

4ri∆r
(εi+1,j−1 + εi+1,j+1) +

1

2∆r2
(εi+1,j−1 + εi+1,j+1)

)
Φi+1,j+(

1

4ri∆r
(εi−1,j−1 + εi−1,j+1 − εi+1,j−1 − εi+1,j+1)−

1

∆r2
(εi−1,j−1 + εi−1,j+1 + εi+1,j−1 + εi+1,j+1)

)
Φi,j+ (3.27)(

1

2∆r2
(εi−1,j−1 + εi−1,j+1)− 1

4ri∆r
(εi−1,j−1 + εi−1,j+1)

)
Φi−1,j+

1

2∆r2
(εi+1,j+1 + εi−1,j+1) Φi,j+1 +

1

2∆r2
(εi+1,j−1 + εi−1,j−1) Φi,j−1

= − n

ε0Vi,j
.

And for the axis points the formula

1

2∆r2
(εi+1,j−1 + εi+1,j+1) Φi+1,j −

3

∆r2
(εi+1,j−1 + εi+1,j+1) Φi,j+

1

∆r2
εi+1,j+1Φi,j+1 +

1

∆r2
εi+1,j−1Φi,j−1 (3.28)

= − n

ε0Vi,j
. (3.29)

is retrieved. Although the new difference formula is more complicated it can
still be written in the form of a matrix equation as in eq. (3.22), with rational
coefficients aij.
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LU decomposition

An often used method to solve systems of linear equations is the LU decomposi-
tion, also known as Gauss algorithm. Consider the system of linear equations

AΦ = b (3.30)

with a given right hand side b and a regular N×N−matrix A. For a PIC scheme,
the matrix A is chosen to be the matrix representing the finite difference scheme
eq. (3.27) with the right hand side b consisting of the charge density on the grid
according to Poisson’s eq. (3.3).

The system can be solved by representing the matrix A as the matrix product
of an upper triangular matrix U and a lower triangular matrix L, transforming
the equation to

AΦ = LUΦ = LΦ̃ = b .

If L and U are known, the solution is easy. Φ̃ is obtained by simply substituting
the result of the previous lines into the next one as L has a triangular structure.
The next step is to obtain Φ by solving for UΦ = Φ̃ analogously. This step is
also known as back-solve. For each back-solve, the complexity is ∼ N2/2 [30],
making it very efficient.

The problem lies in the computation of the decomposition A = LU which shall
not be discussed in detail here, but a good review can be found in [30]. It can
be shown that a LU decomposition exists for every regular matrix, but pivoting,
interchanging rows and columns of the matrix in order to move the matrix ele-
ments with the highest absolute value to the diagonal, might be necessary, thus
further increasing computation time. The complexity of the decomposition is
∼ N3/3.

The Gauss algorithm is a very robust direct method to solve matrix equations.
With the exception of rounding errors, which can be minimized by partial or full
pivoting, it reliably delivers the right solution. Difficulties arise in analyzing the
stability and rounding errors of the algorithm. There is a chance that rounding
errors are very large in certain cases [30].

In PIC the LU decomposition offers a reliable and efficient solver for the field
solving step, as the matrix structure is well known and not problematic. The
decomposition is calculated at the beginning of code execution, as the matrix
does not change throughout the execution of the code, and only the back-solve
has to be computed every PIC cycle, hence giving a complexity of ∼ N2 per PIC
cycle. The parallelization is problematic, as each line within a back-solve step
depends on the results of the previous lines, limiting its application to a serial
code structure.

23



Chapter 3. Simulation of plasmas

3.2.3 Successive over-relaxation

Another frequently used method to solve eq. (3.30) is the use of a stationary
iterative procedure. To formally obtain such procedures, eq. (3.30) is rearranged
using a regular matrix B. The (k + 1)−th iterate is then calculated as

AΦ = BΦ + (A− B) Φ = b

BΦk+1 + (A− B) Φk = b

Φk+1 = Φk − B−1
(
AΦk − b

)
= F

(
Φk
)
, (3.31)

The iterative procedure can be broken down to four steps:

i) Choose a starting point Φ0 .

ii) Calculate AΦk .

iii) Solve B∆Φk = b− AΦk .

iv) Φk+1 = Φk + ∆Φk .

B is chosen to have a simple form in order to reduce the necessary number of
operations and defines the iterative procedure. Also B is often linked to the
matrix A. If B is chosen to be the diagonal of A, the algorithm is known as
Jacobi algorithm. If B is chosen to be the sum of the A’s diagonal matrix D
(with aii 6= 0 for all i) and its lower triangular matrix L (not to be confused with
the matrix used in the LU decomposition), the Gauss-Seidel algorithm, with the
element index i, is acquired:

A = D + L + R

B = D + L

Φk+1 = − (D + L)−1 (RΦk − b
)

Φk+1
i =

1

aii

(
bi −

∑
j<i

aijΦ
k+1
j −

∑
j>i

aijΦ
k
j

)
. (3.32)

This method is convergent if A is symmetric and positive definite [28]. It can be
enhanced by introducing a relaxation parameter ω into the choice of B

B(ω) =
1

ω
(D + ωL) . (3.33)
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The algorithm is altered, giving

Φk+1 = (1− ω) Φk + ωΦ̃k+1 = Φk + ω
(

Φ̃k+1 − Φk
)

(3.34)

Φ̃k+1
i − Φi =

1

aii

(
bi −

∑
j<i

aijΦ
k+1
j −

∑
j>i

aijΦ
k
j − aiiΦk

i

)
(3.35)

where Φ̃k+1
i is calculated via eq. (3.32). If ω < 1 this is called under-relaxation

and can be used to dampen divergent solutions. For ω > 1 the algorithm is
known as successive over-relaxation (SOR) which is an often applied method to
solve the finite difference scheme for Poisson’s equation.

The iteration continues until a termination criterion is met. A possible choice
is

‖Φk+1 − Φk‖
‖Φk+1‖

< δ (3.36)

in a given vector norm ‖ · ‖. Because this criterion is critical for Φk+1 → 0 the
condition

‖Φk+1 − Φk‖max < ε (3.37)

may be used as well. The maximum norm is chosen to minimize the necessary
computational cost.

