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Chapter 1Introdution
The interaction of a rotating body with a flowing medium is of greatest interest in aerospace,
but also in sports. In 1997 Roberto Carlos prepares to carry out his free kick in a soccer game
between Brazil and France. He stands 32 meters distant from the goal blocked by a human
wall of four players of the French team, so that no direct shot would find the goal. Carlos
knows that a successful shot is still possible using a special technique. Executing the shot he
applies in addition to the translational velocity a side spin to the ball changing the aerodynamic
properties so that next to drag and gravity force another force gets important. This force alters
the trajectory of the ball from a simple parabolic to a characteristically curved one, making its
way round the wall and for the keeper very difficult to predict. This effect is called the "Magnus
effect" and the force "Magnus force", respectively. The German physicist Heinrich Magnus was
the first who introduced a correct mathematical description for this effect in 1852. However,
Isaac Newton was the first to record the effect and to give an explanation. In 1672 he published
his work "A new theory about light and colors" where he tried to explain optical refraction, the
bending of a ray of light when it passes through a prism. He used the analogon to a curved
trajectory of a spinning tennis ball. [1]: "For, a circular as well as a progressive motion..., it
parts on that side, where the motions conspire, must press and beat the contiguous air more
violently than on the other, and there excite a reluctancy and reaction of the air proportionably
greater."
For small angular velocities the Magnus force acting on a ball even changes its direction. This
effect is referred to as "inverse Magnus effect". A swirling ball in soccer or volleyball combines
alternating Magnus and inverse Magnus force by changing its velocity regime. During its trajec-
tory the ratio of angular to translational velocity is modified and the different Magnus forces are
initiated. The inverse Magnus effect also occurs in rarefied gases which will be the main subject
of this work. A rarefied gas or fluid is characterized through a relatively large mean free path of
the fluid particles. In comparison to the mean free path, dimensions of boundaries confining the
stream are relatively small. The ratio of free mean path and characteristic dimension is given
by the Knudsen number, which is large for a rarefied gas. As a result particle to boundary or
particle to projectile impacts are much more frequent than particle to particle impacts, ensuring
that deflected particles do not influence the incoming stream.
Rarefied gas flow dynamics and inverse Magnus effects are used in contamination investiga-
tions. For instance in a hard disk drive (HDD) [2] the gap between the slider and the disc is
about ten times smaller than the mean free path of air, which is around 65nm. This gives a
Knudsen number much greater than one. In this rarefied gas regime inverse Magnus forces
on rotating spherical shaped particles occur. Knowing the acting forces contaminations can be
predicted and HDDs optimized.
The article published by Patrick D. Weidman and Andrzej Hercynski [3] provides an analytical
model to calculate drag and Magnus forces on different rotating geometries in rarefied gases.
The aim of this thesis is to develop and validate a numerical approach for calculating the inter-
action of rotating bodies in free molecular flow. In both models collisions between particles in
the flow are neglected consistent with the regime of rarefied flow.
In chapter 2 the aerodynamic characteristics of rotating objects and the regime of rarefied gas
flow will be discussed. In chapter 3 the analytical and numerical models will be introduced. In1



Chapter 1. Introdution
chapter 4 the results are presented for different geometries such as cylinder, rectangle, triangle
and hexagon. Drag and lift forces will be computed including an error propagation analysis.
Finally, in chapter 5 the thesis will be summarized.
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Chapter 2Basis2.1 Aerodynami harateristis of rotating objets
On ballistic spinning objects in flight, forces and moments are acting uniquely determining the
trajectory. These forces and moments include the gravitational force, aerodynamic force, and
an aerodynamic moment which acts to slow down the spinning motion. Unforeseen wind gusts
and other changes in atmospheric conditions makes a calculation of the trajectory difficult. In
research, experiments are conducted in a controlled environment (wind tunnels) to minimize
the effect of atmospheric anomalies. For numerical computations, simplified conditions are
assumed.
The aerodynamic force is the total of drag and lift force. The lift force is also called the Magnus
force named after his discoverer the German physicist Heinrich Magnus. He described the
effect of force acting perpendicular to the line of motion of a spinning ball in 1852.

