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Zusammenfassung

Spektroskopische Daten sind wichtig für die Astrophysik, weil die einzig verfügbare Observ-
able Licht der verschiedenen Wellenlängen ist. Das Wissen um die Spektren aller Materiearten,
die gemessen werden, ist daher kritisch für die Auswertung der Beobachtungen. Neben Ele-
mentarteilchen und Atomen sind Kohlenwasserstoffe häufig anzutreffen. Sie stammen aus dem
Inneren alter Sterne, die unter anderem auch Kohlenstoff durch Fusion erzeugen. In ihren relativ
kalten Atmosphären können sich dann Kohlenwasserstoffe bilden. Weiterhin finden sich diese
auch in den Atmosphären von Gasriesen und im interstellaren Medium. Methan ist der mit
Abstand häufigste Vertreter von Kohlenwasserstoffen.
Die bisherigen Datensammlungen von spektroskopischen Daten von Kohlenwasserstoffen beste-
hen aus Datensätzen unterschiedlichster Herkunft und Genauigkeit. Dies führt bei der Integra-
tion in Rechenpaketen zum Strahlungstransport zu falscher Physik und kann zu numerischen
Instabilitäten führen.
Das Ziel dieser Arbeit ist es daher eine spektroskopische Datenbank für Methan zu erstellen,
die alle Rotations-Vibrations-Übergänge bis zu einer maximalen Energie der oberen Zustände
erfasst. Diese beträgt 6200 cm−1 was zirka 9000K entspricht. Dabei liegt der Hauptaugenmerk
auf der Konsistenz der erhaltenen Daten unter Inkaufnahme eingeschränkter Qualität einzelner
Linien.
Dazu wurden ausgehend von ab initio Daten globale Hyperflächen der potentiellen Energie
und des Dipolmomentes in Abhängigkeit von der molekularen Konfiguration erstellt. Diese
Oberflächen erlauben eine schnelle, aber trotzdem genaue Lösung der Schrödinger Gleichung.
Mit Hilfe der verwendeten Codes konnten exakte Rotations-Vibrations Energien gewonnen wer-
den, die eine hinreichende Genauigkeit für die astrophysikalische Anwendung besitzen. Desweit-
eren sind Dipolmatrixelemente zu berechnen, was aufgrund der technischen Einschränkungen der
verwendeten Codes nur auf Vibrations-Niveau mit genäherter Rotationsabhängigkeit möglich
war. Aus diesen Daten konnten dann Einsteinkoeffizienten errechnet werden, die ein Mass für
die quantenmechanische Übergangswahrscheinlichkeit pro Molekül pro Sekunde sind.
Vergleiche mit existierenden Datenbanken bestätigen trotz aller benutzter Näherungen die Qualität
der Ergebnisse und definieren damit die Möglichkeit mit dieser Vorgehensweise auch andere
Moleküle zu behandeln. Durch weitergehende Verbesserungen im benutzten Algorithmus, die
allerdings den Rahmen einer Diplomarbeit sprengen würden, ist eine Ausdehnung auf spek-
troskopische Anwendungen mit erhöhten Genauigkeitsansprüchen möglich.
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Chapter 1

Introduction

Spectroscopic data are important for astrophysics because the only available observable is usu-
ally light, electro-magnetic radiation of any frequency. Therefore, the knowledge of spectra of all
particles measured is critical for the evaluation of the observations. Besides elementary particles
hydrocarbons are very often measured. This is because carbon, which is formed in stars via
fusion, is quite reactive and bonds with hydrogen are relatively stable. The cold atmospheres
of old stars, for example brown dwarfs [2], accommodate various kinds of molecules including
hydrocarbons. Gas giants can also consist mainly of hydrocarbons, the outer planets of our
solar system are examples of it. Furthermore, the interstellar space is filled with material from
nova explosions which form clouds and nebula, also including hydrocarbons. The most common
representative is methane.
Radiation transport calculations are therefore important for understanding experiments and
basic physics studies. Essential elements for such calculations are spectroscopic databases like
HITRAN [3, 4]. These databases are patched from different sources, experiments and theory.
Therefore, the data is inconsistent at interfaces. This is a source for wrong physics and may
cause numerical problems during integration.
To obtain spectroscopic data of hydrocarbons with one single method and deliver a consistent
dataset is the task of this work. The quality of each single line is of secondary interest, be-
cause deviations will partly be canceled through integration. Also the experimental data in
astrophysics is of quite low accuracy, because hydrocarbon radiation has a low intensity and
therefore uncertainties of 20 to 30% are existing in experimental data. Hence, a general method
for obtaining spectroscopic data is developed in this work with methane as an example and a
complete dataset of all possible rovibrational lines of methane up to an initial state energy of
6200 cm−1 (≈ 8920K) is calculated with a relative error for energy levels of about 1%.

Figure 1.1: Picture of Neptune, a gas giant with a relatively high fraction of methane [1].
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Chapter 1. Introduction

Hydrocarbons are also important for other fields of physics. Low temperature hydrocarbon
plasmas are of interest e.g. for diamond-like coatings. In fusion devices carbon is often used as
divertor material. There, plasma-wall interactions of the hydrogen plasma and the carbon wall
produce hydrocarbons[5, 6, 7, 8]. To expand the usability of the spectral data obtained by the
method used in this work to these fields of physics, their accuracy should be as high as possible.
Hence, possible improvements of the methods are also discussed.
Chapter 2 provides basic information on methane and quantum physics. Chapter 3 will describe
the tools and methods used in this work. The basic algorithm from ab initio quantum chemistry
data to the complete spectroscopic information is developed. The results, beginning with diag-
nostics of the underlying potential energy surface fit are presented in chapter 4. The quality of
the potential energy surface determines the overall quality limitation of all further calculations.
The final database is presented as well as an example application for astrophysics.
At the end a conclusion of the work is given, including an evaluation of the benefits and limits
of the method used in this work.
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Chapter 2

Basics

The molecule chosen as test example in this work - for the general procedure developed - is
methane, because it is the most common hydrocarbon in stellar and planetary atmospheres as
mentioned before. Therefore, a characterization of methane is presented at the beginning of
this chapter. Afterwards some basics of quantum mechanics are introduced, which are needed
to understand the specific approaches used later in this work.

2.1 Methane

Figure 2.1: Equilibrium configuration of methane

Methane is a hydrocarbon of the group of alkanes with the formula CH4. It is a colorless,
odorless gas under normal conditions. The 4 hydrogen atoms are placed equally around the
carbon atom in the ground state (see figure 2.1). Methane has non-polar covalent binding and
is quite nonreactive, except with halogens like fluorine, chlorine, etc. With these elements it
undergoes substitution reactions, called halogenation. A list of physical and chemical properties
is given in table 2.1.

To understand the spectroscopic properties of methane the knowledge of different vibrational
modes of the molecule is important. Methane is a highly symmetric spherical top molecule be-
longing to the TD point group and has 9 vibrational degrees of freedom. Due to the high
symmetry they degenerate to 4 distinguishable modes. The non-degenerated representation is
labeled with v1 to v9, the numbers are ordered by increasing energy. The degenerated represen-
tation is written as n1 to n4.
The n1 mode is not degenerated and corresponds to v6. It is a symmetric stretch mode (figure
2.2 a) at 2916.5 cm−1[10] (1000 cm−1 = 0.1240 eV). The mode n2 is a twofold degenerated tor-
sional bend mode (figure 2.2 b) corresponding to the modes v4 and v5. The first excitation level
is at 1533.3 cm−1[10]. The n3 mode is threefold degenerated corresponding to v7 to v9. The
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Chapter 2. Basics

Table 2.1: Table of physical and chemical properties of methane.

Property Value

C-H bond length 2.06Bohr = 0.109nm
Bond angle 109.5◦

Molecular weight[9] 16.043 g/mol
Melting point[9] -182.5 ◦C
Liquid density (1.013 bar at boiling point)[9] 422.62 kg/m3

Boiling point (1.013 bar)[9] -161.6 ◦C
Critical temperature[9] -82.7 ◦C
Critical pressure[9] 45.96 bar
Gas density (1.013 bar at boiling point)[9] 1.819 kg/m3

Gas density (1.013 bar and 15 ◦C)[9] 0.68 kg/m3

Autoignition temperature[9] 595 ◦C

asymmetric stretch (figure 2.2 c) has an energy of 3019.5 cm−1. The second threefold degener-
ated mode n4 is an umbrella bend mode (figure 2.2 d). It corresponds to the modes v1 to v3

and has an energy of 1310.8 cm−1.

a) b)

c) d)

Figure 2.2: a) symmetric stretch (n1), b) torsional bend (n2), c) asymmetric stretch (n3), d)
umbrella bend (n4)

These vibrational modes can produce non-zero dipole moments, which determine the transi-
tion probabilities and eventually the spectroscopic properties. The dipole operator of methane
is of symmetry A2 for all three components, therefore transitions are only allowed, if the direct
product of symmetry operators of two states contain A2. This is true for modes n3 and n4 which
are infrared (IR) active.
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2.2 Quantum mechanics

2.2 Quantum mechanics

A necessary prerequisite for this work is the calculation of rotational and vibrational states
and their energies. In a molecular system a general approach for a Hamiltonian include five
terms: The kinetic parts for nuclei (N) and electrons (e), the nuclid-nuclid interaction, the
electron-electron interaction and one term taking into account the interaction between nuclei
and electrons.

Ĥ = T̂N (R) + T̂e(r) + V̂eN (r,R) + V̂NN (R) + V̂ee(r). (2.1)

The correlation between electrons and nuclei prevents the separation of the electronic and the
nuclid problem. An analytical solution of the Schrödinger equation is only possible for a very
small number of simplistic problems, like 2-body problems (e.g. hydrogen). Approximations
have to be done to solve systems having several atoms. To make things treatable the Born-
Oppenheimer approximation (see 2.2.1) is introduced, allowing the separation of the electronic
and the nuclei problem, which will be summarized in the next section. Afterwards, it is shown
how the Hartree-Fock approximation, described in 2.2.2, allows the solution of the electronic
problem. The general idea for a handy Hamiltonian is to have a potential depending on the
positions of electrons with the coordinates of the nuclei as parameters. This delivers an effective
electronic potential for specific nuclid orientations (see section about potential energy surface
(3.1)). This potential, using a fitted expression, can be used to calculate molecular rotations and
vibrations in the ’electronic’ potential. While Hamiltonians and potentials are needed to calcu-
late energies, spectroscopic analysis also needs dipole data (see 2.2.3) and therefore the dipole
moment operator is shortly discussed. Finally, in 2.2.4 the basics of the quantum mechanics
of harmonic oscillators is introduced, because this is needed as background information for the
quantum dynamical analysis of oscillations of molecules, which are important to understand
their spectrum. For a realistic description of molecular oscillations, the choice of coordinates for
this work is presented in 2.3.

2.2.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation [11, 12, 13, 14] was introduced 1927 by Oppenheimer
and Born [15] to give an appropriate description of the Hamiltonian of molecules which is still
treatable. The energy terms can be arranged by orders of

√

m/M , where m is the electron mass
and M the average nuclid mass, with a mass difference between electrons and nuclids (protons)
of about 1836 times. Due to the large inertia difference one may assume that electrons follow the
movement of nuclei instantaneously. The nuclei coordinates are then parameters for electronic
movements. The Born-Oppenheimer approach allows us to separate the electronic and the nuclid
problem. So one can solve the electronic problem with the positions of the nuclei as parameters
and use these results for solving the full problem.

2.2.2 Hartree-Fock theory

The Hartree approximation was formulated by Hartree in 1928. It is assumed, that in a many-
body system every electron is affected not only by the core potential but in addition by an
effective potential of all other electrons.[13, 14] This allows to represent every electron with a
one-body wave function

ϕi = φi(xi)χi(msi
), (2.2)

which is a product of spatial and spin functions. The one-body Schrödinger equations are
coupled through the effective potential and depend therefore on the wave functions of the other
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Chapter 2. Basics

electrons. Due to this, the wave functions have to be solved self consistently with an iterative
method. The many-body wave function is constructed as a product wave function

Ψ(1, .., N) = ϕ1(1)...ϕN (N). (2.3)

This wave function is not antisymmetric and additional restrictions have to be made to satisfy
the Pauli principle. The one-body states have to be different and orthogonal.
The wave function for a system of fermions has to be antisymmetric to the exchange of neighbor-
ing indices. Due to the limitations of the Hartree approximation Fock and Slater independently
proposed to use an antisymmetrized sum of all orbitals, which can be obtained by simply inter-
changing labels. The most common representation is the so-called Slater determinant

Ψ(1, . . . , N) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

ϕ1(1) . . . ϕ1(N)
...