For the solution to converge, as the Gauss-Seidel algorithm depends on the
newly calculated iterates, the domain should be divided into small subdomains,
each solved separately. A chess board pattern, solving first all even and then all
uneven grid points, or vice versa, may also be used. The algorithm’s structure
allows for easy parallelization as the calculation of each point’s iterate depends
on only the surrounding points, delivering an advantage over LU decomposition.

It can be shown [28] that the SOR method is only convergent for ω ∈ (0, 2) and
that the optimal relaxation parameter can be found in the interval ωopt ∈ (1, 2).
ωopt can only be calculated for a uniform grid spaced by ∆, as found in [28], but
a decent guess is provided by the approximation

ωopt ≈ 2−∆ . (3.38)

As ωopt is found in only a narrow range as can be seen in fig. 3.6, the algorithm
has to be fitted to the grid that is used.

The complexity of each iteration step is ∼ N2 and the expected number of
iteration steps is ∼ N , giving the entire SOR method a complexity of ∼ N3 [28].
This is a lot more computation time compared to the back-solve of the LU
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decomposition which scaled quadratically, but it has much better potential for
parallelization in a PIC code than the LU back-solve, because its parallelization
fits nicely into the domain decomposition used also for the parallelization of the
pusher and collisions.

Figure 3.6: ω dependence of the error of the SOR algorithm for a fixed number
of iterations. The optimal parameter is found in a narrow range.

Calculation of the electric field

If the electrostatic potential Φi,j is obtained, the electric field is calculated by
applying a simple symmetric difference scheme to eq. (3.2) for each component

Er
i,j =

Φi−1,j − Φi+1,j

2∆r

Ez
i,j =

Φi,j−1 − Φi,j+1

2∆z
, (3.39)

if the grid is uniform. As the magnetic field is assumed to be externally defined
in electrostatic PIC, the Lorentz force on the grid is then calculated via eq. (3.18)
and then mapped back to the particles via eq. (3.20). This scheme assures that
no self-forces are generated, assuring energy and momentum conservation [31].

If non-equidistant meshes are used, the scheme has to be adapted accordingly.
The situation is sketched in fig. 3.7 and will be discussed for the general coor-
dinate xp with ∆xp 6= ∆xp+1, as the adjustment has the same form for each
coordinate. If the central difference scheme in eq. (3.39) is used, the electric field
will be calculated at the intermediate point of the interval [xp−1, xp+1], which in
this case does not coincide with the grid point xp. This leads to a loss of energy
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(a) General calculation scheme (b) Modified calculation scheme

Figure 3.7: Electric field calculation for a charged particle located at xi, in a
non-equidistant grid with a change of cell size ∆xp−1 6= ∆xp. (a):
Calculation scheme for an equidistant grid. (b): Modified field cal-
culation.

and momentum conservation. Hence, an interpolation is used to calculate Φ at
the point xp + ∆xp

Φ (xp + ∆xp) = Φ (xp)

(
1− ∆xp−1

∆xp

)
+ Φ (xp+1)

(
1− ∆xp

∆xp+1

)
,

which would correspond to the value of Φ on the next grid point on a uniform
mesh. The central difference scheme in eq. (3.39) can then be used, ensuring
energy and momentum conservation [32].

3.2.4 Integration of equations of motion and particle mover

After obtaining the electric field and the force acting on each particle, the equa-
tions of motion eq. (3.18) have to be integrated for each particle. Since the
number of simulated particles is very large, the main requirement for the inte-
grator is low computational cost to go along with sufficient accuracy.

A scheme satisfying these requirements is the Boris-leapfrog algorithm first
introduced in [33]. For each time derivative in eq. (3.18) a finite difference ap-
proximation is used with the same time step ∆t as in the PIC code. As the
second equation has to be evaluated at each complete timestep tk = t0 + k∆t
(because the positions and force acting on the particles are only known at each
full timestep tk), a central difference scheme for the time derivative of the ve-
locities is introduced, thus evaluating the velocities have to be calculated at the
half-steps tk−1/2 and tk+1/2. This leads to the following finite difference equations
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(dropping the particle index for simplicity)

~xk+1 − ~xk
∆t

= ~vk+1/2

~vk+1/2 − ~vk−1/2

∆t
=

q

m

(
~Ek(~xk) +

~vk+1/2 + ~vk−1/2

2
× ~Bk(~xk)

)
(3.40)

where the velocity at time k is approximated by the mean ~vk = (~vk+1/2+~vk−1/2)/2.
The accuracy of the leapfrog scheme is of order ∆t2 as is shown in [33].

To solve this set of equations an often used algorithm is the Boris algorithm
giving the new particle positions and velocities as

~xk+1 = ~xk + ∆t~vk+1/2

~vk+1/2 = ~u+ + q ~Ek(~xk) (3.41)

using the definitions

~u+ = ~u− +
(
~u− +

(
~u− × ~h

))
× ~s

~u− = ~vk−1/2 + q ~Ek(~xk)

~h = q ~Bk(~xk)

~s =
2~h

1 + h2
,

which requires a total of 39 operations.

The Boris-leapfrog method is an explicit scheme, as it requires only values
from the previous timestep to calculate the new positions and velocities. While
being numerically robust it restricts the timestep chosen for the PIC code. It
can be shown [26] that the condition

ω0∆t . 1 (3.42)

must be met, with ω0 being the highest frequency of any of the system’s particle
movements. In plasma simulations it is the electron plasma frequency that has
to be resolved. To guarantee stability and minimize the systematic error a more
strict condition

ωp,e∆t = 0.2

is used in the PIC code, assuring stability for at least 107 timesteps [26].
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3.2.5 Particle collisions

So far the ansatz of calculating the macro-fields on the grid leads to the simulation
of a collisionless plasma. In order to obtain a more realistic plasma description
it is necessary to account for particle collisions. As there is a large number of
possible collisions in a plasma, only the most important collisions can be modeled.
These include Coulomb collisions between charged particles as well as elastic and
inelastic collisions with neutral particles, including ionization and excitation.