Figure 2.1: The Magnus e�et, demonstrated on a ball. Lines represent the wind veloity, andthe arrow FMag represents the resulting fore towards the side of lower pressure.
The explanation of the Magnus Effect is a relatively simple one [4]. When any object is moving
through a fluid, such as air, its surface interacts with a thin layer of air known as the boundary
layer. In the case of the sphere or ball, the boundary layer separates from the surface, creating
a wake or low-pressure region behind ball. The front-to-back pressure difference creates a
backward force on the ball, which slows the forward motion of the ball. This is the normal air
resistance, or aerodynamic drag, that acts on every object. However, if the ball is spinning
as it moves, the boundary layer separates at different points on opposite sides of the ball,
further upstream on the side of the ball that is turning into the airflow, and further downstream
on the side turning with the airflow. Consequently, the air flowing around the ball is deflected
slightly sideways, resulting in an asymmetrical wake behind the ball as shown in Fig. (2.1). If
it is assumed that the air in the wake has upwards or positive momentum, for momentum to
be conserved the ball must possess an equal but opposite or downwards momentum. Hence
a sideways deflection in the trajectory occurs. The magnitude and direction of this resulting
momentum vector and its corresponding Magnus force is directly dependent on the velocity3



Chapter 2. Basis
vector v, angular velocity vector ω, Magnus coefficient CM, cross- sectional ball area A and air
density ρ.

FMag =
1

2
ρAv2CM

ω × v

|ω × v| (2.1)
The drag force is a retarding force characterized in terms of the drag coefficient Cd.

Fdrag = −1

2
ρAv2Cd

v

|v| (2.2)
The dimensionless Magnus coefficients CM and Cd scale the strength of drag force or Magnus
force at a particular speed v and spin ratio ωR/v. C is also a function of the Reynolds number
Re and the roughness ratio κ of the surface. The Reynolds number expresses the ratio of
inertial (resistant to change or motion) forces to viscous (heavy and gluey) forces and is defined
as:

Re =
vL

ν
(2.3)

Where L can be a characteristic dimension of the body itself like the diameter of the ball, but
also the scale of a boundary the flow is confined to, like the diameter of a wind tunnel probe.
The coefficient ν is the kinematic viscosity of the flow.
Another relevant ratio for the aerodynamics is the Knudsen number Kn. This as well dimen-
sionless number is defined as the ratio of the molecular mean free path λ to the characteristic
length L.

Kn =
λ

L
(2.4)

The Knudsen number is related to the more familiar parameters of fluid mechanics, the Mach
number M and the Reynolds number Re. From kinetic theory it is known that

ν =
1

2
λv. (2.5)

Where v is the mean molecular speed and ν is the kinematic viscosity. The mean speed is
related to the speed of sound c as follows:

c = v

√
πγ

8
(2.6)

Here γ is the isentropic exponent. The combination of Eq. (2.5) and (2.6) as well as the
substitution of Re = vL/ν and Kn = λ/L yields the fundamental relation

Kn = 1.26
√

γ
M

Re
. (2.7)4



2.2 Rare�ed gas �ow2.2 Rare�ed gas �ow
Rarefied gas flow models have been subject to many investigations lately, confined to the case
of very slow speeds. In a rarefied gas flow the length of the molecular mean free path λ is
comparable to some characteristic dimension L of the flow field and therefore the Knudsen
number Kn is not negligibly small, so that the gas does not behave entirely as a continuous
fluid. The regime termed as "free molecular flow" starts at conditions [5]:

M

Re
> 3 (2.8)

It classifies a regime of extreme rarefaction. The body is located in the rarefied flow of infinite
extent. Particles reemitted after striking the surface of the body travel very far before colliding
with other particles. It is therefore valid to neglect the effect of reemitted particles on the in-
coming stream. These basic assumptions lead to the fact that neither boundary layer nor shock
waves like for a continuous flow are formed in the vicinity of the object. A typical example is the
re-entry of vehicle or satellites into the upper atmosphere [6].
The Magnus force sometimes changes direction in this regime. This change is attributable to
the decreasing role of shear stresses and increase in the contribution of normal stresses [7].
This "inverse Magnus effect", as it will be referred to prospectively, in particular takes place at
huge Knudsen numbers.

Kn >> 1

Under this condition simple particle models can be applied. Newton’s model [8] of fluid re-
sistance "consists of equal particles freely disposed at equal distances from each other", im-
pacting the body surface such that their tangential momentum is preserved while the normal
momentum is transferred to the body. While this model is useful at hypersonic speeds, it is
not applicable to a subsonic flow. The particle model used in this work differs from Newton’s
assumptions in following terms:

• The particle mass m is orders of magnitudes smaller than the rotating objects mass.

• Impacts with the object are perfectly elastic.

• The fraction of tangential momentum acquired by the particle from the rotation of the body
is measured in α, the Maxwellian accommodation coefficient [9].

