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1 Introduction

There is no older field of physics nor any that has cast its spell over so many people than
astronomy. Most physical systems are complex. This includes planetary and stellar at-
mospheres, interstellar clouds and most other places where small scale molecules can be
found. Complex in the sense, that different processes compete and interact which each
other and that processes take place at different time and length scales. Depending on the
type of a star, it can take many years for the energy produced by fusion in the centre of
the star to reach the stars’ outer atmosphere. Radiative processes and reactions caused by
photons and electrons just take femtoseconds or picoseconds. Furthermore, the physical
conditions in astrophysical systems are sometimes beyond our experimental capabilities,
e.g. temperatures, pressures, dimensions, magnetic fields. The areas of physics involved
include plasma physics, fluid dynamics, chemical physics, electrodynamics and probably
many more. Clearly, to understand the large thing, we have to understand the small things
first.
The aim of this work is to use computational techniques to calculate molecular data that
can be used to improve the understanding of astrophysical systems. Understanding of
spectroscopic and reactive behaviour is crucial for many systems of astrophysical interests
like stars, interstellar medium and comets. Especially stellar atmospheres are of interest,
because the complex physics of stars are not yet completely understood. Stars are in an
unstable balance of gravitation and radiation pressure. The atmospheric dynamics have
been the subject of extensive modelling. This modelling tries to reproduce the physics of
different types of stars. Complete and accurate spectroscopic information of the atoms
and molecules in these atmospheres is necessary for this attempt. In addition, the only
information we have about astrophysical systems is light which is emitted or absorbed by
particles in these media. This is not only true for astrophysics. In plasma physics some-
times the usage of invasive diagnostics, like Langmuir probes, is not wanted because they
disturb the system. In these cases some information of the system can be regained by
passively measuring infrared spectra of the plasma or by active induction of electronic
transition like the laser-induced fluorescence method. Another remote sensing applica-
tion is the measurement of the atmospheric composition on earth. Here, larger particles
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1 Introduction

in the atmosphere as well as greenhouse gases are of current interest. Unfortunately, the
experimental spectroscopic data, which is needed for the understanding and interpretation
of the measured spectra, is often incomplete. This gap can be, to some extend, filled by
computational chemical physics.

In this work I use methods of computational chemical physics to study some small
molecules and molecular systems of astrophysical interest. The general work flow, as
illustrated in figure 1.1, is as follows. First, electronic structure calculations are per-
formed. These give insight into the general bonding behaviour of molecules and offer
inherent information about the molecule, like equilibrium configurations, dissociation en-
ergies, polarisabilities, ionisation energies, dipole and higher moments etc. In the context
of chemical physics the electronic potential and dipole moments are of special interest.
These are calculated in a specific region of the configuration space. For spectroscopic
purposes the region around the equilibrium configuration is needed. If chemical reac-
tions shall be surveyed, the relevant configuration space is much larger and covers the
reagent and product configurations as well as a possible intermediate complex and the
whole reaction path in between. The computational time for a point in the configura-
tion space ranges between seconds and hours. The number of configurations included in
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Electronic structure analysis

(Electron densities, bonding, energies, dipoles etc.)

Electronic potential and dipole moment fits

(Configuration space behaviour)
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(spectra and related properties)

Reactive analysis

(cross sections, rate coefficients)

Figure 1.1: Work flow chart for spectroscopic and reactive calculations within this work.
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spectroscopic (CH4) or reaction calculations (CH+
2) can easily reach the order millions.

Naturally an on-the-fly calculation of ab initio data is not possible. Therefore, a number
of ab initio configurations are calculated, which are then fitted to potential energy and
dipole moment surfaces. These surfaces become multi-dimensional even for small sys-
tems. For example, a potential energy surface of CH3 has six dimensions, for CH4 nine
or ten, depending on the choice of coordinates. These surfaces become increasingly dif-
ficult to construct. Even worse, the diagnostics is difficult for these surfaces. Due to the
intrinsic physical and numerical complexity for ab initio calculations and the fits, these
are the most challenging parts of the work. An introduction to ab initio techniques and a
description of the surface fitting is given in the second chapter.
Using these techniques, the further procedure depends on the problem at hand. In this
work typical tasks are addressed, which can be solved by computational chemical physics.
These include infrared rovibrational spectroscopy, rovibronic spectroscopy, photodisso-
ciation and reaction dynamics. These calculations are performed for systems of current
astrophysical interest.
In the third chapter potential energy surfaces for small hydrocarbons are constructed.
The potential surface method used in this work can be applied to local spectroscopic and
global reactive surfaces, which are both of interest for hydrocarbons. Small hydrocarbons
can be found almost everywhere in the universe. Information about their behaviour is of
interest e.g. in astrophysics and plasma physics. This means especially the spectra of
these molecules. Obtained by remote sensing, the analysis of the spectra of a plasma or a
star compared to the spectra of the molecules inside offers information about abundances,
temperatures and pressures in the system. As hydrocarbons are highly reactive, reaction
rates are also important for the correct description of chemical equilibria. In the third
chapter basic considerations are presented for the choice of ab initio methods and the fit-
ting procedure. Capabilities and limitations of the methods at hand are pointed out. The
quality of the potential surfaces and their possible application to infrared spectroscopy are
shown for CH3 and CH4.
The next chapter shows an implementation of diatomic rovibronic spectroscopy and pho-
todissociation. The spectroscopy is in the energy range of near ultraviolet and visible
light. Diatomic metal hydrides and oxides can be found in astrophysical systems. Their
absorption lines in stellar atmosphere spectra allow insight into the chemical composi-
tion of the atmosphere, temperatures and pressures. Furthermore, they add opacity to
the radiation transport simulations. Magnesium hydride (MgH) is chosen for this inves-
tigation. There is already numerical data available for the lowest three electronic states
of MgH, which are used for validation purposes. The quality of the spectra was consid-
erably improved to previous numerical studies. In addition, two extra electronic states
could be included. With these the frequency range could be expanded from visible to
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1 Introduction