It is still inconceivable to calculate the N2 interactions between all charged
particles on today’s computers. Due to the Debye shielding of the charged par-
ticles in a plasma, each particle’s Coulomb interaction is limited to an area of
the size of the Debye sphere around this particle. For that reason only parti-
cles within the same cell are collided. For these a binary collision model can be
used, as first suggested in [34]. Each particle in a cell is assigned a randomly
chosen collision partner from the same cell to collide with. This is done by sta-
tistically scattering the relative velocity, rotating it(and hence assuring energy
and momentum conservation) using a scattering angle χ and an azimuthal angle
ϕ. While the azimuthal angle is chosen randomly in [0, 2π], the scattering angle
is sampled from a Gaussian distribution if the Fokker-Planck collision operator
for binary collisions is used. This approach holds for sufficiently small collision
frequencies and if the majority consists of small angle collisions [26].

The elastic and inelastic scattering collisions with neutral particles of density
nn can be calculated using an estimate for the collision probability as

Pc(~v) = 1− exp [−unnσ(E)∆tc] ,

with the collision cross section σ( ~E), relative velocity u and the collision time
step ∆tc. The term unnσ(E) presents the collision frequency for collisions with
neutral particles, thus the exponential term is the probablility that a particle
passes the timestep tc without a collision.

To perform a collision, a uniform random number u ∈ [0, 1] is chosen and
compared to Pc. If u ≤ Pc, a collision is performed, resulting in a rotation of
the relative velocity vector for elastic collisions. When an ionizing or excitation
collision occurs, the barycenter energy is reduced by the threshold energy Ethr.
In the case of electron impact ionization, an electron-ion pair is created with
position and velocity of the former neutral particle, and a Coulomb collision
of the ionizing electron with the created particles is performed. An in depth
discussion of Monte-Carlo collision models for the PIC method can be found
in [27].
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3.3 Simulation of the HEMP-T, code description

The first simulations of the HEMP-T were performed by K. Matyash et. al. [35]
and more recent results can be found in [7]. A 2D PIC scheme with radial
symmetry and a grid spacing of ∆x = ∆r = 0.5λD,e on 890 × 240 grid points
was used, with 3D simulation of particle velocities. The timestep was chosen to
be ∆t = 0.2/ωP,e = 1.2 · 10−12 s, as given in eq. (3.42), with about 106 timesteps
necessary to reach a steady state.

In this work, a 2D grid is used, covering the dimensions of the HEMP-DM3a
with a mesh of 1272×480 grid points in the (z, r) plane. To reduce computational
costs, similarity scaling as described in [5] is used, reducing the system size but
keeping the physical laws intact as the mass-to-charge ration of each species is
unchanged, unlike models that artificially raise electron mass. The timestep is
chosen to be ∆t = 0.2/ωP,e = 1.2 · 10−12 s as in the previous works simulations
conducted in [35] and [7]. A non-uniform mesh, further explained in [6], is applied
to the simulation region. The ions are moved once per 400∆t and neutrals are
moved once per 2000 ∆t.

A multigrid method incorporating two nested grids, as described in [7], is
used for the calculation of the electrostatic potential Φ. A coarse grid covers
the entire domain, with a larger grid spacing of ∆xcoarse = 4∆xfine, while the
finer grid only covers the thruster region with a mesh of 888 × 236 grid points.
During the field solve phase, a solution for Φ is first obtained on the coarse grid,
with the boundary conditions of the finer grid given by the interpolated values
on the coarse grid. Then a solution is obtained for the finer grid. The anode
voltage is set to 500 V with a zero potential boundary condition at the upper
and a no flux condition at the right boundary. Poisson’s equation is solved with
the Gauss algorithm included in the Super LU library [36], calculating the LU
decomposition once, only using the backsolve during each timestep.

In fig. 3.8 the potential on both grids is plotted. It can be anticipated that the
zero potential boundary conditions on the upper and the no-flux condition on
the right boundary differ from the real situation, thus deviating the simulated
potential, distorting simulation results. Thus, a large simulation region for the
plume is desirable, but increases computational cost, which can be reduced by
applying a hybrid electron model for plume simulation.

The thruster is fueled with Xenon gas, with electrons and Xe+−ions included
as charged particles. The injection of the neutral Xenon gas takes place in the
bottom right corner of the simulation domain and Maxwellian electrons are in-
jected at the position of the neutralizer source in the exit plume. These injections
are performed once per 500 ∆t.

The PIC code includes elastic neutral-neutral, electron-neutral and ion-neutral
collisions as well as electron impact ionization collisions. The electron-electron
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(a) Fine Grid (b) Coarse Grid

Figure 3.8: Electrostatic potential of a converged run on both grids of the multi-
grid method.

and electron-ion Coulomb collisions are included also. The collisions are treated
as described in section 3.2.5. The neutral-neutral collisions are performed once
per each neutral timestep while all other collisions are performed during each ion
timestep.

The first step to achieve a hybrid description of the plume is to implement
and test a new Poisson solver with the SOR method, as this type of solver has
beneficial properties, such as simple implementation and straight-forward paral-
lelization, for fluid particle models, as described in [37]. Secondly, the electrons
have to be simulated as a fluid, thus the fluid equation eq. (3.11) has to be solved
for the electrons. The electrons will be assumed as massless, so that the Boltz-
mann relation eq. (3.13) can be considered instead. This leads to a non-linear
Poisson’s equation eq. (3.3), so that an iterative field solver becomes necessary.
The fluid model will first be applied to the entire thruster and then restricted to
the plume only.
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4 Development of a Poisson solver

In this chapter, a new solver for the finite difference scheme of Poisson’s eq. (3.22)
is developed, since the LU decomposition of the SuperLU package [36] is not suit-
able for at parallelization of the PIC code. The method of choice is the SOR al-
gorithm presented in section 3.2.3 as its parallelization is trivial and the exchange
between separate domains calculated by different cores is very small. Further-
more, the solver is numerically robust with well known convergence properties,
as discussed in [28]. The coordinate representation of the algorithm is given in
eq. (3.35) and the calculation scheme for the coefficients of the finite difference
scheme is found in eq. (3.27).

Within the PIC code the SOR method will be implemented as an alternative
option to the SuperLU algorithm. The iteration procedure is executed until the
termination condition

‖Φk+1 − Φk‖max < ε

is met for two subsequent iterates Φk+1 and Φk in dimensionless form. As the
domain covers large areas with Φ = 0 V, using a relative termination condition
as in eq. (3.36) is inappropriate. As the SOR method requires an initial guess
at the start of the iteration, SuperLU is executed once at the start-up of the
code, and the solution will be stored as the initial Φ during the first iteration.
Alternatively, the SOR algorithm can also be used to obtain the initial guess,
but usually costs more computational time than the SuperLU method, when no
parallelization is used. The solution of each following iteration is then stored and
used as guess during the next field solve. This method might lead to rounding
errors being added up, so that stability tests over a number of PIC cycles are
required.