5
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Chapter 3Numerial and analytial methods3.1 Analytial model
The analytical calculations presented here follow Patrick D.Weidman and Andrzej Herczynski
[3]. Free particles are assumed in a homogeneous density flow, which impacts the body at a
velocity v. The body spins with an angular velocity ω. In 2-dimensional Cartesian coordinates
the flow direction is considered to be parallel to the x axis ex in positive direction while the body
is rotating about a fixed axis of symmetry at rrot = (0, 0). The number of particles impacting
a surface element area dS of the body per unit time is N = n0v|ex · n|dS. n0 describes the
density of the flow and n is the unit normal to the body surface.
The pre-impact momentum of a specific particle is p = (mv, 0) and p′ = (p′x, p′y) after repulsion.
As a result, the momentum acting on the body is

∆p = (px − p′x, py − p′y). (3.1)
The force on a surface element is then f = N ·∆p. Integration over the surface exposed to the
molecular flow gives the total acting force on the body.

F = n0v

∫

upwind

∆p · |ex · n|dS (3.2)
Impacts with the body are considered to be perfectly elastic and its mass orders of magnitudes
larger than the particle mass.
To generate an inverse Magnus force acting on the body it is essential that a fraction of tangen-
tial momentum is acquired by the particle. This fraction will be measured in α.

Figure 3.1: Tangential momentum aquired by partile. 7



Chapter 3. Numerial and analytial methods3.1.1 Solid ylinder
The simplest test case of a two-dimensional system is a cylinder. Cylindrical coordinates (r, ϕ)
shown in Fig. (3.2) are used. Then, the surface fraction is dS = Rdϕ and ex · n = sinϕ.

Figure 3.2: Cylindrial body rotating about an axes of symmetry at origin.
In order to calculate the deflected momentum of a particle interacting with the rotating cylin-
der the velocity vector before the impact has to be calculated with respect to the tangential
momentum of the cylinder.

v → v − αωR ·
(

cos ϕ
sin ϕ

)

After impact the normal component gets reversed while the tangential component preserves.

v′ = −(v · n)n + (v · t)t

With t = (− cos ϕ,− sin ϕ), n = (− sin ϕ, cos ϕ) and Eq. (3.1) the momentum changes are:

∆px = mv(1 − cos 2ϕ) + mαωR cos ϕ (3.3)
∆py = mαωR sin ϕ − mv sin 2ϕ (3.4)

Integration of Eq. (3.2) yields the acting drag and lift forces:

Fx = mn0Rv

π∫

0

dϕ(v(1 − cos 2ϕ) + αωR cos ϕ) sin ϕ =
8

3
mn0Rv2 (3.5)

Fy = mn0Rv

π∫

0

dϕ(αωR sin ϕ − v sin 2ϕ) sin ϕ =
π

2
mn0αR2ωv (3.6)

With M = mn0πR2 the total mass of the particles displaced by the cylinder, a steady-state8



3.1 Analytial model
inverse Magnus force of the body is obtained which is proportional to M/2.

FMag =
M

2
ωv3.1.2 Retangular bodies

The calculation of the Magnus force for bodies of non-circular section is more complex. A
rectangular-like body (see Fig. (3.3)) with a × b dimension undergoing a uniform rotation ω
at the centroid of the section. ξ = ωt is measured clockwise from the y-axis determining the
current angle of the body. Indices 1 and 2 indicate if the upper or lower side is considered.
The coordinates r1 and ϕ locate points on the upper face with borders ϕ− = − arctan(a/b) and
ϕ+ = arctan(a/b).

Figure 3.3: Partiles impating a spinning retangular body.
Considering that only the angular momentum tangential to the surface is transferred to a particle
the velocity vector right before the impact is:

v → v − αωr1 cos ϕ ·
(

cos ξ
sin ξ

)

with r1 = b
2 cos ϕ

. Like for the cylinder, the normal component gets reversed while the tangential
component preserves.

v′ = −(v · n)n + (v · t)t
With t = (− cos ξ,− sin ξ), n = (− sin ξ, cos ξ) and Eq. (3.1) the momentum changes are:

∆px = mv(1 − cos 2ξ) − mαω
b

2
cos(ξ) (3.7)

∆py = −mv sin 2ξ + mαω
b

2
sin(ξ) (3.8)

The number of collisions per unit time impacting an area element dy1 is N = n0vdy1. With
y1 = r1 cos(ξ + ϕ) it can be rewritten as:

N = −n0v
b

2

sin ξ

cos2 ϕ
dϕ (3.9)9



Chapter 3. Numerial and analytial methods
Integration of Eq. (3.2) over the upper side finally yields:

Fx,1 =
mn0vb

2
sin ξ

ϕ
−∫

ϕ+

dϕ

[
v
(cos 2ξ − 1)

cos2 ϕ
− αωb

cos(ξ)

2 cos3 ϕ

]
= mn0v

(
2av sin3 ξ +

ab

2
αω sin ξ cos ξ

)(3.10)
Fy,1 =

mn0vb

2
sin ξ

ϕ
−∫

ϕ+

dϕ

[
v sin 2ξ

cos2 ϕ
− αωb

sin(ξ)

2 cos3 ϕ

]
= mn0v

(
ab

2
αω sin2 ξ − av sin 2ξ sin ξ

)(3.11)
A similar analysis for the lower face (2) gives Fx,2 and Fy,2 and after summation of both contri-
butions one obtains the total force:

Fdrag = 2mn0v
2(a sin3 ξ + b cos3 ξ) (3.12)

Flift = mn0v
2(b cos ξ − a sin ξ) sin 2ξ +

1

2
Mαωv (3.13)

Here M = mn0ab is again the mass of gas displaced by the rectangular body. It is worth noting
that there is no dependency on the current body angle ξ for the Magnus force 1/2Mαωv.3.1.3 Regular n-sided polygon
Finally, we take the general case of a right parallelepiped rotating about the centroid of it’s
regular polygon section, displayed in Fig. (3.4). Only the Magnus force will be calculated,
hence the drag force will be not discussed. The number of faces exposed to the particle stream
depends on whether n is odd or even. If n is even we have usually n/2 sides in the flow and
for a short time only just n/2 − 1. If n is odd, depending on the angle either n+1

2
or n−1

2
are

exposed.

Figure 3.4: Partiles impating a spinning regular pentagon.10



3.1 Analytial model
Like for the rectangular case each exposed side is marked with an index i. In principle the
integration is the same like for the rectangular body, however additionally an angle offset δi is
introduced to access all faces.

δi = (i − 1)
2π

n
(3.14)

The radius r for a n-sided polygon is:

r =
a

2
cot

(π

2

) 1

cos ϕ
(3.15)

The integration is the same as in Eq. (3.11). Taking into account that b = a and accounting
also for the additional factor cot(π/n) from the radius, the Magnus force for the ith face can be
calculated:

(Fi)Mag = mn0αωv
a2

2
cot

(π

n

)
sin2(ξ + δi) (3.16)

Summation over the total number I of exposed sides gives the total Magnus force for the
parallelepiped:

FMag = mn0αωv
a2

2
cot

(π

n

) I∑

i=1

sin2(ξ + δi) (3.17)
Using explicit forms [10] one gets:

Case 1: n even
Here the sum yields n/4, so we get a steady-state inverse Magnus force:

FMag = mn0αωv
a2

8
n cot

(π

n

)
=

M

2
αωv (3.18)

with the mass of gas displaced by the body M = mn0a
2n cot(π/4)/4.

Case 2: n odd
Here, one has to distinguish if the maximum or the minimum number of faces is exposed.

Maximum number of exposed faces:

FMag = mn0αωv
a2

8
n cot

(π

n

) [
n + 2 sin2 ξ − tan

(π

n

)
sin 2ξ

] (3.19)
Minimum number of exposed faces:

FMag = mn0αωv
a2

8
n cot

(π

n

)[
n − sin 3ξ

sin ξ
+ 2

sin
(

3π
n

)

sin
(

2π
n

) cos
(
2ξ − π

n

)] (3.20)
It is worth noticeable that a regular n-sided polygon for the limit case n → ∞ leads back to the
formula of a cylinder by diminishing side length a using an cot(π/n)/2 = R and Eq. (3.19). 11



Chapter 3. Numerial and analytial methods
FMag = mn0αωv

R2

2
n tan

(π

n

)

Since limn→∞[n tan(π/n)] = π we yield the expected Eq. (3.6).3.2 Numerial approah
The numerical approach calculates for individual particles the momentum transferred to the
body for each particle hitting the body surface. Momenta and locations of the body and every
particle are known for every time step, therefore it’s easily possible to investigate the acting
forces in dependence of the spinning body’s angle. Time steps are discretized to ∆t, therefore
during a single time step a particle moves the distance ∆tv and a point b on the body surface
experiences a rotation which is described by following rotation matrix:

b′ =

(
cos ω∆t sin ω∆t
− sinω∆t cos ω∆t

)
b

If no impact from a particle i is detected its position ri,t is reset to ri,t+∆t after traveling a
straight distance ∆tv. In case its trajectory intersects a body surface element, the location
of the intersection is calculated. The normal component of momentum gets reversed while
the tangential component preserves, just like in the analytical model, and a new velocity is
computed. The particle ri,t+∆t gets replaced at the appropriate location based on the location
of the intersection (see Fig. (3.5)).