...
ϕN (1) . . . ϕN (N)

∣

∣

∣

∣

∣

∣

∣

. (2.4)

In this Hartree-Fock approximation an additional, non-local, term is introduced into the
Hamiltonian, called exchange interaction [13, 14]. This is an effect of quantum mechanics which
corresponds to the Pauli principle, saying that quantum mechanical particles with same spin
orientation are indistinguishable.
The way of getting the best Hartree-Fock energy and/or wave function is the iterative self consis-
tent field (SCF) method. One starts with an initial guess for the orbitals, for example hydrogen
functions. Then, one solves the eigenvalue problem iteratively until convergence is reached.
The major shortcoming of this method is the use of an averaged interaction for electrons neglect-
ing the correlation energy, which is defined as the difference between the exact non-relativistic
energy and the Hartree-Fock energy. While Pauli repulsion of electrons with identical spin orien-
tation is already given by the exchange interaction, the direct instantaneous Coulomb interaction
between electrons can not be represented by an averaged field, leading to the missing correla-
tion energy. Methods which try to include the correlation energy are called post-Hartree-Fock
methods.

2.2.3 Dipole moment

The dipole moment of a point charge is defined as

d = q · r. (2.5)

For several point charges a summation over the one-body terms, meaning the term for one
single point charge without reckoning other charges, has to be done. In case of space charges
an integration over the charge density, replacing the charge, is done. In quantum mechanics the
expectation value of the dipole moment operator is defined by Mij = 〈Ψi|d|Ψj〉 [16, 12, 14].
This is also the definition of the electronic transition probability between these states. This can
be seen easily, if one interprets the dipole moment as a perturbation allowing transitions. The
effective dipole moment of molecules are defined by nuclei and electrons, where the nuclei can
be considered as localized. The electronic part of the dipole moment has to be calculated from
the quantum mechanical probability density in dependence of the nuclei configuration.
For the equilibrium configuration of methane the hydrogen atoms are placed equally around the
carbon atom as displayed in figure 2.1. Therefore the nuclid part has a zero dipole moment.
The C-H bonds are covalent, meaning that the valence electrons have their highest probability
density between the two nuclei. Therefore the electronic configuration is also symmetric causing
a zero total dipole moment. Vibrational motion produces temporary effective dipole moments
allowing excitations, for example of rotational modes. As a consequence, the understanding of

6



2.2 Quantum mechanics

the dynamics of the molecule is needed for a proper calculation of dipole moments. Vibrational
modes with symmetric displacements qi produce no effective dipole moment ∂d

∂qi
= 0 and are

therefore not infrared active. Excitations of these modes can occurs by external stimulation
like electron scattering. These modes are therefore visible in Raman spectra [17]. Asymmetric
modes do have ∂d

∂qi
6= 0 and are infrared active.

2.2.4 Harmonic oscillator

The simplest possible type of oscillation is the harmonic oscillator. Following the notation of
Schwabl[13] the corresponding stationary Schrödinger equation is (p = −i~ ∂

∂q )

[

− ~
2

2m
∇2 +

mω2q2

2

]

Ψ(q) = EΨ(q). (2.6)

The solution of this equation is based on Hermite polynomials. The eigenvalues are

En = ~ω(n + 1/2). (2.7)

A shorter way to solve the problem is via Hermitean operators. One defines two Hermitean
ladder operators as follows:

a =
ωmq + ip√

2ωm~

a† =
ωmq − ip√

2ωm~

(2.8)

with [a, a†] = 1. In this notation the Hamiltonian is

Ĥ =
1

2
~ω

(

a†a + aa†
)

. (2.9)

A comparison with equation 2.7 and the usage of the commutator relation leads to

H = ~ω

(

a†a +
1

2

)

= ~ω

(

n̂ +
1

2

)

(2.10)

with n̂ = a†a is the occupation number operator. The wave function also can be expressed by
the raising operator

Ψn =
1√
n!

(

a†
)n

Ψ0

Ψ0 =
(√

πq0

)−1/2
exp−1

2

(

q

q0

)2

.

(2.11)

q0 is the characteristic length and is defined as q0 =
√

~/ω.
In molecules vibrations with harmonic and with anharmonic potentials occur. The harmonic
oscillator can be used as a linear approximation even for anharmonic oscillators, because for
very small energies/ displacements the deviation from the harmonic behavior is relatively small.
Figures 4.6 and 4.7 in section 4.1.2 show both cases.
The single excitation of an oscillator is called fundamental, higher excitations are called over-
tunes. Transitions from an energetic higher excitation level to a lower one release photons. The
lines in the electromagnetic spectrum belonging to transitions with the same higher and lower
vibrational levels are called bands.

7



Chapter 2. Basics

2.3 Coordinate systems

The most common coordinate system is the Cartesian system with 3 orthogonal basis vectors.
In principle, every problem can be expressed in these coordinates. For a N -body system 3N
coordinates are needed to describe the system. The use of a set of generalized coordinates is
possible and simplifies the problem as derived in classical Hamiltonian mechanics [18].
Another possibility is to use the internuclear distances, where the number of coordinates is
N(N − 1)/2. The number of independent coordinates depends on the symmetry of the system.
External potentials can not be described within this basis set, on the other hand the usages of
symmetries and invariants is comfortable.
The coordinate system used for most of the calculations in this work are normal coordinates.
A N-body system has 3N degrees of freedom, including 3 translational directions for the center
of mass and 3 rotational modes along some axis defined by the structure of the molecule. This
leaves 3N − 6 degrees of freedom for vibrational motions of the molecule in which the center
of mass is not moving. There is one exception for linear molecules where only two rotational
axes exist, increasing the number of vibrational degrees of freedom to 3N − 5. For molecules
it is reasonable to define coordinates along the displacement vectors of the vibrational modes.
Hence the 3N−6 classical independent modes are called normal modes and the set of coordinates
relying on them are called normal coordinates. Symmetries causing degeneracy of normal modes
lead to orthogonal normal coordinates, but symmetry is not conserved automatically by these
coordinates.

2.4 Subsumption

In this chapter some of the basic physics was introduced. The methane molecule, which is studied
in this thesis, was characterized. The basic approximations for solving the molecular Schrödinger
equation were pointed out. The dipole moment, which is the background for spectroscopic
calculations was explained. In addition, an introduction to the coordinate systems used in this
work was given.

8



Chapter 3

Tools and methods

This chapter gives an overview of the tools used in this work. Already existing codes were used
for most of the calculations, but in addition new programs for the evaluation of results had to
be developed. As mentioned before the main task of this work was to obtain spectroscopic data
of methane for astrophysics. The algorithm developed for this should also allow the calculation
of spectroscopic data for other hydrocarbons without conceptual changes. For this algorithm,
several elements are needed. First the potential energy and dipole hypersurfaces used in this
work are explained. They deliver the electronic potential and dipole moments for the calcu-
lations with the Multimode package, which is discussed thereafter. This package provides
rovibrational energies and transition matrix elements. Then the tools developed for obtaining
the final spectroscopic data are explained as well as the general algorithm used. The individual
elements of the algorithm for calculating spectroscopic data will be highlighted at the end of
each section.

3.1 Potential energy and dipole moment surface

A molecular potential energy surface (PES) is a hypersurface of the electronic potential de-
pending on the nuclei configuration. Normally this surface only includes the electronic ground
state which restricts the usage to pure rotational/vibrational systems. The global minimum
of this surface corresponds to the equilibrium geometry of the molecule. While the potential
is a scalar and the functional dependency of the hypersurface can be described using a basis
set of internuclear distances, the dipole moment surface (DMS) requires a different choice of
coordinates. This is because the dipole moment is a vector quantity and therefore not invariant
under translations. Due to this, it can not be described by internuclear distances and Cartesian
coordinates have to be used.
To obtain a PES one has to calculate a large number of potential energy values for different con-
figurations and then run a fitting procedure to determine the dependency of the PES. Normally,
post-Hartree-Fock methods are used to obtain the ab initio data. The specific methods used
in this work for the production of adequate data and fitting of the PES are explained below.
The quality of the PES is more critical for the spectroscopic results than the DMS, because the
potential influences the wave function and the final energy directly, while the dipole moment
has only influence on the transition matrix Mij = 〈Ψi|d|Ψj〉. This matrix, however, is again
strongly determined by the wave functions.

3.1.1 Ab initio quantum chemistry

There are several post Hartree-Fock methods available for solving the Schrödinger equation
to get the full energy of the electronic problem. The PES used in this work is fitted from
ab initio calculations employing restricted coupled cluster method with singles and doubles
and pertubative treatment of triples [RCCSD(T)] with augmented cc-pvtz basis, which will be
explained in the following section. Because the DMS was calculated with the averaged coupled
pair functional [ACPF] with cc-pvtz basis, this will be shortly summarized afterwards. All ab

initio calculations have been done with the Molpro 2006 package [19].
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Chapter 3. Tools and methods

3.1.1.1 Coupled Cluster method

The coupled cluster method is a single reference ab initio method for calculations of molecular
electronic energies. It uses a wave function which is constructed from the Slater-determinant
Ψ0 and some excitation operators T̂ in an exponential form. Single reference means, that at the
Hartree-Fock level only one Slater-determinant is used.

ΨCC = exp(T̂ )Ψ0, (3.1)

where T̂ = T̂1 + T̂2 + T̂3 + . . . . T̂n is a linear combination of all n-type excitations

T̂1Ψ0 =
∑

i

∑

a

Ca
i Ψa

i

T̂2Ψ0 =
∑

i>j

∑

a>b

Cab
ij Ψab

ij (3.2)

and so on.

Putting equation 3.2 into 3.1 delivers the CCSD wave function with

ΨCCSD = Ψ0 +
∑

a

∑

i

Ca
i Ψa

i +
∑

i>j

∑

a>b

Cab
ij Ψab

ij +
∑

ab

∑

ij

Ca
i Cb

jΨ
ab
ij + higher order terms. (3.3)

The letters S,D and T refer to single, double and triple excitations. The advantage of CC
theory is that the higher excitations are included, but their coefficients are determined by the
lower order excitations. The coefficients are determined by projecting Schrödinger’s equation
on the left with the configurations generated by the T̂ operator. This replaces the eigenvalue
problem by a non-linear simultaneous system, requiring iterative solution, which converges fast
in most cases. CCSD provides a size-extensive and accurate description of electron correlation
effects for non-degenerate ground states of molecules near the equilibrium geometries with com-
puter costs that enable routine calculations for systems with up to 50-100 correlated electrons
and a few hundred basis functions. CCSDT scales as N8 which is impractical for all but the
simplest of systems. A more practical alternative is CCSD(T) where the effect of triples is esti-
mated through perturbation theory with a non-iterative N7 cost. With a sufficient large basis
set CCSD typically recovers 95% of the correlation energy for a molecule at equilibrium geome-
try, while CCSDT (triple excitation included) gives rise to further five- to ten-fold reduction in
error[20]. With such accuracy the coupled cluster method is the method of choice for accurate
small-molecule calculations.[5]
In the restricted CCSD theory (RCCSD) certain restrictions among the amplitudes are intro-
duced, such that the linear part of the wave function becomes a spin eigenfunction[19].