Tests of the SOR solver are needed to study the stability and computational
cost of the method as well as the dependencies of solver parameters such as ε and
ω. The tests are done for two cases, both being run on the simulation domain of
the HEMP-T with the according boundary conditions described in section 3.3.

One test case is the execution within a converged, restarted run of the code,
with charged particles covering the thruster channel and the exhaust region. This
simulated HEMP-T is in a steady state after 14 516 000 timesteps were simulated.
The (z, r)-domain covers an area of 1272× 480 grid points, with a coarse grid of
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338× 120 and a fine grid of 888× 236 grid points.

The second test case is a vacuum potential solution without plasma in a start-
up run on a larger grid of 1272 × 1272 grid points. The size of the fine grid
stays unchanged compared to the converged run, but the size of the coarse grid
increases to 338× 338 grid points, with the same choice of boundary conditions
as before. This setup is chosen so that the solver’s scaling to a larger grid and
reaction to perturbations may be studied during execution of several PIC cycles.

For all benchmark tests, the potential solution of the SuperLU package will be
considered as correct and all SOR solutions will be compared to it. The initial
guess is Φ = 905 V on the entire domain. To ensure comparability, as not all
benchmarks were run on the same machine, the execution time will be given in
the number of iteration steps required to reach convergence. Firstly, a search
for the best relaxation parameter ωopt is conducted. Secondly, the influence of
the termination condition is investigated, as the condition used does not directly
correspond to the actual deviation from the correct solution. The third test
will cover the dependence of execution time and the termination condition used.
From these results suitable parameters for the iteration will be deduced and used
in the PIC code. The test as a solver during the execution of the PIC code will
be the last test conducted, in order to study the stability of the solver and its
reactions to perturbations.

(a) Fine Grid (b) Coarse Grid

Figure 4.1: Electrostatic potential at the start-up of the PIC code for the larger
grid.
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4.1 Optimal relaxation parameter

The first test conducted is the determination of the best relaxation parameter
for both grids, as the choice of ω not only influences the rate of convergence but
also the correlation between the termination condition and the actual iteration
error. An initial guess of Φ = 905 V and a termination condition of ε = 10−6 were
used. This value of ε was estimated to guarantee convergence, with estimated
maximum errors of 1 mV. This estimate is based on the fact that the scaling
factor from the unscaled values to Volts amounts to 905.114 and that potential
differences of ∼ 1 mV can be neglected as they have no effect on the electric field
calculation. The number of iteration steps required to reach that convergence
rate was recorded for each value of ω that was used. For the restarted runs, the
results are presented in fig. 4.2.

As stated in section 3.2.3, the ideal parameter is to be found in the range of
ω ∈ [1, 2), with a guess that ω ≈ 2 −∆x as in eq. (3.38). As the grid contains
of the order of 103 grid points in each direction, a rough estimate of ωopt ≈ 1.9
can be made. Since the ideal parameter depends on the grid spacing, a different
value has to be obtained for both grids used in the multigrid approach.

Figure 4.2: Number of Iteration steps required to reach a convergence of ε < 10−6

for restarted runs.

In fig. 4.2 the results for the restarted runs are shown. The dependence of ω
from the required number of iteration steps matches the expected behavior as
shown in fig. 3.6 on each grid. The optimum is found in a very narrow range
with parameters of ωc,r = 1.969 for the coarse and ωf,r = 1.981 for the fine grid.
The ideal choice decreases the required number of iterations by a factor of ∼ 102

on each grid compared to the Gauss-Seidel method with ω = 1.
The situation is similar for the vacuum tests as shown in fig. 4.3. The best

parameter for the fine grid is the same as for the restarted runs, ωf,s = ωf,r =

35



Chapter 4. Development of a Poisson solver

1.981. This is due to the fact that ω depends only on the chosen grid, not on the
right hand side of the matrix equation eq. (3.22). For the coarse grid, a value
of ωf,s = 1.986 is obtained. The number of iterations decrease by approximately
the same factor as before.

The figures show that the search for the best parameters is crucial, as a reduc-
tion of ω by 0.02 from the ideal value approximately doubles the required number
of iterations to reach convergence. If ω is chosen even closer to two, the compu-
tational expense dramatically increases. It can be observed that ω increases for
an increased number of grid points, making the search more difficult and erratic,
as it has to be obtained to a very high order of accuracy as it gets closer to two.
It is recommended to include an automatic search for ω when implementing such
a method.

Despite the optimization, the SOR-method is a lot slower than the SuperLU
solving routine. On the same hardware and with the combination ideal relaxation
parameters for each grid, the iteration procedure had a runtime of 29.38 s for the
restarted runs and 44.41 s for the start-up runs, respectively. The full SuperLU
method needed a time of 7.6 s for restarted runs and 12.7 s for start-up runs, being
faster by a factor of about 4 in both cases. This increase is not unexpected, as
the complexity of the SOR solver scales as ∼ N3, with the overall number of grid
points N , and the Gauss algorithm scales as ∼ N3/3, which in the symmetric
case can be improved to N3/6 [30]. The optimal relaxation parameters for each
grid will be used from this point forward.

Figure 4.3: Number of Iteration steps required to reach a convergence of ε < 10−6

for start-up runs.
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4.2 Iteration error and termination condition

The next step is to investigate the correlation between the chosen termination
condition ε in eq. (3.37) and the actual deviation from the SuperLU solution.
Again, an initial value of Φ = 905 V was used. The solution is considered to be
convergent if the maximum deviation from the SuperLU solution is below 10−2 V.
As this is the maximum difference, this value is estimated to have a negligible
effect on the resulting electric field, not influencing charged particle movement.

The situation for the restarted runs is plotted in fig. 4.4. The double logarith-
mic plot shows that the actual calculation error scales almost linearly with the
chosen termination condition, but is of about three orders of magnitude higher,
which can be attributed to the scaling factor of 905.114 V. Therefore the plot
shows the expected dependence, as the maximum deviation in dimensionless
units is of the order of the termination condition. The linear curve flattens for
conditions ε < 10−8.