Figure 3.5: Partile interseting the surfae of a body.
The particles spawn randomly right in front of the rotating body with same velocity v. Due to the
fact that a free molecular flow is modeled the particles are not interacting with each other but
only with the body surface. This qualifies the model to accomplish the inverse Magnus effects
in rarefied gas flows, which will be discussed in the following chapter.

12



Chapter 4Results4.1 Simulation results of partiles interating with a ylinder

The first geometry to investigate is a rotating cylinder. The cross section of the cylinder is
represented numerically by 100 small surface elements arranged to a circle. The rotation angle
of the cylinder has no influence on the acting forces hence the impacting momenta are summed
up over a long time and afterwards divided by this averaging time to get the mean force.4.1.1 Veloity variation
Firstly, the dependence on the particle velocity is studied. The analytical solutions have shown
that one can expect a square velocity dependency for the drag (Eq. (3.5)) due to the particle
flow vector n0vdS (number of particles striking surface element dS per time) combined with
the momentum vector mv itself. The Magnus force compensates the momentum fractions in
y-direction from upper and lower side so that it exhibits a linear dependency (Eq. (3.6)).
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Chapter 4. Results4.1.2 α variation
Here, the dependency of the Magnus force on α is studied. A linear scaling for the Magnus
force with α and a constant drag force is expected.
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As expected, α has no influence on the drag force. The tangential momentum fractions in
x-direction transferred from the body to particles at the upper and lower side of the cylinder
cancel each other. For each particle a momentum is assigned proportional to α, so one gets a
linear scaling of the Magnus force.4.1.3 Variation of radius
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4.1 Simulation results of partiles interating with a ylinder
With a variation of the radius R a square dependence of the Magnus force on the radius is
obtained as a result of the integration over the upwind side which yields a factor R which is
multiplied with each particle’s tangential momentum mRω. After integration the latter has no
contribution to the drag force resulting in a R proportionality.4.1.4 Variation of density
The last quantity to vary is the particle density. It has no direct influence on the momentum
calculations but changes the number of particles hitting the surface. During the time ∆t the
cylinder gets struck by n0v∆t2R particles which grows linear with n0. Therefore a linear scaling
of drag and Magnus force is obtained for α > 0.
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Apparently, the analytical and numerical solutions of all quantities agree within statistical varia-
tions. Numerical values for the Magnus force are not as smooth as for the drag force. This is a
result of the fact that the Magnus force has the same standard deviation like the drag force, but
at the same time is orders of magnitude smaller. This will be analysed in the following.
From Eqs. (3.3) and (3.4) it becomes clear that both Magnus and drag force have a mv contri-
bution from the momentum of the particle, and a mωR contribution from the applied momentum
of the rotating body. After upwind side integration for the drag force the assigned angular mo-
mentum and for Magnus force the particle momentum disappears. If now the density is subject
to fluctuations, errors for both have to be analysed. To calculate this error the particle flow is
divided into equal lanes, each lane leading to another surface fraction of the cylinder so that
the whole body is covered. Ideally, each lane should contain the same amount of particles
N/l whereas N is the total number of particles and l the number of lanes. But due to the
random sampling of the particles inhomogeneities occur. The particles of a single lane can be
approximated with a Poisson-distribution (for high N and l).
Hence the error for one lane can be estimated:

∆ni = ±
√

N

l 15



Chapter 4. Results
The error for the force depends on the lane where fluctuations occur. The overall error is
obtained after summation of each lane.

∆fMag,i

m
= ∆ni(v(1 − cos 2ϕi) + αωR cos ϕi) ⇒ ∆FMag =

l∑

i=1

∆fMag,i

∆fdrag,i

m
= ∆ni(αωR sin ϕi − v sin 2ϕi) ⇒ ∆Fdrag =

l∑

i=1

∆fdrag,i

Because N is constant
l∑

i=1

∆ni = 0

holds. ∆ni is either +
√

N/l or −
√

N/l so one gets l/2 from each. For 20 lanes this combines

20!