3.1.1.2 Configuration Interaction

The configuration interaction method (CI) [21] is a linear variational method for solving the
nonrelativistic many-electron Schrödinger equation. The term ’configuration’ describes the linear
combination of Slater determinants used for the wave function. In terms of a specification of
orbital occupation, interaction means the mixing of different electronic configurations. Due to
the long CPU time and immense hardware required for CI calculations, the method is limited
to relatively small systems. In order to account for electron correlation, CI uses a variational
wave function that is a linear combination of configuration state functions (CSFs) built from
spin orbitals (denoted by the superscript SO),

Ψ =
∑

I=0

cIΦ
SO
I = c0Φ

SO
0 + c1Φ

SO
1 + ... (3.4)
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3.1 Potential energy and dipole moment surface

where Ψ is usually the electronic ground state of the system. If the expansion includes all possible
CSFs of the appropriate symmetry, then this is a full configuration interaction procedure which
exactly solves the electronic Schrödinger equation within the space spanned by the one-particle
basis set. The first term in the above expansion is normally the Hartree-Fock determinant. The
other CSFs can be characterized by the number of spin orbitals that are swapped with virtual
orbitals from the Hartree-Fock determinant. The method CISD is limited to single and double
excitations. Single excitations on their own do not mix with the Hartree-Fock determinant.
The multi-reference configuration interaction method consists in a configuration interaction ex-
pansion of the eigenstates of the electronic molecular Hamiltonian in a set of Slater determinants
which correspond to excitations of the ground state electronic configuration but also of some
excited states. The Slater determinants from which the excitations are performed are called
reference determinants.

3.1.1.3 Averaged Coupled Pair Function

The averaged coupled pair function was introduced first by Gdanitz and Ahlrichs in 1988 [22]. It
is a modification of the multi-reference CI(SD) method. Its advantage is the easy implementation
and simplicity. The first version of ACPF had the tendency to overestimate the effect of higher
than double substitutions. In addition, it generated some instability for a bad zero-order wave
function guess in some special cases. In 2001 Gdanitz and Ahlrichs [23] published an improved
version of ACPF. This version is stable and almost as good as CCSD but much faster. Therefore,
this method is a good choice for ab initio dipole moment calculations for which perfect accuracy
is not necessary.

3.1.2 Representation and Properties

The potential energy surface used in this work was developed by Bastiaan Braams [24, 25]. It
is a global surface which allows dissociation and has a good, but not spectroscopic, quality over
the whole surface. The final fit, built from 31314 ab initio values, has a global minimum energy
of −40.44083 Hartree (1 Hartree= 2 Rydberg = 27.2107 eV) with a root mean square error of
1.4 · 10−4 Hartree in the interval of [0, 1) Hartree above the global minimum and still 4.02 · 10−3

in the interval of [2, 5) Hartree. An overview about the error distribution is given in figure 3.1.
The input for the PES is a set of mass-ordered Cartesian coordinates x, the PES itself uses a

set of all internuclear distances rij = ‖x(i) − x(j)‖ with rij = rji and i 6= j. If N is the number
of the atoms in the molecule, there are d = N(N − 1)/2 internuclear distances. The potential is
represented by a many body (cluster) expansion of the form

Vall =

J
∑

j=0

K
∑

k=0

VXjYk
(3.5)

for a molecule with the totals formula XJYK . For universality, the PES works not with molecule
specific routines, but with molecule-type specific routines. For example CH4 is of type X4Y1,
marking the mass-order, and has the cluster expansion V = VH + VC + VH2

+ VHC + VH3
+

VH2C + VH4
+ VH4C . These potential terms are functions of the internuclear distances of the

included atoms, summed over all choices which give the correct composition

VXmYn =
∑

i1<...<im∈′X′

∑

j1<...<jn∈′Y ′

fXmYn(ri1i2 , .., rim−1im , ri1j1 , ..., rimjn , rj1j2, ..., rjn−1jn). (3.6)

Let us write f as f(r) = p(y(r))·q(r), with r as the vector of the respective internuclear distances
and the auxiliary variables y(r) = exp(−r/λ) for each component. p is a polynomial containing

11
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Figure 3.1: This figure shows the error distribution of the used fit. σ = 4.36 · 10−4 Hartree is
the weighted root mean square error over all configurations.

the coefficients derived from the fitting procedure. The fit for the PES is constructed making
use of the full symmetry of the molecule with invariance under the point group operations trans-
lation, rotation and reflection and the invariance under permutations of like-nuclei is conserved.
The damping function q(t(rms(r))), with t = rms(r) =

√

1/n
∑

(r − r̄)2, is a function of the root
mean square (rms) of the components of r. For 2-body terms it is q(t) = 1/t(max(0, 1 − t/a))5

and for higher terms q(t) = (max(0, 1−t/a))5. The one-body potentials are just the free energies
of the respective atoms multiplied with their number.
The representation of the dipole moment surface is different. As discussed before, the fitted
dipole moment d is a vector quantity represented by

d =
∑

i

fi(y)x(i), (3.7)

where the sum is over all atoms and x(i) is the vector position of the ith atom. fi(y) are polyno-
mials that are constructed in a way, that d satisfies the required permutational invariances and
behaves correctly under translation. Therefore, only two of the five polynomials for methane
are independent. As for the PES, the coefficients of the fi’s are obtained by a standard least
squares fitting method. The DMS has a weighted statistical error of 1.87 · 10−3 Debye.
If there are m basis functions and n entries in the database, with m ≤ n then we have a weighted
least squares system of dimension n × m. For solving this problem a singular value decompo-
sition of the associated matrix is done with the DGESVD routine of the LAPACK package
[26]. The computational cost scales with m2n. For methane the computation time for the PES
fit was always well below half an hour even for a basis including up to 8th order polynomials.
The kth entry of the least squares system has the ab initio value f(k). It is given a weight
of δ/(δ + f(k) − fmin), where fmin is the lowest functional value of the database. δ is set to
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3.1 Potential energy and dipole moment surface

0.1 Hartree as default. The problem of specifying a basis of the space of polynomials invariant
under some permutational symmetry, meaning the permutation of like nuclei, is described by
the theory of invariants of finite groups[27]. These invariants are obtained from the Magma

computer algebra package [28] and are converted into Fortran Code.

3.1.3 Elements of the algorithm for the generation of spectroscopic data

1. Construction of hypersurfaces for potential energy and dipole moments:

Using ab initio data (3.1.1) a PES and DMS have to be constructed. The surface used
was developed by Bastiaan Braams [24, 25].
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Chapter 3. Tools and methods

3.2 Multimode

Multimode [29, 30, 31, 32, 33, 34] is a quantum-chemical post-processing package, where post
processing means calculations using a given electronic potential. In this work, the package was
used to calculate rovibrational energy levels (3.2.2) of methane with the virtual configuration
interaction (VCI) method (3.2.1) and corresponding transition dipole elements. It is possible to
calculate exact vibrational dipole elements for J = 0 and approximated ones for J > 0. In this
case the adiabatic rotation approximation (3.2.3) is used. In general the calculations are limited
to one J per run and dipole elements only for K = 0. Multimode is capable to use symmetry
information up to the C2v symmetry group to restrict the wave function and therefore speed-
up the calculations. In contrast to an analytical potential the numerically generated PES can
not guarantee perfect symmetry. Symmetry violations introduced by numerical fitting errors of
the PES create additional errors like non-degeneracy of degenerate modes. Unfortunately, the
usage of C2v produced unsatisfying results. However, the lower symmetry C1 overcame these
problems and was used in this work. This is understandable because the reduced symmetry
allows larger deviations from the ideal symmetry as always existing in numerically produced
PES. The symmetry constraints used in the fitting algorithm of the PES enforces only the
symmetry for the potential, but not for its derivatives.

3.2.1 Virtual Configuration Interaction

A simple method of solving the Schrödinger equation numerically is the Vibrational Self Consis-
tent Field method (VSCF) [35, 34, 31]. In VSCF the wave function is represented as a Hartree
product (2.3, 2.4), where the single modals are expanded in a primitive basis of normalmode
harmonic-oscillator functions. The Schrödinger equation is solved using the variational princi-
ple. To achieve more exact solutions, virtual configuration interaction (VCI) is used [29, 36].
The many-body VCI wave function is expanded in terms of the eigenstates of a VSCF Hamil-
tonian, which are called virtual states. Normally the ground state Hamiltonian is used, for it
can be expected to be more accurate than excited ones in most cases. The expansion forms an
orthonormal basis constructing a standard eigenvalue problem. This method delivers eigenstates
and -functions which are true variational upper bounds of the exact values.
Multimode provides several options to construct the basis. The option used in this work is a
restricted VCI basis with maximum sum quanta MAXSUM for each n-mode basis set. In ad-
dition every mode is restricted to MAXBAS quanta in the basis sets (see Multimode manual
[37]). The VSCF wave function assumes independent oscillators, while the vibrational modes
of a molecule are coupled. A part of this coupling can be regained with the introduction of
n-mode basis functions. The quality of the eigenvalues increases with a higher number of cou-
pled modes. In theory, coupling all vibrational modes would deliver exact values. For methane
9-mode coupling would be necessary, while 5-mode coupling already exceeds the computational
limits for mass production. Nevertheless, the convergence of the eigenvalues typically reaches a
sufficient threshold of ε = 1cm−1 for 4- or 5-mode coupling. Another factor, which influences
the convergence behavior is the MAXSUM parameter. This factor determines the polynomial
degree of the n-mode representations. The experience from this work shows, that this value, and
also the MAXBAS value, has to be at least slightly higher than the highest vibrational mode
calculated. The reason is the expansion character of the wave function. For a certain mode, all
coefficients of the n-mode expansions can be non-zero. Therefore, omitting even higher excited
terms changes the expansion. An infinite expansion would be exact, but normally convergence
can be reached fast. Abbreviations to describe a basis with up to x mode representation and a
maximum sumquanta of y is x mr y or x|y.
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3.2 Multimode

3.2.2 Watson-Hamiltonian

Calculations done with Multimode use the Watson-Hamiltonian[38], which was introduced
by Watson in 1968. It is a special form of the general molecular Hamiltonian using normal
coordinates and atomic units. In atomic units the speed of light c and the Planck constant
~ = h

2π are unity. The simplification done by Watson is to resolve the general kinetic part

including the determinant of the effective reciprocal inertia tensor µαβ = (I′−1)αβ into the free
kinetic term and a term acting as an internal potential determined by the trace of the tensor
by the use of commutation relations. This potential-like term is called Watson term and has a
value of about 4 cm−1 for methane. The resulting Hamiltonian has the form:

Ĥ =
1

2

∑

α,β

(

Ĵα − π̂α

)

µαβ

(

Ĵβ − π̂β

)

− 1

2

∑

k

∂2

∂Q2
k

− 1

8

∑

α

µαα + V. (3.8)

Greek indices represent Cartesian coordinates and Latin indices normal coordinates. The Qi =
∑

k lαk,im
1/2
k (rαk −r0

αk) are normal coordinates, defined over the mass-scaled absolute difference

of the Cartesian coordinate to the equilibrium coordinate r0
αk. Ĵ is the total angular momentum

and π̂ is the vibrational angular momentum defined as

π̂ = −i
∑

k,l

ζα
k,lQk

∂

∂Ql
. (3.9)

ζα
k,l are the Coriolis coupling constants defined as

ζα
k,l = ǫαβγ

∑

i

lβi,klγi,l. (3.10)

The lαk,i are constants subject to the condition that the complete matrix be orthogonal[38]. The
effective moment of inertia I′ is the sum of the one-body inertias, corrected with the Coriolis
coupling:

I′αβ = ǫαβρǫβδρ

∑

i

mirγirδi −
∑

k,l,m

ζα
k,mζβ

l,mQkQl (3.11)

The first term in equation 3.8 includes the rotational part of the kinetic operator. In the standard

hydrogen problem this term is l(l+1)~2

2mr2 . Here the vibrational angular momentum has to be added.
The second term is the translation operator along the normalmode vectors and V is the user-
supplied electronic potential. Multimode reads the potential values along the normalmode
displacement vectors and constructs independent harmonic oscillators for each mode as a basis
for the internal potential.
The potential [31] used in Multimode is represented by an expansion of n-body terms with an
upper limit of six coupled modes.