Figure 4.4: Different values for the termination condition ε and corresponding
maximum deviation from the real solution for restarted run.

This behavior does not indicate directly that the accuracy of the solution
is not increasing for more restrictive ε. fig. 4.5 shows that the area with the
largest error is ”permeated” by the more accurate solution. This trend continues
for more accurate solutions until only isolated points with a high error remain.
That is the reason for the error to hit zero on the fine grid in a very steep drop,
pictured in fig. 4.4. For restarts, no results for ε = 10−14 or lower could be
acquired due to persistent rounding errors.

The situation is similar for the start-up runs. The error scales almost linearly
with the chosen termination condition, with higher accuracy achieved for ε ≥
10−6 when compared to the restarted case. This can be attributed to the potential
vanishing on most parts of the grid.
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(a) ε = 10−8 (b) ε = 10−10

Figure 4.5: Absolute difference in electrostatic potential of the SuperLU and SOR
for the given termination conditions on a restarted run.

It can be concluded that termination conditions of ε ≤ 10−6 ensure good
accuracy of the potential calculation with an error ≤ 10−3 V, leaving the physics
of the system unchanged. Values of ε ≥ 10−5 should not be considered due to
deviations of ≥ 0.1 V.

Figure 4.6: Different values for the termination condition ε and corresponding
maximum deviation from the real solution for start-up runs.

4.3 Solver runtime

The last benchmark is the solver runtime, i.e. number of iteration steps, as a
function of the termination condition and therefore the error ε, with the initial
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value being Φ = 905 V again. It is expected that the grids containing a large
number of grid points require more iterations to reach convergence and that the
computation time increases linearly with each higher order of accuracy. This is
due to the complexity ∼ N3 of the SOR algorithm, with about N iterations to
reach a converged solution without earlier termination. As this number should
not be surpassed, a linear dependency for each higher order of magnitude is
expected.

The dependency for the restarted runs is presented in fig. 4.7. The calculation
time shows the expected dependency, with a linear rise of the number of iterations
with each higher order of accuracy. The number of iterations required is higher
on the fine grid than on the coarse one, which was also expected.

Figure 4.7: Number of iterations required to reach the termination condition ε
for restarted runs.

The situation is similar for the start-up runs in fig. 4.8, as the calculation time
scales linearly as well. Here, the number of iterations required is higher for the
coarse grid, which can be attributed to the larger domain covered by the grid
and the high initial value chosen for Φ, as it takes a higher number of iterations
for the boundary conditions to affect the inner grid points. It is observed that
the areas with high potential gradients correspond to large errors in the iteration
procedure, as apparent when comparing fig. 4.5 and fig. 3.8. The next section
further discusses this observation.
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Figure 4.8: Number of iterations required to reach the termination condition ε
for start-up runs.

From the observed calculation time and error dependence in section 4.2, one
can conclude that termination conditions in the range of 10−10 to 10−6 combine
good solver accuracy with an acceptable solver runtime. It has to be taken into
account that this benchmark setup is not the one used in the actual PIC cycle, as
the guess used there will be much closer to the actual solution than a condition of
Φ = 905 V on the entire domain, such that the number of iterations is expected
to decrease significantly within the real application.

4.4 Inclusion in the PIC code, stability test

In this section, the behavior of the SOR solver in the PIC code will be inves-
tigated, testing the stability and reaction to perturbations within the system.
Here, a solver setup used in the PIC scheme is used is applied, with the first ini-
tial Φ provided by the SuperLU solver that is executed at the startup, and each
solution of the SOR solver stored as the initial value for the following iteration.

The first test was conducted for the vacuum case. The duration of the test
was 9100 PIC cycles, with the potential averaged over 100 steps with ε = 10−8.
It is expected that large differences in the solutions will be observed, due to
the Monte-Carlo scheme used for the ionization collision routines. This test will
serve as a measure of the stability of the SOR solver, along with a benchmark
in calculation time. The absolute differences between the SOR and SuperLU
solutions on both grids are shown in fig. 4.9.
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(a) Fine grid (b) Coarse grid

Figure 4.9: Difference in electrostatic potential of the SuperLU and SOR solver
with a termination condition of ε < 10−8 after 9100 PIC steps, aver-
aged over 100 steps during a start-up run.

As expected large differences in potential within the channel and the near-field
plume are observed due to ionization processes. Still, the SOR method shows
stability toward sudden changes in potential, and solver errors are not expected to
add up during a large number of PIC cycles. On comparable machines, the code
with the SuperLU package executed this test in 93 min, compared to 3553 min
with the SOR method, which is slower by a factor of about 40. This is expected,
since only the SLU back-solve with a complexity of ∼ N2 has to be computed
during each PIC cycle, with each PIC cycle executed in about 1 s. With the SOR
method, each PIC cycle is executed in approximately 23 s.

This test was also performed for restart runs, with the resulting differences
given in fig. 4.10 after the same number of time steps and with the same termi-
nation condition as in the start-up run in fig. 4.9. The differences between both
solutions are observed almost exclusively in the thruster channel and the near
field plume, the areas where the highest amount of ionization takes place. Thus,
the deviations from the SuperLU run can be attributed to the statistics of the
system, as a Monte-Carlo routine is used to perform collisions which take place
mostly within the thruster channel. One can expect that the same solution is
reached when averaging Φ over a large number of timesteps, reducing statistical
effects observed.

In fig. 4.11 the results for a longer averaged restarted run are presented. The
potential was averaged over 3 · 104 timesteps, with ε = 10−6 in order to reduce
the execution time of the code. As expected it is observed that the difference
in potential is reduced, with no pattern of deviation. The deviation is further
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(a) Fine grid (b) Coarse grid

Figure 4.10: Difference in electrostatic potential of the SuperLU and SOR solver
with a termination condition of ε < 10−8 after 9100 PIC steps,
averaged over 100 steps during a restarted run.

expected to decrease for even longer time averages of the order of 105 to 106

timesteps, such that a statistical mean is then observed.
It can be concluded that the SOR method offers an alternative method to

solve the finite difference scheme eq. (3.22) in the PIC method. Although its
execution time is much larger than that of the SuperLU back-solve, it offers some
advantages as well, as its parallelization is simple, with each core calculating its
own domain, with only little information exchange between neighboring domains
necessary. There are further methods to reduce the execution time of the SOR
method, such as the Chebyshev acceleration as described in [28]. In this thesis
the focus is on the application of the SOR method to the hybrid description of
the electrons that is discussed in the next chapter.
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(a) Fine grid (b) Coarse grid

Figure 4.11: Difference in electrostatic potential of the SuperLU and SOR solver
with a termination condition of ε < 10−6 averaged over 30000 PIC
steps during a restarted run.
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5 Hybrid plume model

In this chapter the development of a hybrid PIC model for the simulation of the
HEMP-T is presented. Firstly, a theoretical introduction is given along with the
numerical implementation in the PIC code. Secondly, this method is applied to
the entire thruster and results are presented. In the last section the application
of the method to the thruster plume is discussed.