10!10!
= 184756

opportunities for arrangement of distinguishable lanes.
For case of the cylinder the number of particles impacting the body per millisecond from one
lane is 2Rvn0/20 = 1000s−1. The fluctuation per millisecond is therefore ∆ni = ±

√
1000 =

±31, 62. Calculating the errors for all 184756 opportunities and assorting the results at occur-
rence gives the Gaussian-distribution displayed in Fig. (4.5).
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Surprisingly, drag and Magnus error cover the same Gaussian-function which leads to the same
standard deviation of both σ ≈ 8 · 106 m

s2
mparticle but to different relative errors ∆rel:

∆rel,Mag =
2σ

π
2
mn0αR2ωv

≈ 16, 2% ∆rel,drag =
2σ

8
3
mn0Rv2

≈ 0, 6%

Taking into account that the results in section 4.1 are the average over 20 milliseconds one gets
additionally the factor 1√

20
≈ 0, 22.16



4.2 Simulation results of partiles interating with a rotating retangular body4.2 Simulation results of partiles interating with a rotatingretangular body
In this section the interaction with a rotating rectangular body is calculated. To model a rect-
angle just 4 surface elements were necessary so that adequate computing times could be
achieved even for a high particle density. Compared to the case of the cylinder phase-resolved
investigations will be done due to different lift and drag forces at different angles. Therefore,
the mean value can not be taken over a longer time interval but just for the discretized time ∆t.
Consequently, much less particles impacts contribute leading to large statistical variations. To
counteract this effect the particle density got increased by ten.4.2.1 Retangular 1:1
The first object to analyse is a square. For the forces in dependency of the body angle, a
π periodical function for every rectangle and in case of the square even a π/2 periodicity is
expected. For α = 1 compared with α = 0 a constant offset of M

2
αωv is anticipated with the

mass of particles displaced by the body M = mn0ab .
The simulations for the case of the rotating square gave the following results:
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Numerical solutions agree very well with the analytical results. The lift force reaches its peaks
with a π

8
(2n + 1) periodicity when one side stands on a plain π/8 angle on the flow where it is17



Chapter 4. Results
no counterbalance to the almost orthogonal side, due to less counted impacts. Its zero-points
get reached either when both sides equally share the flow (lift forces from both sides cancel
down each other) or one side stands exactly orthogonal on the flow (π

8
· 2n periodicity). The lift

force for α = 1 is respectively higher than for α = 0 due to the offset of the Magnus force.
Analytically, the constant Magnus force can be extracted from Eq. (3.13):

FMag,analytic

m
=

1

2
mn0abαωv

= 250π · 106 m

s2
≈ 785.4 · 106 m

s2

Numerically (see Fig. (4.6)), the double standard deviation of the mean is:

FMag,numeric

m
= (763.91 ± 31.18)106 m

s2
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Figure 4.7: Drag fore for a square as a funtion of rotation angle, a = b = 0.1m, v = 100ms−1,
ω = 5π/100s−1, n0 = 107m−2.
For the drag force in Fig. (4.7) no change is expected according to the analytical results from
variations of α. This is not a general case for every arbitrary spinning geometry but a rather
special situation for cylinder and rectangular bodies.
One can verify that the drag force has its peaks always when one side stands orthogonal on the
flow, because particles get redirected in the opposite direction. Its minima get reached when all
particles get redirected in y-direction (both sides on 45 degree angle on the flow). In conclusion
one can say that for α = 0 drag force always reaches extrema when lift force intersects the zero
axis.4.2.2 Retangular 1:2
After scaling down side b to a half, the π/4 periodicity is no longer preserved. This has neither
consequences for a constant Magnus force nor for the independence of the drag force of α.
Apart from reducing b = 10cm to b = 5cm the simulation got started with the same quantities18



4.2 Simulation results of partiles interating with a rotating retangular body

like for the square, therefore half of the Magnus force as for the square (10×10) can be expected
because just half of the particle mass get displaced from the rectangular (10 × 5).
The simulations for the rotating rectangular body has provided following results:
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Analytically, the constant Magnus force is:

FMag,analytic

m
= 125π · 106 m

s2
≈ 392.70 · 106 m

s2

Numerically, using Fig. (4.8), the double standard deviation of the mean is:

FMag,numeric

m
= (386.99 ± 17.30)106 m

s2

A more detailed examination of the Magnus force contribution will follow in chapter 4.3 for the
example of the triangle as well as the hexagon. The shifting of the peaks and some zero-points
is noticeable in Fig. (4.8) compared to Fig. (4.6). Looking at α = 0, fixed zero points are
achieved if the body lies evenly in the flow. This happens for side b at angle 0 and for a at π/2.
The other two can be calculated by setting Eq. (3.13) equal to zero which results in

b

a
= tan ϕ0 −→ 1

2
= tan ϕ0 ⇐⇒ ϕ01 ≈ 0.59 · π

4

for the b to a rotation and
a

b
= tan(ϕ0 − π/2) −→ 2 = tan(ϕ0 − π/2) ⇐⇒ ϕ02 ≈ 3.41 · π

4 19
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for the a to b rotation. Respectively, the angles where the lift force from side a is identical with
the lift force from the b side. The differentiation of Eq. (3.13) 0 = dFlift

dϕ
yields

tan 2ϕm

2
=

b(a) cos ϕm − a(b) sin ϕm

b(a) sin ϕm + a(b) cos ϕm

,
which is untransposable. Graphical solution provides for the peaks:

ϕmax1 ≈ 0.288 · π

4
ϕmax2 ≈ 2.614 · π

4

and for the minima:

ϕmin1 ≈ 1.386 · π

4
ϕmin2 ≈ 3.713 · π

4

The drag force is as predicted independent of α. Like for the square it has its peaks when one
side is exposed to the flow. Logically, the half sized b side produces half the drag force than the
a side. Looking at Eq. (3.12) it appears that the drag force has its bottoms exactly when the
(α = 0) lift force reaches a zero point. Differentiation of this equation gives:

dFlift

dϕ
= const · (3a(b) cos ϕ sin2 ϕ − 3b(a) sin ϕ cos2 ϕ) = 0

−→ tan ϕm =
b(a)

a(b)
(4.1)

which is indeed the same equation as for the lift force zero intersection. Hence, we can general-
ize the concluding statement for any arbitrarily rectangular figure. Drag force reaches extrema
always when lift force intersects the zero axis. This also means that if the drag force reaches a
minimum the total acting force of the body is the lowest.
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4.2 Simulation results of partiles interating with a rotating retangular body4.2.3 Retangular 1:100

The last rectangular case to investigate is an approximation of a flat plate. Numerically, this
is accomplished by scaling b down to a hundredth of a. Whereas the analytical solution Eqs.
(3.12) and (3.13) can be simplified with b → 0 to:

F = 2mn0av2 sin2 ϕ(sin ϕex − cos ϕey) (4.2)
Looking at Fig. (4.10) no offset is seen for α = 1, because every tangential unit vector is
orthogonal to the velocity vector at every point of the spinning plate.
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Evaluating zero points and extreme values is quite easy. The zero intersections in between the
orthogonal orientations to the flow (nπ

2
n = 0, 1, 2..), cf. Fig. (4.6) and (4.8), have disappeared

due to the fact that side b is to small to act as a counterbalance to a.
The peak for the lift force does not get reached at a 45 degree angle to the flow as naively
expected because impacts at this angle change the momentum direction in a 90 degree angle.
The peak appears at slightly larger angle as seen in Fig. (4.10). Differentiation of the lift force
fraction of Eq. (4.2) provides the condition for this peak:

dFlift

dϕ
= 0 −→ 1√

3
= cos ϕmax 21
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ϕmax1 ≈ 1.216

π

4
=̂ 54.72◦

ϕmax2 ≈ 2.784
π

4

The total exposed surface is the determining factor for this. More particles impact the plate at
larger angles and contribute to the lift force. The numerical simulation gives proof for that, well
recognizable in Fig. (4.10).

The drag force has its peak at π
2
, comprehensibly where a gets a particle broadside. It goes

down to a minima at zero after a quarter of a period when the trickle b is exposed. The drag
force minima cf. Fig. (4.7) and (4.9) have shifted to this bottoms.

tan ϕ =
b

a
= 0 ⇐⇒ ϕ = 0 tan

(
ϕ − π

2

)
=

a

b
≈ ∞ ⇐⇒ ϕ = π
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Figure 4.11: Drag fore of a �at plate as a funtion of rotation angle, a = 0.1m, b = 0.001m,
v = 100ms−1, ω = 5π/100s−1, n0 = 107m−2.
4.3 Regular n-sided polygon
In chapter 3.1.3 it was shown that the Magnus force has a linear dependence on the current
body angle, in case it consists of an odd number of polygons. If the number is even, the Magnus
force is steady. Numerically the triangle and the hexagon are studied.22



4.3 Regular n-sided polygon4.3.1 Triangle
The Magnus force for a triangle unfolds from Eqs. (3.19) and (3.20) to:

2 exposed sides:

FMag = mn0αωv
a2

8

1√
3

[
3 + 2 sin2 ϕ −

√
3 sin 2ϕ

]

1 exposed side:

FMag = mn0αωv
a2

8

1√
3

[
3 − sin 3ϕ

sin ϕ

]