V (Q1, Q2, . . . , QN ) =
∑

i

V
(1)
i (Qi) +

∑

i,j

V
(2)
ij (Qij) +

∑

i,j,k

V
(3)
ijk (Qijk) + . . . . (3.12)

In one-mode representation the oscillators are independent and

V (1) (Q1, Q2, . . . , QN ) =
∑

i

Vi, (3.13)

where only one Qi per oscillator is non-zero. The two-mode representation is the summation
over all terms with two normalmode displacements non-zero:

V (2) (Q1, Q2, . . . , QN ) =
∑

i<j

Vij − (N − 2)
∑

i

Vi. (3.14)
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Chapter 3. Tools and methods

This representation, as well as all n-mode representations with n > 1 contains and overcounts
the representations of lower orders. Therefore, the additional term over the single-mode terms
compensates for this overcounting.
This approach delivers exact rotational energies [30] with calculations scaling as J2, limiting the
usability to small J ’s. The calculation time for rovibrational energies up to J = 35 had an upper
limit of 3 days, because for higher rotations the possible vibrational levels up to an energy limit
decrease, as shown in figure 4.14.

3.2.3 Adiabatic rotation approximation

Another option to calculate rotational energies is the adiabatic rotation approximation [32],
assuming a rigid rotor. Here, the J = 0 Watson-Hamiltonian is corrected by a simple addition
of a pure rotational term.

ĤAR = ĤJ=0 + AĴ2
z + BĴ2

y + CĴ2
x (3.15)

A, B, C are the rotational constants for the respective directions. The computational costs grow
linear. As shown in table 3.1 this simplification is of adequate quality for low level rotations,
where the coupling between rotation and vibration is weak. The exception is the 0001 mode,
where the relatively high Coriolis coupling splits the mode [29]. For higher J ’s the quality
decreases dramatically.
A possible improvement of the adiabatic rotation approximation would be the addition of a term
linear in ζ, the Coriolis coupling constant.

ĤAR+ = ĤAR + Bζ[R(R + 1) − J(J + 1) − l(l + 1)] (3.16)

with l is the vibrational quantum number. Equation 3.16 is taken from Papoušek [39] (Chapter
20.4) and is postulated for triple degenerate states of spherical top molecules, the other states are
not affected by this. A primary disadvantage is the dependency of the natural vibrational quan-
tas ni, as these can not be obtained within Multimode with limited effort. The corresponding
values could be added to the final energies, but this would not improve the wave function and
therefore the dipole elements.
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3.2 Multimode

Table 3.1: Comparison of energies (in cm−1) for exact and adiabatic rotations for fundamental
excitations with J = 1, J = 5 and J = 10. The energies of degenerate modes split for J > 0
and the degeneracy is destroyed. The energies for the energetic lowest and highest fragment is
printed. Every fragment includes 2J + 1 projections, the lowest value is taken here. Adiabatic
rotation does not provide the resolution of degeneracies, therefore only one value is written.

J, n1n2n3n4 exact adiabatic experiment [40]

1, 0000 10.40 9.92 10.48
1, 0001 1309.31, 1323.59 1318.45 1311.4, 1326.2
1, 0100 1531.96, 1532.09 1531.48 1544.0
1, 1000 2911.89 2911.27 -
1, 0010 3012.70, 3014.42 3012.87 3028.8, 3030.5
5, 0000 156.04 133.62 -
5, 0001 1433.79, 1484.90 1441.52 -
5, 0100 1678.69, 1679.91 1658.10 -
5, 1000 3057.82 3033.09 -
5, 0010 3155.29, 3161.13 3132.38 -
10, 0000 571.13 495.82 -
10, 0001 1820.51, 1912.41 1799.74 -
10, 0100 2096.97, 2100.87 2029.37 -
10, 1000 3473.43 3389.52 -
10, 0010 3565.92, 3576.88 3482.56 -

3.2.4 Elements of the algorithm for the generation of spectroscopic data

2. Calculation of converged energies:

The energies of every rotational and vibrational state covering a user chosen interval of
quantum numbers are calculated. The quantum chemical package Multimode was used
for this purpose.

3. Calculation of dipole matrix:

The dipole moment matrix or transition matrix is needed for the calculation of transition
probabilities. Multimode was used here too. The used package can calculate exact matrix
elements for J = 0. For J > 0 an approximate solution (3.2.3) has to be used. ∆J 6= 0
matrix elements can not be calculated.
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Chapter 3. Tools and methods

3.3 Calculation of spectroscopic data

The further analysis is done by tools directly developed for this work. For better access several
additional outputs had been added to Multimode. This covers energy values with correspond-
ing J , its projections, the leading coefficient and the vibrational quantum numbers, separated
for final vibrational and final rotational states. An example output is shown in table 3.2. It was
not possible to access quantum number information together with the dipole matrix elements.
Instead the symmetry blocks of the left-hand (LHB) and right-hand (RHB) side are printed
together with the state numbers (LHS,RHS) and the matrix elements. If the Multimode cal-
culations are done using symmetry information, the results, energies and dipoles, are grouped in
blocks, corresponding to their symmetry. The energies in each block are ordered with increasing
energy. Due to this, the identification of a state with this information is unique. An example
output is shown in table 3.3. The processing steps of these data are described in this section,
completing the algorithm at the end of the section.

Table 3.2: Part of the Multimode output for a J = 0 4mr8 energy calculation. Ka is the
projection of the angular momentum on the z-axis and Kc is the projection on the x-axis. In
addition to the quantum numbers the leading coefficient of the mode expansion is listed together
with corresponding excitation numbers. The energies are relative to the ground state energy
which is also given.

J Ka Kc coeff. v1 . . . v9 E [cm−1]

0 0 0 0.9980 000000000 9662.1761
0 0 0 0.7727 001000000 1308.6296
0 0 0 -0.7636 100000000 1308.6638
0 0 0 -0.6383 010000000 1308.7137
0 0 0 -0.9951 000010000 1521.4429
0 0 0 0.9951 000100000 1521.4652
0 0 0 0.5543 002000000 2583.6712
0 0 0 -0.7411 002000000 2609.9436
0 0 0 0.6217 020000000 2610.5633
0 0 0 -0.7858 110000000 2611.4266
0 0 0 -0.5246 101000000 2620.7172
0 0 0 -0.7374 101000000 2621.2509
...

...
...

...
...

...
0 0 0 0.2888 010100100 5813.3575
0 0 0 0.3493 001010010 5814.7976
...

...
...

...
...

...

3.3.1 State analysis

Multimode uses the complete set of vibrational modes independent of possible degeneracies.
Therefore, a routine has to be added to transform the vi’s into ni’s through adding up the
quantum numbers of the corresponding vi. Examples can be taken from tables 3.2 and 3.4.
Methane has one non-degenerated and three degenerated vibrational modes. To obtain the
reduced state information it is appropriate to add up the excitation values for the parts of the
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3.3 Calculation of spectroscopic data

Table 3.3: Part of the Multimode output for a J = 0 4mr8 dipole calculation. LHB and RHB
are the symmetry block numbers for the left-hand and right-hand state, while LHS and RHS
are the numbers of the states in the blocks.

LHB LHS RHB RHS Mij [atomic units]

1 1 1 1 0.269670D-06
1 1 1 2 0.198040D-01
1 1 1 3 -0.103576D-01
1 1 1 4 0.919631D-02
1 1 1 5 0.351034D-05
1 1 1 6 0.153437D-06
1 1 1 7 0.795802D-06
1 1 1 8 0.950961D-03
1 1 1 9 -0.142610D-02
1 1 1 10 0.114832D-02

degenerated mode leading to the following rule:

n1 = v6 (3.17)

n2 = v4 + v5 (3.18)

n3 = v7 + v8 + v9 (3.19)

n4 = v1 + v2 + v3 (3.20)

The n4 = 2 overtune for example can be built from (2+3−1)!
2!(3−1)! = 6 different configurations. As

shown in figure 3.2, there are six different states calculated, but the vi’s are not distributed as
expected. Some configurations are doubled, some are missing. This leads to a complex problem
involved with VCI theory and the used potential representation.

The assignment of the vibrational quantum numbers is naturally done by searching for the
largest coefficient of the state expansion. For a pure basis the fundamental excitations would
have leading coefficients near one, as for lines 1,5,6 in table 3.2. This is not true, if one looks
for higher excitations, as in the last two lines of table 3.2. As can be seen in this example, the
assignment of quantum numbers is not necessarily correct.
Still for higher excitations and higher rotational quanta the leading coefficients are of similar
values, typically between 0.2 and 0.4, which can be seen in table 3.2 in the last two lines. The
quantum numbers assigned can not be considered as reliable and may lead to wrong physical
quantum numbers. Calculations were done to test the appearance of wrong assignments. For
J = 0 only few states have wrong assignments. If this shortcoming would be conserved for J > 0
a list of states to be corrected and their true quantum numbers could be made by hand and it
can be used to automatically adjust the J > 0 assignments. Unfortunately, this effect grows
with raising J , producing more and more unreliable assignments for high Js. In addition the K
projection assignments appeared to be affected by the same problem, for the number of states
per K was not equal, although before the final rotational VCI step they were and no states
vanished. The described problem can be minimized with an improvement of the PES, but it can
not be finally resolved for it is an intrinsic property of the state expansion.
For higher excitations degenerated modes split into sub-bands. The already discussed n4 = 2
example would have an energy of En4=2 = 2 · En4

≈ 2619 cm−1 without coupling. For the
used level of theory, 4mr8, the band splits into three sub-bands, A1, F2, E, from 2583.7 cm−1 to
2621.3 cm−1 as can be seen from table 3.4. The sub-bands and their symmetries are given by
group theory [17], but not the energy ordering of the sub-bands which have to be determined
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Chapter 3. Tools and methods

Table 3.4: Intermediate post processing step of output shown in table 3.2. The left most column
is a counter for the states of one J value.

count J Ka Kc n1 . . . n4 E [cm−1]

1 0 0 0 0000 0.0000
2 0 0 0 0001 1308.6296
3 0 0 0 0001 1308.6638
4 0 0 0 0001 1308.7137
5 0 0 0 0100 1521.4429
6 0 0 0 0100 1521.4652
7 0 0 0 0002 2583.6712
8 0 0 0 0002 2609.9436
9 0 0 0 0002 2610.5633
10 0 0 0 0002 2611.4266
11 0 0 0 0002 2620.7172
12 0 0 0 0002 2621.2509
...

...
...

...
...

...
20 10 6 5 0000 571.3743
21 10 7 3 0000 571.3746
22 10 7 3 0001 1820.5116
23 10 6 4 0001 1820.6182
...

...
...

...
...

...

by experiment. For a physical correct analysis this symmetry splitting should be taken into
account while processing the data. The examined energy interval experiments [10] deliver data
for comparison and also information about the splitting. This would allow a mapping of states
into sub-bands, but to apply this information, correct quantum number assignments would be
necessary.
Since there is no way to assign the sub-bands correctly to the states, one single energy has to be
used for all states with the same vibrational quantum numbers. This average energy is a good
approximation, because effects of wrong assignments are averaged out under the assumption
that the number of wrong assigned cases is small compared to the degeneracy of a given band.
The standard deviation is the proper quantity to estimate the quality of this assumption and
is therefore included in the final energy file. A part of this file is printed in table 3.5. For
most states the deviation is of the same order as the typical uncertainty, of the order of a few
percent due to the accuracy of the PES. The exception are excitations of the n4 mode which split
strongly due to the Coriolis coupling, as discussed before. The effect can be seen in table 3.4
represented by the large mode splitting and in table 3.5 as a larger standard deviation for bands
with n4 content. The degeneracy factors g for further analysis are calculated by theoretical
considerations, not by counting. The assigned quantum numbers are not absolutely reliable, as
mentioned before. The total numbers of states occurring for one band can differ from the true
value due to this. The correct number is given by permutations, the number of possibilities to
allocate a number of excitations n to a number of modes m:

g =
(n + m − 1)!

n!(m − 1)!
(3.21)

The obtained energies are of appropriate accuracy for most cases, as can be seen from the
standard deviations in table 3.5. The energy information can be used for the following steps.
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3.3 Calculation of spectroscopic data

Table 3.5: Part of the final energy list. In addition to the average energy of each band the
standard deviation σ of this value is given together with the degeneracy factor g.