5.1 Implementation of the hybrid model

Besides the fully kinetic PIC method, hybrid methods are often applied in plasma
simulations. In plume simulations hybrid plasma models have been applied
successfully [8]. The advantage of such a plume model is that no longer the
electron movement has to be resolved, with the restrictions to length scales of
∼ 1.49 · 10−3 m and time scales of ∼ 1/564 MHz, as given by the electron Debye
length and the electron plasma frequency within the thruster channel, respec-
tively. Only the ion movement has to be resolved, with the a Debye length in
the range of 10−3 m up to 1 m, and a plasma frequency of ∼ 10 kHz within the
plume. This allows plume simulations on length scales of several meters, in order
to assess possible sputtering damages of surrounding parts caused by exhausted
ions.

The condition to achieve such a description is that electrons are no longer
treated fully kinetic, but rather as a fluid described by the fluid equation of
motion eq. (3.11), the governing continuity equation eq. (3.12) and the equations
for the electric field eq. (3.3).

In order to drop the electron time scale, the particles need to be treated as a
massless fluid, following changes in the electric field instantaneously. This way,
effects on the time scale of electron motion, such as electron excitations, are lost.
The electron fluid is assumed to have a Maxwellian energy distribution in a local
thermodynamic equilibrium. This way, the calculation of electron charge density
ne simplifies tremendously, as the Boltzmann relation

ne (Φ) = ne0 exp

[
e (Φ− Φ0)

kBTe

]
,

with the electrostatic potential Φ, electron temperature Te and the Boltzmann
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constant kB, is used instead of solving the entire set of fluid equations eq. (3.11).
Φ0 and ne0 are reference values for the charge electrostatic potential and electron
charge density, respectively.

As a consequence, Poisson’s equation eq. (3.3) is converted from a linear partial
differential equation to a nonlinear one, as the electron density is now coupled
to the electrostatic potential Φ, resulting in the new equation

∆Φ =
ne0
εε0

exp

[
e (Φ− Φ0)

kbT

]
− ni
εε0

(5.1)

for the potential.

In the PIC scheme, the finite difference scheme, as discussed in eq. (3.21) and
eq. (3.27), can still be applied to discretize the equation. The non-linearity in
eq. (5.1) is then linearized and a solution can be obtained. As the electron density
changes with the electrostatic potential, an iterative procedure needs to be used
to reach a fixed point of the iteration. Hence, even direct solvers, such as the
SuperLU algorithm used in the PIC code, have to be iterated to reach a solution
of eq. (5.1).

The SOR method in eq. (3.34) allows for adjustment to incorporate the
changed electron potential, which is linearized within the scheme given in
eq. (3.35). Depending on wether ne (Φ) is chosen as a function of the previ-
ous iterate Φk or the new one Φ̃k+1, two different schemes can be derived. In the
first case, no explicit linearization is required, as the potential from the previous
iteration is already known, resulting in an explicit scheme

Φ̃k+1
i − Φk

i =
1

aii

(
ni,i − ne0,i exp

[
e
(
Φk
i − Φ0,i

)
kBTe,i

]
−

∑
j<i

aijΦ
k+1
j −

∑
j>i

aijΦ
k
j − aiiΦk

i

)
. (5.2)

with the new iterate calculated Φk+1 = Φk + ω
(

Φ̃k+1 − Φk
)

as derived in

eq. (3.34).

In the second case the electron density eq. (3.13) is first linearized

ne

(
Φ̃k+1

)
= ne0 exp

e
(

Φ̃k+1 − Φ0

)
kBTe

 ≈ (1 +
(

Φ̃k+1 − Φk
))

exp

[
e
(
Φk − Φ0

)
kBTe

]

and a semi-implicit scheme is derived by substitution into Poisson’s eq. (5.1),
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resulting in the equation

Φ̃k+1
i − Φk

i =
1

aii + exp

[
e(Φk

i −Φ0,i)
kBTe,i

] (ni,i − ne0,i exp

[
e
(
Φk
i − Φ0,i

)
kbTe,i

]
−

∑
j<i

aijΦ
k+1
j −

∑
j>i

aijΦ
k
j − aiiΦk

i

)
, (5.3)

After the solution is obtained, the PIC method can be continued as in the fully
kinetic case, without the need to move electrons.

One difficulty remaining are the collisions that still need to be performed, as
electron impact ionization is the only source of electrons within the bulk plasma.
In this work, the kinetic collision routines were retained within the hybrid model
by a steady state approximation. As the plasma within the thruster channel is not
expected to change dramatically from a converged run, the electron positions are
retained and a new Maxwellian velocity distribution is sampled for the electrons
within each cell. The collisions are then performed between these and the other
particles, with the benefit of using the proven collision routines that guarantee
a good description of the HEMP-T, as described in [35], with the disadvantage
of only being able to use these routines in a steady state assumption. This
assumption is expected to work well in plume modeling, since particle densities
and collision probabilities are small within the plume.

5.2 Results

5.2.1 Application to the entire thruster

Firstly, the hybrid model described above is applied to the simulation of the
entire HEMP-T. This approach is not expected to work very well, as in sec-
tion 3.1.3 and section 3.1.4 it was stated that the plasma within the thruster
channel is dominated by kinetic effects, such as electron heating in the magnetic
cusps, and sheath effects due to the channel walls. Furthermore, the transport
of magnetized electrons along the magnetic field lines close to the thruster axis
further reduces the applicability of such a hybrid electron model for the entire
thruster, as discussed in section 3.1.2. This case is still of interest, as the results
can be compared to that of the fully kinetic PIC code, and may present some
limitations of the hybrid electron model.