To yield the Magnus force and no other lift force, it is essential to run simulations for α = 0
as well as α = 1 and finally calculate the difference by subtracting the numbers. This method
has therefore a large error which can be minimized by phase-averaged simulation and high
particle densities. For 100 phases the following angle functionality got computed:
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Figure 4.12: Magnus fore of a triangle as a funtion of rotation angle, phase-averaged over 100phases with double standard deviation, a = 0.1m, v = 120ms−1, ω = 2π/60s−1, n0 = 107m−2.
The Magnus force reaches a minimum exposing two sides to the flow at:

dFMag,2sides

dϕ
= 0 =⇒ tan 2ϕmin =

√
3

⇐⇒ ϕmin =
π

6 23



Chapter 4. Results
Here, incoming flow vector and tangential momentum vector of the triangle stay in a plain angle
so that only small momenta in y-direction contribute. Approximately, a Magnus force value twice
as much is reached if one side is exposed, the angle is in fact perpendicular, with its peak at:

dFMag,1side

dϕ
= 0 =⇒ 3 tan ϕmax = tan 3ϕmax

⇐⇒ ϕmax =
π

2

Examining Fig. (4.12) one observes that the single exposed side has smaller error bars than
the two exposed sides. This can be traced back to particle density irregularities. The two sides
are more vulnerable to fluctuations because missing or excess particles leading to errors for
both sides at worst summing each other.

In the case of a single exposed side you can see that the error is dependent on the total number
of particles hitting the surface. Therefore, the error is minimal if the whole side is exposed to
the flow and here the maximum number of particle intersects the surface. At the separation
point in case two sides are exposed the error is larger, because the effective length is reduced
according to a cos(π/6) ≈ 0.87a. It is worth noting that the numerical solution agrees within the
statistical error bars with the analytical one.

4.3.2 Hexagon

From Eq. (3.18) one expects the Magnus force to remain constant for each angle:

FMag = mn0αωv
3a2

8
cot

(π

6

)

With a = 0.1m, v = 120ms−1, ω = π/60s−1, n0 = 107m−2 and α = 1 this yields:

FMag

m
= 408, 1 · 106 m

s24



4.3 Regular n-sided polygon
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Figure 4.13: Magnus fore of a hexagon as a funtion of rotation angle, phase-averaged over 100phases with double standard deviation, a = 0.1m, v = 120ms−1, ω = π/60s−1, n0 = 107m−2.
For the same reasons as for the triangle the more sides are exposed the larger is the error
because less particles strike a single side and individual errors of all polygons accumulate.
With an overall error of about 2% the hexagon computation is quite exact nonetheless so that
the steadiness could be validated.
Analysis with more polygons would require extremely high densities as well as high time reso-
lution to distinguish small angles.
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Chapter 5Conlusion and outlook
The aim of the present work was to develop and validate the particle model of a rarefied gas
stream by analytical solutions. A rarefied gas flow consists of free particles with respectively
high free mean paths compared to the dimensions of the body inside the stream so that no par-
ticle to particle impacts take place. This strong simplification ensures reasonable computing
times for numerical approaches and a simplified analytical treatment without the need for con-
sidering the full Navier-Stokes fluid equations. In the regime of rarefied gas flow the Magnus
force is acting in opposite direction as in the continuous flow regime.
Particle simulations were done for simple geometries of rotating bodies like cylinders, rect-
angles as well as for hexagons and triangles allowing a direct comparison with the analytical
model. The flow was modeled by independent particles following straight stream lines inter-
secting the rotating bodies. For sufficiently good statistics the particle simulations agreed with
the analytical model.
In the case of a rotating cylinder error propagation was analysed assuming a Poisson distri-
bution of the errors for the number of particles hitting a body surface fraction during a time
period. Drag and lift force obey the same Gaussian distribution function. The errors for the
lift force were one order of magnitude smaller than for the drag force which resulted in higher
fluctuations for the lift force.
For arbitrary rectangular bodies the total acting force on the body is lowest if the drag force
reaches a minimum. Reducing one side of the rectangle the Magnus force scales proportional
to the mass of particles displaced by the body. This is also a general result for any rotating
object. The Magnus force gets only steady state in case of an even n for regular n-sided
polygons.
The successful validation of the numerical model demonstrates that the simulations can be ex-
tended to more complicated objects like crescent or ellipse. More complex extensions require
a particle to particle collision model. The simplest model could be the Variable Hard Sphere
(VHS) model where particle collisions are treated elastically. A more detailed description of
particle interactions including internal energy exchange, chemical reaction and thermal radia-
tion is the computationally expensive Larsen-Borgnakke model. However, all this extensions
require large scale parallel computing far beyond the scope of this work.
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