J Ka Kc n1 . . . n4 E [cm−1] σ [cm−1] g

0 0 0 0000 0.0000 0.0000 1
0 0 0 0001 1308.6690 0.0345 3
0 0 0 0002 2609.5955 12.4901 6
0 0 0 0003 3905.5788 27.5704 10
0 0 0 0004 5195.6609 42.8934 15
0 0 0 0010 3003.5315 0.1821 3
0 0 0 0011 4305.7781 2.2459 9
0 0 0 0012 5607.5294 18.0929 18
0 0 0 0020 5992.9241 20.0145 6
0 0 0 0100 1521.4541 0.0112 2
0 0 0 0101 2826.4448 7.8680 6
0 0 0 0102 4134.6408 25.5492 12
0 0 0 0103 5432.1794 39.5879 20
0 0 0 0110 4515.9985 3.3828 6
0 0 0 0111 5829.8221 10.2947 18
...

...
...

...
...

...
...

3.3.2 Dipole moment matrix

As described above, Multimode is capable of calculating exact matrix transition elements for
J = 0 and approximated ones for J > 0, but only for K = 0. Data for ∆J 6= 0 and ∆K 6= 0
can not be obtained. The output for the dipole elements does not include any quantum number
information, but the elements are ordered in the same way as the corresponding states. The
Multimode output is given in table 3.3. So state information can be recovered by comparison
with the energy output file. For this purpose the complete energy output is read into memory
in form of table 3.4, therefore the counting in the first column. Each line of the dipole data is
taken and the corresponding states for the left-hand and right-hand sides are looked up in the
list of energy states. The output, as printed in table 3.6, then contains the quantum number

Table 3.6: Intermediate processing step of output shown in table 3.3. For each dipole element
the rotational quantum number and the vibrational quantum numbers of the left-hand (LH)
and right-hand (RH) side are given.

J nLH nRH Mij [atomic units]

0 0000 0000 0.269670E-06
0 0000 0001 0.198040E-01
0 0000 0001 -0.103576E-01
0 0000 0001 0.919631E-02
0 0000 0100 0.351034E-05
0 0000 0100 0.153437E-06
0 0000 0002 0.795802E-06
0 0000 0002 0.950961E-03
0 0000 0002 -0.142610E-02
0 0000 0002 0.114832E-02
...

...
...

...
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Figure 3.2: The dependency of the squared dipole elements on J is shown. The values are
normalized, the factors are 0.1947 · 10−03 for 0001 → 0000, 0.5806 · 10−06 for 0100 → 0000,
0.1366 · 10−04 for 1000 → 0000 and 0.1947 · 10−03 for 0010 → 0000. It can be seen, that for low
rotations only the triple degenerated modes are infrared active, in agreement with theory and
experiments.

information of the upper and lower level for each element. For J = 0 the matrix elements are
calculated from the same wave functions used for the energy calculations. Therefore, a correct
one-to-one assignment can be done, allowing the construction of spectroscopic information for
each possible single line. For J > 0 the energy values are calculated with the exact rotational
Hamiltonian, while the dipole elements are obtained using the adiabatic rotation approximation
(3.2.3). This does not allow a direct mapping between energies and dipoles.
Hence, the calculations for dipole elements are expensive and the dependence of the elements

on J is smooth (see figure 3.2), calculating these elements for certain Js and then interpolating
linearly in between is a practical approach. The vibrational infrared active modes are inde-
pendent from rotation, whereas for the infrared inactive modes the dependency is quadratic in
J , reaching a noticeable dipole strength for higher J . Since no information is available for the
K-dependency, the elements are assumed to be independent. For ∆J 6= 0 transitions the matrix
element is assumed to be the average of the corresponding elements for both Js.
The natural way of calculating the matrix elements, would be the direct calculation of the scalar
product of the dipole operator with the wavefunction. This is not possible at the moment,
because Multimode do not provide an interface to get the wave function externally available
nor does the author, Stuart Carter, support help or changes to the code. There is no other
method available than the one used. A time-consuming rewriting of the code to achieve the
wave function information and to calculate any dipole matrix element has to be done. This is
complicated by the Fortran 77 code structure and non-standard coding. The work is assumed
to need approximately one year of time with the collaboration of the author. This is beyond the
scope of a diploma thesis and is planned to be done within a PhD thesis instead. Nevertheless,
this work is a first step, which achieves sufficient accuracy for the astrophysics and which can
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3.3 Calculation of spectroscopic data

be used as a benchmark for the further development as well.
The exact mapping of the dipole elements to quantum numbers is not possible due to the un-
certainty in the reliability of the quantum number information, as discussed for the energy eval-
uation before (3.3.1). Again, the only viable way is to average out the dipole elements for each
transition with identical quantum numbers. In contrast to the energies, this is a less satisfying
approach. The dipole strength for the same transition, but with different sub-bands involved
may vary over several orders of magnitude. This is visibly pronounced for the 0000 → 0002
translations in table 3.6. An averaging is not affecting quality, as long as all the translations are
assigned to their correct corresponding bands. If this is not the case, the effective dipole strength
may deviate strongly from the value, obtained with correct assignment. A quality estimation
of this approximation can not be given, nor can it be given for the adiabatic rotation matrix
elements themselves. The only check will be done by comparing the final results with existing
spectroscopic data.
Calculations of dipole matrix elements were done for J = 0, 1, 3, 5, 10, 15, 20, 25, 30. The list of
dipole elements as printed in table 3.6 were taken and the average of the squared transition
elements were calculated. Using this list, a linear interpolation of the average squared dipole
elements as a function of J was done. Afterwards, the complete list of all dipole matrix elements
for all Js was saved, a part of it is shown in table 3.7.

Table 3.7: Intermediate processing step of output shown in table 3.3. For each dipole element
the rotational quantum number and the vibrational quantum numbers of the left-hand (LH)
and right-hand (RH) side are given.

nLH nRH M2
ij [atomic units]

J = 0 1 2 3 4 5

0000 0000 0.7083E-12 0.1174E-10 0.1049E-09 0.1980E-09 0.1776E-08 0.3354E-08
0000 0001 0.1947E-03 0.1947E-03 0.1947E-03 0.1946E-03 0.1946E-03 0.1946E-03
0000 0100 0.6996E-11 0.4114E-11 0.9548E-11 0.1498E-10 0.3567E-10 0.5637E-10
0000 0002 0.7133E-06 0.7130E-06 0.7129E-06 0.7127E-06 0.7126E-06 0.7124E-06
0000 0101 0.1834E-05 0.1833E-05 0.1833E-05 0.1833E-05 0.1835E-05 0.1838E-05
0000 1000 0.8227E-10 0.4463E-10 0.2978E-09 0.5509E-09 0.4011E-08 0.7471E-08
0000 0010 0.1248E-03 0.1248E-03 0.1247E-03 0.1247E-03 0.1246E-03 0.1245E-03
0000 0200 0.3794E-10 0.8742E-10 0.1185E-09 0.1495E-09 0.2641E-08 0.5132E-08
0000 0003 0.1016E-06 0.1016E-06 0.1019E-06 0.1021E-06 0.1025E-06 0.1030E-06
0000 0102 0.5555E-07 0.5547E-07 0.5541E-07 0.5535E-07 0.5515E-07 0.5494E-07
0000 1001 0.2349E-05 0.2349E-05 0.2346E-05 0.2342E-05 0.2335E-05 0.2328E-05

...
...

...
...

...
...

...
...

3.3.3 Einstein coefficients

The final data given to astrophysics are spontaneous emission probabilities Aij per second per
molecule, called Einstein coefficients [41]. These probabilities have a cubic dependency on the
wavenumber of the electromagnetic wave sent out and on the absolute square of the transition
dipole elements Mij .

Aij =
16π3

3h4c3

(Ei − Ej)
3

2Ji + 1
|Mij |2 (3.22)

i and j are the indices of the two rovibrational states involved. 2Ji + 1 is the gJ -factor of the
upper state. The wavenumber of a given transition is the energy difference between the involved
states divided by the Planck constant and speed of light: k = ∆E

~c = 2π∆E
hc . For calculating
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Chapter 3. Tools and methods

Table 3.8: Hönl-London Rotational Line Strength Factors [45]

SJK ∆K = +1 ∆K = 0 ∆K = −1

∆J = +1
(Jj+2+Kj)(Jj+1+Kj)

4(Jj+1)
(Jj+1+Kj)(Jj+1−Kj)

(Jj+1)
(Jj+2−Kj)(Jj+1−Kj)

4(Jj+1)

∆J = 0
(Jj+1+Kj)(Jj−Kj)(2Jj+1)

4Jj(Jj+1)
(2Jj+1)(Kj)

2

Jj(Jj+1)
(Jj+1−Kj)(Jj+Kj)(2Jj+1)

4Jj(Jj+1)

∆J = −1
(Jj−1−Kj)(Jj−Kj)

4Jj

(Jj+Kj)(Jj−Kj)
Jj

(Jj−1+Kj)(Jj+Kj)
4Jj

the transition dipole elements Mij the vibrational ones from Multimode are used in this work.
The J > 0 elements only account for the vibrational part of these states. For only vibrational
transition elements Mvivj

are available for this work, an additional approximation has to be
done by substituting the Mij with Hönl-London factors SJjKj

[42, 43, 44]

|Mij |2 = SJjKj
|Mvivj

|2 (3.23)

The Hönl-London factors, listed in table 3.8, are meant to take into account the rotational
dependence of vibrational bands. The basic idea of Hönl and London [44] was to obtain the
intensity relations between the different branches of rotational lines. They used the correspon-
dence principle to obtain the intensity ratios in terms of the angle cos Θ = K

J between the
angular momentum and its projection. Using similarities between the molecular and the atomic
problem, the intensity splitting for the branches is considered to be equivalent to the Zeeman
effect. The relations they provide differ partly from modern tables. A paper published in 2005
by Hansson and Watson [41] discussed irregularities within the literature about the exact for-
mulas for this factors and derived them for the special case of diatomic molecules.

The Hönl-London factors modify the relative intensities of rotational lines according to the
algebra of quantum mechanics. If one assumes the rotational and vibrational parts of the
wavefunction to be independent one may separate the transition problem into vibrational and
rotational part, as Cantarella did in 1992 [46]. The The Hönl-London factors do not account for
this. Therefore, equation 3.23 does not account for rotational driven transition probabilities at
all, besides the level included in the adiabatic rotation approximation. Still, the ansatz at least
ensures the branch splitting according to the theory. This is an approximation with unknown
quality. Although dipole matrix elements are calculated for several Js, the matrix elements are
pure vibrational and therefore do not replace the Hönl-London factors.
Substituting equation 3.23 in equation 3.22 and multiplying with the g factors for lower and
higher state, the final Einstein coefficients are obtained:

Aij =
16π3

3h4c3

(Ei − Ej)
3

2Ji + 1
gigjSJjKj

|Mvivj
|2 (3.24)

3.3.4 Elements of the algorithm for spectroscopic data

4. Interpolation of dipole matrix:

Instead of calculating the dipole matrix for every J , every fifth J dipole matrices are
calculated and then interpolated.

5. Calculation of Einstein coefficients:

Using the dipole matrix elements the transition probability for every possible transition is
calculated. With this information intensity spectra can be obtained.
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3.4 Summary of the algorithm

3.4 Summary of the algorithm

The algorithm shown here satisfies the requirements discussed before. It is general, meaning
it can be used for any kind of hydrocarbons, not only methane. It can be easily adapted or
modified for other purposes. Clearly, the scope of a diploma thesis defines further practical
limits for improvements and extensions of the algorithm.

1. Construction of hypersurfaces for potential energy and dipole moments:

Using ab initio data (3.1.1) a PES and DMS have to be constructed. The surface used
was developed by Bastiaan Braams [24, 25] (3.1.2).

2. Calculation of converged energies:

The energies of every rotational and vibrational state covering a user chosen interval of
quantum numbers are calculated. The quantum chemical package Multimode (3.2) was
used for this purpose.

3. Calculation of dipole matrix:

The dipole moment matrix or transition matrix is needed for the calculation of transition
probabilities. Multimode was used here too. The used package can calculate exact matrix
elements for J = 0. For J > 0 an approximate solution (3.2.3) has to be used. ∆J 6= 0
matrix elements can not be calculated.

4. Interpolation of dipole matrix:

Instead of calculating the dipole matrix for every J , every fifth J dipole matrices are
calculated and then interpolated.

5. Calculation of Einstein coefficients:

Using the dipole matrix elements the transition probability for every possible transition is
calculated. With this information intensity spectra can be obtained.
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Chapter 3. Tools and methods

Figure 3.3: Flowchart of the algorithm to obtain spectroscopic data.