To test the model, the same converged run as in chapter 4 was used, starting
at a time step of 14 516 000 electron timesteps on a mesh of 1272 × 480 grid
points with the multigrid approach implemented as previously discussed. The
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PIC scheme is mostly unchanged, with the difference that electron density is cal-
culated within the solver and no further electron motion needs to be calculated.
The collisions are performed using the steady state approximation described in
the previous section.

At the beginning of code execution, the SuperLU solver is executed, providing
the initial Φ0 used in the SOR method, which is implemented as discussed in
chapter 4. The initial density ne0 is obtained by calculation of the initial elec-
tron particle distribution given in the restart file, and connected to the initially
calculated potential Φ0, such that ne (Φ0) = ne0 in eq. (3.13). For the solution
of the nonlinear eq. (5.1), the semi-implicit scheme eq. (5.3) is used, to avoid
timestep restrictions as given by an explicit scheme. After each field solve, the
electron temperature is calculated using the approximation

Te = Tref

(
ne
nref

)α−1

from eq. (3.14). The reference temperature was set to Te0 = 10 eV and with
the parameter α = 4/3 which were suggested to be good estimates for plume
modeling at the thruster exit [8]. The simulations were performed for 496 000
timesteps, with the ion pusher executed once every 400 timesteps, so that the
simulation amounts to 1240 ion steps.

(a) Hybrid (b) Kinetic

Figure 5.1: Logarithmic plot of the ion density from the hybrid and the ki-
netic run after 496 000 timesteps, with values averaged over 100 000
timesteps. Here, the hybrid model is applied to the entire domain
including the thruster channel.

48



Chapter 5. Hybrid plume model

(a) Hybrid (b) Kinetic

Figure 5.2: Logarithmic plot of the electron density from the hybrid and ki-
netic runs after 496 000 timesteps, with values averaged over 100 000
timesteps. Here, the hybrid model is applied to the entire domain
including the thruster channel.

In plume simulations, the ion motion is of interest since the ions generate the
thrust and lead to sputtering of surrounding parts. The resulting ion density
after application of the hybrid electron model, as well as the kinetic run are
found in fig. 5.1. Furthermore, the axial ion distribution for r = 6 mm within the
channel and r = 40 mm in the plume are given in fig. 5.3. Within the thruster
channel the ion density of the hybrid run is higher near the wall and slightly lower
near the axis when compared to the kinetic run. The ion movement resembles a
diffusion within the channel when compared to the kinetic run, thus resulting in
a higher ion density near the thruster exit. Figure 5.3 (a) further supports this,
as the kinetic ion density (black) is higher within the thruster and lower in the
exit region than the hybrid ion density (red).

In the plume, the ion density is much more focused, with only a little fraction
of the ions having an negative axial velocity component, but also with lower
density in the region near the right boundary. Thus is shown in fig. 5.3 (b), as
the hybrid ion density only surpasses the kinetic density near z = 80 mm.

In order to understand this behaviour, the electrostatic potential has to be
considered, which is given in fig. 5.4, as well as its deviation from the kinetic
run. The potential difference within the thruster is reduced just slightly by a
maximum of around 10 V. The largest differences are found in the thruster exit
region with an increase of up to 50 V, where the ion density of the hybrid run
was very large, thus resulting in the observed deviation. Within the plume, this
results in the reduced ion density for small beam angles, as the potential gradient
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(a) r = 6 mm (b) r = 40 mm

Figure 5.3: Axial distribution of the ion density from the hybrid and the kinetic
run at different radial positions after 496 000 timesteps, with values
averaged over 100 000 timesteps. Here, the hybrid model is applied
to the entire domain including the thruster channel.

is changed and ions are accelerated towards larger beam angles. The reduced
electrostatic potential above the thruster leads to a smaller potential gradient
in negative z−direction, resulting in only a very small number of ions being
accelerated into that direction.

The electron density of the hybrid and kinetic runs are shown in fig. 5.2. One
can see that the electron density slightly decreased throughout the channel, as the
ion density and therefore the electrostatic potential showed a slight diminishing
in that area as well, as comparison with fig. 5.4 and fig. 5.1 shows. In the
thruster exit region the limitations of the used hybrid model are visible. Here,
the electrostatic potential increased the most. As stated above the electron
density was initialized with the starting density, thus not allowing no real electron
dynamics in areas where ne,0 = 0. An attempt was made to introduce such an
electron dynamics, but resulting in diverging solutions.

The application of the hybrid electron model to the entire thruster develops
into a different solution compared to the fully kinetic PIC case and does not
describe the thruster very well, as the ion density and the potential differ from
that of the kinetic runs. This resembles the expectations stated in the fluid
description of plasmas section 3.1.2, since the fluid description is best suited
to describe collision dominated plasmas, with negligible kinetic effects and only
small influence of the plasma sheath. But as the electron dynamics in the HEMP-
T is dominated by kinetic effects, the hybrid model does not offer a suitable
description of this type of ion thruster. In order to obtain better results, the
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(a) Potential (b) Difference to the kinetic run

Figure 5.4: Plot of the electrostatic potential, and the difference to the kinetic run
after 496 000 timesteps, with values averaged over 100 000 timesteps.
Here, the hybrid model is applied to the entire domain including the
thruster channel.

hybrid electron model was then restricted to the plume region.
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5.2.2 Application to the plume

In this section, the plume simulation using the hybrid electron model is discussed.
To restrict the hybrid model to this area, a boundary surrounding the thruster
is introduced. Within this boundary, the ions are neither pushed nor collided
and the system there remains in the initial state. Outside the boundary, the
code is executed as described in section 5.2.1 and the electrostatic potential is
solved on the entire domain. In order to include new ions into the system, the
average number of ions, as well as their spatial and velocity distribution in the
boundary cells were measured using a kinetic simulation of 500 000 timesteps.
This information is used to sample a number of ions missing from the average
number during each ion timestep at the boundary via a Metropolis-Hastings
algorithm [38]. Two boundaries were introduced, one at the thruster exit and
one behind the electron source. In order to assess the results, a comparison with
a Monte-Carlo plume model is discussed, sampling the ions at the boundary and
pushing them in a straight line motion toward the domain boundaries without
the influence of an electric field. As the change in electron density is rather low
within the plume region, as shown in fig. 5.2, the discussion of the results is
concentrating on the ions.