As a conclusion for the conceptual part of this work it can be said, that many approximations
had to be made to have the possibility of getting spectroscopic data. Nevertheless, the quality
of the coefficients is expected to be sufficient for astrophysical applications. Deviations of the
energies from experimental results have no strong impact on the Einstein coefficients, because
they have a cubic dependence on transition energies. Errors in the energies of about some
percents (already given by the PES) do not affect the Einstein coefficients strongly due to the
cubic dependence. Also, wavenumber differences of some percents are uncritical, because the
astrophysical observations have large errors in comparison. The quality of the dipole matrix
elements is unknown for all except the J = 0 case. Whether the approximations, which had to
be done are reliable can be seen only by a comparison of the data from other databases. This is
presented in chapter 4.
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Chapter 4

Results

In this chapter the results are presented, beginning with tests of the PES and the vibrational
calculations. The final Einstein coefficients are calculated and analysed. The quality of the
coefficients is tested by constructing several intensity spectra. These tests include the comparison
with the HITRAN database. Finally, an example for an astrophysical application of the provided
data is given.

4.1 Tests

4.1.1 PES properties

The Multimode program package which is used to calculate rovibrational energies is working
with normalmode coordinates qi. Therefore, a good visual test of the quality of the PES is
to compare one-dimensional cuts along the vectors of normalmode displacements through the
PES with ab initio values. This is done for all degenerated modes. In figure 4.1 the threefold
degenerated modes v1 to v3 are shown. In this figure, the potential value of a configuration is
plotted against the corresponding normal mode displacement.
The PES values of modes v1 and v3 show very good agreement, while mode v2 deviates from
the other two and from the ab initio values. This can be seen better in figure 4.3 where the
second derivatives of the potentials are displayed. Hence the potentials are still similar, the
orthogonal normalmode vectors are represented with only minor deviations. The potential for
these modes should be strictly symmetric, which it is not the case here. But the deviation from
the symmetric shape is relatively small, especially for small oscillations. The comparison with
the ab initio values for v1 shows a very good agreement with the PES.
In the same figure the PES values for the twofold degenerated modes v4 and v5 are plotted

together with ab initio values for v4. v5 has an asymmetric potential as expected from symmetry.
The v4 normalmode vector agrees quite well with the ab initio calculations. Degeneracy of these
modes will be destroyed for higher excitations, where the deviations of the PES between the two
modes get larger.
The same analysis has been done for the other vibrational modes and is shown in figure 4.2.
Mode v6 is singular. The PES representation of the potential is good for q > −1. For q < −1
the PES does not represent the ab initio calculated values. The modes v7 to v9 are asymmetric
stretch modes which are represented by symmetric potentials. This is in agreement with the ab

initio data. The corresponding PES representation of v7 is also symmetric but it shows larger
deviations from the ab initio data. The other two modes are tilted but show a similar shape, if
the potentials are rotated.
The direct comparison between ab initio data and corresponding PES values in cuts along the
different normalmode vectors reveals deviations. These deviations are more pronounced for the
higher energy modes. This test does not directly predict the quality of the following Multimode

calculations, but it demonstrates possibilities for improvements of the PES. This is especially
true, because even if the eigenvalues of the methane wave function might be in the order expected
by the root mean square error of the PES, the composition of the wave function in terms
of the harmonic excitations might be mixed up for the oscillators having wrong normalmode
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Figure 4.1: This figure shows the PES representations of threefold degenerated modes v1-v3 and
the twofold degenerated modes v4, v5. In addition the ab initio potential values of v1 and v4 are
shown for comparison. The qi’s are factors of the respective mass-scaled normalmode vectors
(normalmode displacements).

-40.4

-40.2

-40

-39.8

-39.6

-39.4

-1.5 -1 -0.5  0  0.5  1  1.5

P
ot

en
tia

l [
H

ar
tr

ee
]

qi

PES v6
ab initio v6

PES v7
PES v8
PES v9

ab initio v7

Figure 4.2: Similar to figure 4.1 this figure shows the PES representations of non degenerated
mode v6 and the threefold degenerate modes v7-v9. For comparison the ab initio values of v6

and v7 are included.
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Figure 4.3: Figure of the second derivatives of potential for v1 to v5.
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Figure 4.4: Figure of the second derivatives of potential for v6 to v9.
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Figure 4.5: Comparisons of PES and ab initio Molpro data under the usage of Molpro

calculated normalmode vectors.
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4.1 Tests

orientations. Therefore, additional fine-tuning of the PES is needed, especially trying to enforce
strictly all symmetry constraints. Up to now this is done implicitly only for the potential itself,
but not for its derivatives.
An additional test was done with normalmode vectors calculated with Molpro for the PES
global minimum. The results are plotted in figure 4.5. For these vectors the PES is fitting well
the ab initio data with the exception of mode v6. It is the only mode with identical normalmode
vectors for both methods, as without degeneration there are no degrees of freedom available. The
reason for the irregularity of the PES regression may be badly converged ab initio data. These
can exist, especially for strongly stretched or twisted molecules, where already multi-reference
calculations will be necessary. Also, the PES fit can have problems. The PES fit was done not
only with CH4 data but also with data of fragments like CH3 + H. This is the characteristics of
a global PES. Discontinuities in the original data dominated by two different fragment types can
cause such problems. Although the energy of the PES and from ab initio data show in general
quite satisfying agreement, the curves of the energies in the directions of specific normalmodes
do not in every case, e.g. modes v4 and v5 do not match. The first three modes have energy
levels which are overall too low, as the last three have. Even though these normalmode vectors
are delivering mostly the expected symmetric potentials, the usage for Multimode calculations
failed. These vectors deliver much too low energies, lower than 10% as is shown in table 4.1.
From this analysis it is concluded that the construction of an improved PES should be done if
higher accuracies are needed. The quality of the PES itself is sufficient for this work with an
approximated error of 30 cm−1, as discussed in chapter 3. The deficiencies of the normalmode
vectors lead to smaller CI coefficients and more mixed states. This has no major influence on
the energy values, but on the associated quantum numbers. In addition the dipole matrices
suffer due to changed symmetries. An improvement can be achieved by adding more data points
near the global minimum, to give the local area near the global minimum of the PES a higher
weighting. The other observation is, that the normalmode vectors are critical and can also
be further improved by improving the PES as discussed before. If the PES represents the ab

initio data well for all modes, the normalmode vectors should get close to the exact Molpro

normalmode displacements.
During this work several computers were used for calculations. Deviations larger than machine
precision between identical calculations on different machine occured, demonstrating the need
for an improved conditioning of the final matrix solved for the PES fit.

Table 4.1: The converged CI energies of the fundamental excitations are shown under the usage
of Molpro calculated normalmode vectors. Although the leading coefficients are all larger than
0.9 and are therefore better than the ones used in this work (compare table 3.2) the energies are
far too small.

coeff. v1 . . . v9 E [cm−1]

0.9918 000000000 9116.4631
0.9749 001000000 1137.5199
0.9749 010000000 1137.5200
0.9769 100000000 1137.7601
-0.9911 000010000 1520.1673
-0.9911 000100000 1520.2251
0.9348 000000100 2828.1546
0.9348 000000010 2828.1546
0.9401 000000001 2828.5141
0.9712 000001000 2883.5740

31



Chapter 4. Results

4.1.2 Harmonic oscillator

The most primitive potential able to describe a vibrational movement is the harmonic oscillator
(HO) potential as discussed in 2.2.4. Multimode uses an harmonic oscillator approximation for
the potentials of the normalmodes to built up its n-body expansions of the potential. This low
order approach allows a fast, rough estimate of the expected energy values and more important
the range where the potential is really used.
Figures 4.6 and 4.7 show the harmonic oscillator potentials and their energy levels. For a better
comparison the PES values are plotted as points into the figures. This shows, that the HO is a
realistic approximation at least for some modes, v1 and v4. The strongly asymmetric mode v6

can not be represented by a harmonic oscillator, but still an appropriate energy expectation is
delivered. Table 4.2 shows the HO energies of the fundamentals together with the CI energies
and experimental data. It can be seen that the HO approximation delivers true upper limits for
the energies with no more than 5% overestimation in this case. The lower modes, which had
a nearly harmonic shape, reach a lower overestimation. Especially mode v4, where no major
deviations between HO and PES are obvious, reaches an overestimation of only 1.2% which is
almost as good as the CI underestimation of 0.77%.
The harmonic oscillator approximation is therefore an appropriate first order approximation for
molecular vibrational energies. The results suggests a fair quality of the Multimode calculations
despite the problems with the normalmode vectors.

Table 4.2: Comparison of harmonic oscillator (HO) energies with CI energies and experimental
data [10].

EHO [cm−1] ECI [cm−1] EExp [cm−1]

1343.33 1308.62 1310,8
1343.45 1308.66 1310,8
1343.45 1308.71 1310,8
1551.44 1521.44 1533,3
1551.53 1521.46 1533,3
3028.86 2901.45 2916,5
3156.29 3003.27 3019,6
3156.29 3003.65 3019,6
3156.30 3003.66 3019,6
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Figure 4.6: Plot of the approximated harmonic potential (lines) and harmonic oscillator levels
for v1 (red) and v4 (green). The corresponding PES values are plotted as points. The harmonic
representation of these modes is adequate, the modes are of harmonic nature.
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Figure 4.7: Plot of the approximated harmonic potential (lines) and harmonic oscillator levels
for v6 (red) and v7 (green). The corresponding PES values are plotted as points. These modes
are not harmonic. v7 is symmetric but needs a higher than quadratic representation.
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Chapter 4. Results

4.1.3 Morphing

The converged vibrational energies of a given potential energy surface have certain deviations
from experimental values beyond the statistical error of the surface. Morphing is a method of
changing the shape of the potential to fit a vibrational mode to a certain energy value and is
therefore a coordinate transformation.
Assuming a purely harmonic potential, defined as V (x) = ax2, a possible morph transformation
is to add a constant offset to the coordinate: x′ = x+ε. Inserting this into the harmonic potential
delivers the morphed potential, still depending on the original variable, but with an additional
factor: V (x′) = V (x + ε) = ax2 + 2axε + aε2. In this simple case the symmetric potential is
modified with a constant offset and a linear term making the potential asymmetric. To preserve
the symmetry of the potential, a transformation of the following form is more appropriate:

d′(i, j) = d(i, j) + ε(d(i, j) + a0(i, j)) (4.1)

a0 is the equilibrium internuclear distance between atoms i and j. Methane has two types of
internuclear distances, C −H and H −H, therefore equation 4.1 splits into two equations with
ε replaced with exy and exx and a0 replaced with axy and axx, respectively.
Morphing can not improve the quality of the potential nor the resulting energies in terms of
root mean square error or standard deviation, but for every independent morphing formula one
mode can be morphed in a way that one single excitation level fits to some expected value. If
the potential has the correct shape, other excitation levels of this mode may also improve. Since
methane has four modes and two types of internuclear distances, only two of four modes can
be adjusted. Improvements of other modes are not necessarily guaranteed by this procedure.
Nevertheless, this method allows to improve the agreement between calculated excitation levels
of single modes and experimental data.
The functional dependence of the CI energies of the fundamental excitations of all modes on

the two ε’s were scanned separately. The results are plotted in figures 4.8 and 4.9. Modes n4 and
n2 have a strong dependence on exx, while for modes n1 and n3 the dependence on exy is more
pronounced. Hence, the functional dependencies seem linear in every case, a simple algebraic
combination of both is possible to gain best agreement of the two selected modes.
exx = 0.0008 and exy = 0.0040 were chosen in order to optimize modes n3 and n4. The
corresponding energies are listed in table 4.3. The non-fitted mode n1 is also in an excellent
agreement with the experiment. This was obtained with additional effort in the selection for
the PES fitting parameters. n1 has a similar dependence on the morphing parameters as n3.
Therefore, a difference of slightly above 100 cm−1 in the normalmode frequencies of these modes
would result in the correct ratio of the CI energies. As presented in 3.1.2 there are parameters λ
and a acting as truncation parameters in the PES. These values were changed to construct a PES

Table 4.3: Comparison of morphed CI energies of the fundamentals with experimental data [10].

EExp [cm−1] EMorph [cm−1] rel. err.

1310,8 1311,01 1,63E-04
1310,8 1311,06 1,98E-04
1310,8 1311,09 2,25E-04
1533,3 1524,85 -5,51E-03
1533,3 1524,88 -5,49E-03
2916,5 2917,22 2,47E-04
3019,6 3019,22 -1,26E-04
3019,6 3019,45 -4,82E-05
3019,6 3019,55 -1,79E-05
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Figure 4.8: Dependence of the deviation of fundamental excitation energies from experimental
values E0 [10] on the morphing parameter exx.
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Figure 4.9: Dependence of the deviation of fundamental excitation energies from experimental
values E0 [10] on the morphing parameter exy.

according to this constraint. Nevertheless, it was not possible to adjust n2 to the experimental
values, because the relative error of this mode compared to experimental results is one order of
magnitude higher than that of the others. This illustrates that morphing can improve matching
of specific frequencies, but there is no global gain of accuracy from this procedure.
Other shortcomings of the morphing are the following: Because the normalmode vectors are
partly mis-oriented (see 4.1.1) they do not reproduce the correct potential and its symmetry
along the normalmode cuts. This can not be overcome by the morphing procedure. Also,
for higher excitations incorrect energy splitting for the degenerated modes occurs. Since the
consistency can not be guaranteed, there are no morphed energies used in this work.
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Chapter 4. Results

4.1.4 Convergence

Multimode uses a n-body expansion basis to describe the electronic potential. The quality of
the results improves for a higher order expansion. The procedure is converging with increasing
expansion order, so a threshold can be defined and a limit for the expansion can be found, where
the variance of the resulting energies is lower then the threshold for every higher order term. The
convergence threshold has be to determined by a compromise between quality and computational
effort. Figure 4.10 shows the computing times and the memory used by Multimode for different
basis sets for a vibrational calculation. The figure can be interpreted in two ways. First, the
dependence on the sum of the quanta for a given coupling can be seen, which is of quadratic
nature. The dependence on the coupling for a certain sum of quanta is also identifiable and
is quadratic, too. Although a practical limitation for memory usage is not reached in the
vibrational case, a runtime of over 10000 seconds, almost 3 hours, is already critical, if one takes
into account, that the rotational dependency is not included. A closer look on runtimes and
memory consumption is presented in section 4.1.5.
The convergence behavior is shown in figure 4.11. A convergence with respect to the maxsum

quanta can be reached for every mode coupling, but this is not a global convergence. This is
reached, if a convergence for the mode coupling takes place. The 2-mode and 3-mode basis sets
are not converged. The variance between 4-mode (4mr) and 5-mode (5mr) representations are
of the order of 1 · 10−4 or less than 2 cm−1 for every sumquanta. The variance between 4mr7
and 5mr7 is less than 0.3 cm−1. This can be considered as well converged.
The convergence of low energy states does not guarantee automatically the convergence of higher
energy states. Therefore, the 185th to 220th state have been compared for 4mr7, 4mr8 and 5mr7.
Table 4.4 shows the energies and their relative deviation to the 5mr7 values. The energy of the
220th vibrational state is about 6100 cm−1 and is the highest vibrational level used in this work.
The largest deviations to the 5mr7 in this block are 4.8 · 10−3 and 4.48 · 10−3 respectively. The
4mr7 and 4mr8 basis sets are considered as sufficient for this work.
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4.1.5 Computational effort

The computational effort is a crucial factor limiting the level of theory which still can be used
while having an acceptable runtime and memory usage. The dependence of the runtime and
memory usage for the vibrational problem on the mode representation and the expansion or-
der, expressed by the MAXSUM quanta, has been already explored in section 4.1.4, see figure
4.10. For this work mainly rovibrational problems are calculated. During an exact rotational
calculation, first the vibrational problem is solved and then the final vibrational CI energies are
printed for every projection of J , causing a linear increase of computing time, because a matrix
diagonalization has to be done every time. This is the most time consuming part for vibrational
calculations. The size of the vibrational CI matrix does not dependend on the rotational quan-
tum number, therefore the memory usage is not changing significantly. The final vibrational
results are multiplied with the rotational function. For this, the rotational matrix is diagonal-
ized. Its size is the number of CI energies per projection times the number of projections, giving
a dependence for memory usage and runtime to the number of states to be calculated. This
limits the number of vibrational states calculated for higher J ’s.
In figure 4.12 the runtimes of the final rovibrational calculations done for this work are plotted.
Exact calculations with 4mr8, dataset 1, and 4mr7, datasets 2 to 10, were done. The slope for
4mr7 is much flatter than for the 4mr8 calculations. 4mr8 calculations were done only with 220
CI energies per projection and are therefore comparable. Although the Multimode Manual [37]
predicts a quadratic correlation, figure 4.12 implies a more linear one. The 4mr7 calculations
were done with varying number of CI energies. This is because the upper limit for energy values
were set to 6200 cm−1 and due to the higher rotational energies, less and less vibrational modes
are under this limit, as can be seen in figure 4.14. Section 4.2 provides a fruther explanations.
For J > 30 no vibrational excitations are below the limit and for J > 34 in addition not even
the rotational ground state is below this limit. For large numbers of CI energies a reduction
causes a drop of runtime, because the calculation of the rotational matrix is time consuming.
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Figure 4.13: Memory usage of Multimode for rovibrational calculations with different settings.
The nomenclature is the same as in figure 4.12.
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Table 4.4: List of vibrational modes 185 to 220. The experimental quantum numbers, symmetry
and energies E [cm−1] are listed. The computed energies E [cm−1] for 4mr7 and 4mr8 are shown
with relative error to 5mr7. One mode with wrong quantum number assignment is in this list
and is marked-up.

Experimental 4mr7 4mr8 5mr7
n Sym. E n E rel err E rel err E

0301 F2 5867.66 0301 5853.14 5.81E-04 5849.98 4.03E-05 5849.74
0301 F2 5867.66 0301 5858.09 1.30E-03 5854.57 7.01E-04 5850.47
0301 F2 5867.66 0301 5858.72 1.34E-03 5855.42 7.80E-04 5850.86
0301 F1 5879.02 0301 5874.48 2.15E-03 5871.31 1.61E-03 5861.88
0301 F1 5879.02 0301 5875.16 2.23E-03 5872.23 1.73E-03 5862.09
0301 F1 5879.02 0301 5890.74 4.80E-03 5888.83 4.48E-03 5862.57
0301 F2 5894.12 0301 5891.00 2.68E-03 5889.30 2.39E-03 5875.24
0301 F2 5894.12 0301 5893.12 3.02E-03 5889.90 2.47E-03 5875.40
0301 F2 5894.12 0301 5893.92 3.09E-03 5892.00 2.76E-03 5875.78
0301 F1 5909.71 0301 5902.07 1.68E-03 5900.57 1.42E-03 5892.19
0301 F1 5909.71 0301 5915.49 3.94E-03 5913.70 3.63E-03 5892.30
0301 F1 5909.71 0301 5916.16 4.03E-03 5914.32 3.72E-03 5892.42
1200 A1 5971.52 1200 5917.95 2.75E-04 5915.65 -1.14E-04 5916.3
1200 E 5974.59 1200 5930.33 3.22E-04 5929.05 1.07E-04 5928.42
1200 E 5974.59 1200 5944.00 2.47E-03 5943.02 2.30E-03 5929.36

0020 A1 5968.09 1200 5944.91 5.02E-04 5943.39 2.46E-04 5941.93

0020 F2 6004.69 0020 5977.93 4.95E-04 5976.01 1.74E-04 5974.97
0020 F2 6004.69 0020 5978.57 5.31E-04 5976.73 2.23E-04 5975.40
0020 F2 6004.69 0020 5980.80 7.57E-04 5978.73 4.11E-04 5976.28
0020 E 6043.87 0020 6019.30 9.00E-04 6017.45 5.93E-04 6013.89
0020 E 6043.87 0020 6020.84 9.81E-04 6019.28 7.23E-04 6014.93
0210 F2 6054.64 0210 6028.17 8.63E-04 6027.14 6.93E-04 6022.97
0210 F2 6054.64 0210 6029.23 9.86E-04 6028.15 8.07E-04 6023.29
0210 F2 6054.64 0210 6030.47 1.10E-03 6029.13 8.80E-04 6023.83
0210 F1 6059.30 0210 6033.38 8.25E-04 6032.00 5.96E-04 6028.41
0210 F1 6059.30 0210 6035.08 9.91E-04 6033.55 7.38E-04 6029.10
0210 F1 6059.30 0210 6037.72 1.35E-03 6036.16 1.09E-03 6029.61
0210 F2 6065.32 0210 6050.20 2.33E-03 6049.59 2.23E-03 6036.16
0210 F2 6065.32 0210 6054.74 3.01E-03 6053.98 2.88E-03 6036.58
0210 F2 6065.32 0210 6057.69 3.45E-03 6056.78 3.30E-03 6036.88
0400 A1 6116.75 0400 6098.69 3.07E-05 6094.74 -6.17E-04 6098.50
0400 E 6118.62 0400 6099.68 1.68E-04 6095.57 -5.06E-04 6098.66
0400 E 6118.62 0400 6099.99 7.82E-05 6097.10 -3.96E-04 6099.52
0400 E 6124.17 0400 6101.33 1.72E-04 6098.52 -2.89E-04 6100.28
0400 E 6124.17 0400 6101.66 2.21E-04 6098.93 -2.27E-04 6100.32
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Chapter 4. Results

For small number of CI energies this contribution is minor and the runtime is dominated by the
vibrational calculations. Datasets 11 to 16 are adiabatic rotation calculations done with varying
parameters. The runtime is significantly smaller for 4mr7 calculations compared with 4mr8
calculations. Especially for a small number of calculated energies this difference is negligible.
The memory usage is a second limiting factors for numerical calculations. The comparison be-
tween the J = 0 and J = 1 memory usage is splotted in figure 4.13 and shows a doubling of
memory usage. For increasing J the dependence is stronger than linear. The memory usage
for 4mr7 is a factor of roughly 2.5 smaller than for 4mr8 at J = 5, in addition the slope is
significantly smaller. The dependence of memory usage on J is strongly determined by the
number of calculated CI energies. While the steps between the 4mr7 datasets show the direct
dependence of the number of energies the slope for a certain number of energies is smaller for
less energies calculated. This is because the vibrational matrix size is constant for any given
J , but the rotational matrix size is linearly dependent on J and the numbers of CI energies, as
mentioned before. The adiabatic rotation calculations have a significant smaller memory usage.
The difference between exact and adiabatic calculations is roughly of the size of the rotational
matrix.
The calculations presented were done with AMD64 dual core processors @3 GHz with 4 GB of
RAM per core, without parallelization. The 4-mode representation with maximal sumquanta
of 8 is not treatable for J > 10, because the runtime increases over 3 days. The memory usage
with more than 2 GB is large but treatable for 64-bit systems. The 4mr7 calculations are fast in
comparison, without reaching any critical level of memory usage. To gain additional accuracy
5mr7 calculations are an alternative, with runtimes and memory usage between 4mr7 and 4mr8.
The exact behavior would have to be examined. For this work 4mr8 were used for J < 10
calculations and 4mr7 for higher Js. The 4mr8 can be expected to be more robust for increasing
J than 4mr7, but the computational time increases much faster and for J > 9 the runtimes
exceed three days, enforcing due to practical considerations the use of 4mr7.
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4.2 Rotational dependence for energies and dipoles