(a) Hybrid (b) Kinetic

Figure 5.5: Logarithmic plot of the ion density from the hybrid and the ki-
netic run after 496 000 timesteps, with values averaged over 100 000
timesteps. The boundary is set at the thruster exit.

The case with the boundary located near the thruster exit is discussed first.
The ion density is similar to the one included in fig. 5.1, as the hybrid ion density
is much more focused within the plume region when compared to the kinetic
results. Figure 5.6 (a) further supports this observation. Up to the thruster
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exit at r = 51 mm the densities are identical as no ions inside the boundary are
pushed. At the thruster exit, the kinetic ion density is larger at first, but then
reduced when compared to the Monte-Carlo model as well as the hybrid model,
which can be attributed to the increased electrostatic potential in that area as
observed in fig. 5.7, resulting in an ion acceleration towards higher beam angles.

(a) r = 6 mm (b) r = 40 mm

Figure 5.6: Axial distribution of the ion density from the hybrid, kinetic and a
Monte-Carlo run at different radial positions after 496 000 timesteps,
with values averaged over 100 000 timesteps. The boundary is set at
the thruster exit.

The reduction in ion density for high beam angles can be explained by the
decreased potential gradient in negative z−direction above the thruster, overall
leading to a more focused ion beam, as shown in fig. 5.6. Both figures show
furthermore, that the results of the hybrid model do not differ significantly from
the Monte-Carlo model, as the difference in axial density distribution is negligible
for both radial positions.

The second boundary introduced was set behind the electron source at 78 mm.
The ion density of the hybrid run shows much better resemblance of the density
with the kinetic run, as given in fig. 5.8. The ion density is slightly higher for
low beam angles, as shown in fig. 5.9(a), where the ion density drops much faster
after the boundary introduced at z = 78 mm. In that region the hybrid model
results in lower ion density than the Monte-Carlo model, which can be attributed
to further acceleration of ions in the exit region when using the hybrid model.
The higher ion density in that area results in an increased potential as well, as
seen in fig. 5.10, where a potential increase of up to 20 V occurs.

In the outer plume region the hybrid ion density is slightly smaller for low z,
but surpasses the density of the kinetic run in regions closer to the right boundary
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(a) Potential (b) Difference

Figure 5.7: Plot of the electrostatic potential, and the difference to the kinetic run
after 496 000 timesteps, with values averaged over 100 000 timesteps.
The boundary is set at the thruster exit.

as fig. 5.9 (b) shows. From the graph one can also observe that the hybrid and
the Monte-Carlo model get the same results with negligible differences between
both methods. From these simulations one can conclude that the hybrid electron
model as introduced in section 5.1 does not represent the kinetic results of the
simulation of HEMP-T very well. In the application of the entire thruster, the
model resulted in a diffused ion density, which then directly influenced the plume.
This behavior continued to a lesser extend in a plume simulation starting at the
thruster exit, where a more focused beam could be observed as well. Only a
simulation with the boundary set behind the electron source could reproduce
the kinetic results. But as physical effects are small in that area, a Monte-Carlo
plume model offers nearly the same results.

Thus, the only advantage of the hybrid model over a Monte-Carlo approach
for the plume may be the collection of additional information such as the ion
energy distribution, which is strongly influenced by the electrostatic potential
that is not considered within the Monte-Carlo model. The advantage of the
hybrid plume model over the kinetic model is determined by the execution time
of the code, as the simulation of 496 000 timesteps on comparable machines was
finished in about 68 h for the fully kinetic code, but only needed close to 11 h for
each hybrid run, where the execution time is dominated by the field solve with
the adjusted SOR method in eq. (5.3). The Monte-Carlo method was executed
in slightly under 12 min, or 0.2 h. Hence, the Monte-Carlo method is preferred
over the hybrid model that was applied in this work.
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(a) Hybrid (b) Kinetic

Figure 5.8: Logarithmic plot of the ion density from the hybrid and the ki-
netic run after 496 000 timesteps, with values averaged over 100 000
timesteps. The boundary is set behind the electron source.

(a) r = 6 mm (b) r = 40 mm

Figure 5.9: Axial distribution of the ion density from the hybrid, kinetic and a
Monte-Carlo run at different radial positions after 496 000 timesteps,
with values averaged over 100 000 timesteps. The boundary is set
behind the electron source.
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(a) Potential (b) Difference

Figure 5.10: Plot of the electrostatic potential, and the difference to the ki-
netic run after 496 000 timesteps, with values averaged over 100 000
timesteps. The boundary is set behind the electron source.
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6 Conclusion

Aim of this work was the development and evaluation of a hybrid plume model
for ion thruster modeling. This was achieved using the assumption of massless
electrons, thus obtaining the electron density through the Boltzmann relation
and a heuristic adiabatic approximation for temperature calculation, resulting in
a simplified fluid electron model. For the numerical development of the model
a new solver for Poisson’s equation was implemented, which is also of interest
for the fully kinetic PIC method due to its beneficial properties concerning a
parallelization of the PIC code.

The results showed that the model was not suitable to be applied to the entire
thruster, as the simulation results were vastly different from the kinetic model.
The results were similar when the hybrid model was only incorporated for simu-
lation of the plume, with two different boundaries introduced defining the simu-
lation domain. For a simulation domain close to the thruster, the hybrid model
showed a behavior similar to the hybrid model for the entire thruster. If the
simulation domain starts outside of the electron source the results improved, but
could also be obtained using a simplified ray-tracing Monte-Carlo method with
almost no visible difference in results. Furthermore, the Monte-Carlo method is
executed much faster than the hybrid model and hence should be preferred.

Hybrid models are very popular in ion thruster modeling because they need
much less runtime than fully kinetic models. In the case of high-density collision
dominated plasmas they offer a good approximation and deliver reliable results
even when applied to the development and optimization of ion thrusters. This
work showed that, in the case of HEMP-T, which is dominated by kinetic ef-
fects and non-Maxwellian distribution functions, the limits of the hybrid model
become evident, as it delivers the same results as a simple Monte-Carlo model
treating the ions unaffected by electric and magnetic fields in a ray-tracing limit.
Therefore, a critical evaluation of the popular hybrid model should be done,
because in case of plasmas with strong kinetic effects it can fail miserably.
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