4.2 Rotational dependence for energies and dipoles

As discussed before the rovibrational energies have a quadratic dependence on J , as can be seen
in figure 4.14. This leads to a reduction of vibrational states below a certain energy limit, in
this case 6200 cm−1, and in the end to an upper J , where no levels can be found anymore. This
allows to calculate all rovibrational levels up to this limit and provide complete spectroscopic
data within this region, as it has been done for this work with 52803 calculated energies in
total, belonging to 30 bands. The further data processing had been done by integrating the 87
subbands.
In order to provide spectroscopic data a total number of 715500 dipole transition elements
have been calculated, for 9 different J ’s. This results in 30 × 30 = 900 different vibrational
transitions. The provided dipole data is summed over all subbands and spatial directions. As
shown in figure 3.2 for the transitions from fundamental excitations to the vibrational ground
state the dependence of the dipole elements on J is either negligible or quadratic. In general,
the dependence of the dipole moments on J can be estimated to be quadratic as shown by
Buckingham [47]. A possible explanation for the other cases is based on their degeneration.
The independent modes are threefold degenerated. For each of the three rotational axes occurs
“rotational stretching” of the molecule, leaving it dynamically averaged spherical-symmetric.
For the other modes preferred directions are existing with only minor dipole elements in the
other directions. Hence the J dependence acts primarily for the preferred axis.
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Figure 4.14: List of all rovibrational energy levels up to 6200 cm−1. The energies are increasing
quadratically with J and degenerated vibrations split.
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4.3 Einstein coefficients

The final database provided by this work delivers Einstein coefficients Aij as a function of
wavenumbers. For methane the fundamental modes follow a relation as n1 ≈ 2n2 ≈ n3 ≈ 2n4.
Due to this, in the regular structured energy scaling the vibrational levels are divided into
packets, called polyads. This can be seen in figure 4.14. Depending on the numbers of bands
or levels the polyads are labelled Dyad (≈ 1300 cm−1− ≈ 1550 cm−1), Pentad(≈ 2500 cm−1− ≈
3100 cm−1), Octad(≈ 3850 cm−1− ≈ 4600 cm−1), Tetradecad(≈ 5100 cm−1− ≈ 6150 cm−1) and
so on. This scheme is also present in the Aij spectrum. Figure 4.16 shows the complete spectrum
of Einstein coefficients. The Dyad and Pentad regions show most pronounced peaks, whereas
the ground state and the Tetradecad regions are only visible in logarithmic scale as done in
figure 4.17. The Aij spectrum shows the expected global features, but the details and the
scaling depends on the specific calculation method (e.g. summation of sub-bands). HITRAN is
a common spectroscopic database which can be used as a benchmark for the present data. It
uses single lines with respect to subbands, but does not include every possible transition, only
about 152000 lines for the given interval. The database obtained from this work includes every
possible transition, but with merging of subbands into bands, resulting in 1.27 million database
entries. A comparison can be delivered for processed data, as relative intensities, which are
presented in section 4.4.
The calculation of spectra is of interest to understand the structuring. Figure 4.15 shows a detail
of the database in the region of Pentads and Octads. The complete database is shown in red as
a reference and examples for ∆J = −1, 0,+1 are shown above. The spectrum has major peaks
and at the base several rising plateaus. Although the different features can not be mapped to
a certain type of transition an energy splitting for the different types is obvious. The plateaus
are therefore results of the ∆J 6= 0 transitions, while the main peaks should contain every type
of transition.

Figure 4.15: Einstein coefficients for different transitions in the interval [800 cm−1 : 3700 cm−1].
Red: Whole spectrum. Green: ∆J = 0 example with J = 10. Blue: ∆J = 1 example with
J = 10 → J = 9, Purple: ∆J = −1 example with J = 9 → J = 10.
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4.3 Einstein coefficients

Figure 4.16: Complete set of Einstein coefficients up to 6200 cm−1 upper state energy in loga-
rithmic scale.

Figure 4.17: Complete set of Einstein coefficients up to 6200 cm−1 upper state energy with
logarithmic scaling.
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4.4 Spectra

A comparison of spectroscopic data without the problem of different data formats is possible
with the calculation of simple temperature dependent emission spectra, where mainly relative
intensities can be compared. For this purpose intensities of the form

Iij ∝
Aij

Q ·
(

e
Eupper

kT + 1
) (4.2)

where calculated for each line. Then the lines were projected to a grid of ∆Ewave = 1cm−1 using
a s = 1 Lorentzian distribution to emulate line broadening. The projected lines are normalized
in such a way, that the sum of the projected intensities on the grid is the same as the initial
one. In cases where the relative spectra are wanted, an additional normalization is done to fix
the sum of the intensities over the whole grid to unity.

4.4.1 Comparison of J = 0 lines for different evaluation methods

As explained before in 3.3, only averaged Einstein coefficients can be obtained with the chosen
approach. The quality of the approximation can be tested for J = 0 transitions, for there the CI
energies and the dipole matrix are calculated with the same wave function. Figures 4.18 show
comparisons between intensity spectra produced with the J = 0 Einstein coefficients from the
database and the non-compressed ones for J = 0. The ratio of the absolute intensities between
exact and compressed is 1 : 0.96. This proves that the method used in this work to process
the data is at least conserving the integral of the emission coefficients. Subfigures a) and b)
are plotted without any apparatus function. In the region around 1300 cm−1, shown in a), the
exact method (red) has a major maximum and several minor maxima. These minor maxima are
resulting from subband splitting. The green line shows the data from the database. Here the
main maximum is reduced and additional intensity is transferred to the minor maxima. This
happens because the energy averaging shifts the line center of the bands and acts stronger for
higher excitations. A similar pattern can be found for the region around 3000 cm−1 in subfigure
b). The other figures include an apparatus function simulated by a Gaussian distribution with
halfwidth σ. For σ = 3cm−1, the two curves are already similar and for σ = 5cm−1 the lineshape
gets very close. The major difference is a shift to lower energies for the composited data. This
is a result of the energy averaging. The splitting of the vibrational bands causes mainly a
lowering of energies. In cases where the measurement is technically limited to a resolution of
5 cm−1 or higher, the spectra have the same form with a small energy shift of about 10 cm−1.
For astrophysical applications the resolution of the produced data is high enough, because the
astrophysical observation data is only of low accuracy in comparison to spectroscopic accuracies.
An direct comparison with the HITRAN database is presented in 4.4.3.
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(c) σ = 3
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(d) σ = 3
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Figure 4.18: Relative intensity plots at 1000 K with Lorentzian line broadening with broadening
parameter s = 1cm−1 and different σ’s for the apparatus function (Gaussian). The red lines
are direct J = 0 lines without any composition to bands or subbands. The green line is made
from composited J = 0 band lines as used in the final database of this work. The red line can
be interpreted as exact. The scaling factor of the absolute intensities between the methods is
1 : 0.96. With a resolution of the measurement aperture of more than 3 cm−1 the composited
spectrum is of sufficient accuracy besides a shift in the energies of about 10 cm−1 within the
error range of the calculated energies.
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4.4.2 Spectra for different temperatures

The spectra measured in astrophysics depend on the temperature of the light emitting body.
Figure 4.19 shows relative intensities for the database for three different temperatures. The
temperature dependence of the spectra is not related with the Einstein coefficients, but with
the distribution function, see equation 4.2. From figure 4.19 it can be seen, that the relative
intensity of regions with low linestrength is strongly dependend on the temperature, changing
over several orders of magnitude. This shows the importance of a complete database including
every possible transition.
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Figure 4.19: Relative intensities of transitions for different temperatures. For higher tempera-
tures, the maximum moves to higher energies and the transmitting regions grow larger.
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4.4 Spectra

4.4.3 Comparison with HITRAN

A major benchmark for the quality of this work is the comparison with the HITRAN database.
It includes about 187000 lines for methane with an upper limit of 10000 cm−1. This is far
less than provided by this work, although HITRAN allows single lines and not merged band
lines. The precision of the single lines are higher though. For the astrophysical application the
completeness is more important than the spectroscopic accuracy.
The comparison in figure 4.20 shows the same general structure for both databases. There are
difference in the precise shape, but this is not critical, for this work was not meant to gain data
with spectroscopic accuracy. Deviations are therefore expected and accepted. The HITRAN
spectrum is not continuous, large regions are without data. This may cause integration errors
for radiation transport. In contrast to that, the developed database has a continuous spectrum
and meets consistency requirements.
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Figure 4.20: Comparison of 1000 K relative intensities between HITRAN and the database
produced in this work. While no major deviations are obvious, it can be seen, that HITRAN
does not cover the whole spectrum.
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Chapter 4. Results

4.5 Astrophysical application

The common databases used for radiation transport calculations are patched with data from
different sources. The consequence of this for the integration process is unknown. This work
opens the chance to compare the common databases with one, which ensures consistency. A
radiation transport calculation was performed by Prof Hauschildt for Teff = 1000K with 12CH4

lines only. Figure 4.21 shows the radiation flux Fλ =
∮

IλndΩ emitted as a function of the
wavelength. The flux has a smooth baseline as a function of temperature with absorption
lines reducing the flux for certain wavelengths, depending on the atmospheric composition.
Besides the current database (blue), fluxes for HITRAN (green) and GEISA (red) databases
are shown. The GEISA database is the oldest one, being used mostly in the 1990’s. It is
outdated because of the small number of lines included. The GEISA database produces only
few absorption lines leading to an insufficient adsorption. The comparison with HITRAN, which
is a standard database nowadays, however shows similar absorption intensities over the whole
range of wavelength. The absorption curve is broader for HITRAN.
The algorithm used in this work proved to be usable and of sufficient quality for astrophysics,
despite the approximations, which had to be done. The agreement with the up-to-date HITRAN
database is very good and in comparison to the older GEISA database it is much better. A
mass-production of spectroscopic data for other molecules with the method used in this work is
possible.
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Figure 4.21: Radiative flux Fλ distribution dependend on wavelength for 1000 K. The absorption
lines are 12CH4 only. The databases shown are GEISA (red), HITRAN (green) and the one
produced in this work (blue).
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4.5 Astrophysical application

4.5.1 Perspective and improvements

Although the results the present work fullfill the accuracy demands of astrophysics, improve-
ments can be done. An improved accuracy extends the possible applications of spectroscopic
data obtained with the methods of the present work. Spectroscopic analysis are done in many
fields of physics, e.g. plasma physics, with different accuracies.
A first step would be the improvement of the numerical conditioning of the PES. Calculations
performed on different machines showed obvious deviations, smaller than the statistical error
though and therefore not critical for the work. The next step is the improvement of the local
fit of the PES with the addition of more datasets. A local fit nearer to ab initio data can de-
liver improved normalmode vectors leading to better CI expansion coefficients. The most time
consuming, but most critical step is to calculate the dipole elements. The necessary changes in
Multimode to obtain the wave function for external processing and the writing of a code to
calculate any dipole matrix element will be performed in a PhD thesis.
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Chapter 5

Conclusion

The aim of the present work was to obtain spectroscopic data for astrophysics. These data are
important for the analysis of the radiative behavior of substances. Methane was chosen for this
task, as it is very often found in astrophysical measurements. The calculation of spectroscopic
data requires several steps from the calculation of ab initio data to final Einstein coefficients. An
algorithm for this was developed in this thesis. Several approximations, due to the restrictions of
the codes used, had to be introduced. One of this is the merging of vibrational states at the level
of bands and therefore loosing the subband information. This turned out to introduce errors in
the same order of magnitude as the statistical error of the potential energy surface. The errors
are of the order of few percent. Since the energy dependence is cubic in the Einstein coefficients,
these small errors are acceptable getting reduced further with this exponent. A more limiting
factor was the calculation of dipole matrix elements. There the Multimode package, which
was used for these calculation, revealed severe shortcomings. The calculation of dipole matrix
elements appeared to be limited to vibrational ones. For rovibrational motions these elements
are lacking accuracy, because the rotational part of the wave function is not taken into account.
A special adiabatic rotation approximated Hamiltonian was used to obtain the rigid rotor part
of the rotational wave function. The K quantum number is not included. Due to this matrix
elements for ∆J 6= 0 and ∆K 6= 0 could not be calculated. To handle this, the matrix elements
had to be assumed to be independent of K. These necessary approximations were tested via a
comparison of the spectroscopic data with the HITRAN database. It is an up-to-date database
containing spectroscopic information built from several sources. The comparison showed a good
agreement between the database obtained in this work and the HITRAN database. Despite the
approximations, which had to be made the method resigned to be adequate with respect to the
quality needed for astrophysics. The advantage of the database produced in this work is the
guaranteed consistency of the data, because they are calculated using one single method.
The results demonstrated the potential of the general ansatz. Spectroscopic data for astrophysics
can be produced using the algorithm developed here. For applications with higher accuracy
demands than astrophysics, improvements of the method have to be done, reducing the overall
error.
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