the near ultraviolet region. Tests with atmospheric models show a strong opacity in this
region. A higher opacity means less energy transport through the atmosphere and there-
fore a changed temperature profile. The new line lists allow therefore better modelling of
radiation transport in atmospheres, where this molecule is present.
In the last chapter the H+CH+ reaction is surveyed. While CH+ can be found often in
interstellar media and comets, its abundance is not fully understood. Motivated by new
measurements, which are in conflict with previous numerical studies, I calculated reac-
tion cross sections and rate coefficients. In the standard model the cross sections for the
H+CH+ −−→ C+ +H2 reaction diverge in the limit of weak collisions and small internal
energies. New experimental rate coefficients indicate an inhibited reaction for tempera-
tures well below 50 K. This is contradictory to the standard model. The results achieved
in this thesis indicate that previous numerical results overestimated the reaction rates by
a factor of two, but they are not able to explain the experimental results either.
The major results are discussed in a final conclusion and a placement of this work for the
general physics picture is given.
This work explores the capabilities of computational chemical physics methods in their
application to astrophysical relevant systems and questions. The focus was on the ap-
plication of ab initio based fitted potential energy surfaces. Such potentials have been
successfully used for the calculation of rovibrational and rovibronic line lists, photodis-
sociation and reaction dynamics. These are four of the most important types of molecular
data used in astrophysics and other remote sensing applications.
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2 Basic Physics and Methods

This chapter gives introductions into basic physics and methods used in this work. The
first part introduces the idea and techniques of ab initio quantum mechanics. These are
methods, which solve the electronic Schrödinger equation approximately. Secondly, a po-
tential energy surface fitting is introduced, which allows to fit ab initio potential energies
over the configuration space. At the end, the Lagrange-mesh technique for solving the
molecular Schrödinger equation is introduced.

2.1 Ab initio quantum mechanics

The inherent properties of molecules, like binding energies, ionization energies, vibra-
tional and rotational motions, dipole moments, polarisability and their thermodynamic
behaviour, depend mainly on the electronic configuration and the interaction potentials
of all the particles of the molecule. The Schrödinger equation describes non-relativistic
quantum systems and is therefore the equation of choice for most molecular systems.
This equation can not be solved analytically for more than one electron in the system.
Therefore, approximations, like the Born-Oppenheimer approximation, have to be intro-
duced generating numerically solvable equations. The first order solution of the electronic
Schrödinger equation, assuming a mean-field potential for the electron-electron interac-
tion, is the Hartree-Fock energy. Improvements to this solution can be done either by
adding functionals to the potential descriptions, referred to as density functional theory,
or by applying approximative methods to simulate the true electron-electron correlation.
The later ones can be referred to as ab initio techniques which are discussed in this sec-
tion. The field of ab initio methods is broad and the detailed implementations of the
various methods are sophisticated. As these methods are used as tools in this work, only
a basic introduction is given. The description will mostly follow Jensen [1], where also
more detailed descriptions can be found.
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2 Basic Physics and Methods

2.1.1 Born-Oppenheimer and adiabatic approximations

A non-relativistic molecular system is described exactly by the complete molecular Schrödinger
equation

Ĥ(r,R)Ψ(r,R) = [(T̂N(R)+ T̂e(r)+V̂eN(r,R)+V̂NN(R)+V̂ee(r)]Ψ(r,R), (2.1)

where r and R are the coordinates of all electrons and nuclei, respectively. T̂e(r) and
T̂N(R) are the corresponding kinetic energy operators. Besides the electron-electron po-
tential V̂ee(r) and nuclei-nuclei potential V̂NN(R) there is also a term for the interaction
of electrons and nuclei: V̂eN(r,R). While this interaction is not negligible it couples the
differential equations for the nuclei and electrons leaving a computationally infeasible
task. Nevertheless, approximations to equation (2.1) can be applied. Arguing that the
differential operators ∇e and ∇N operate roughly over the same dimensions, the ratio of
kinetic energies and masses of the particles can be estimated by TN

Te
∝ mN

me
. The mass ratio

of protons and electrons is roughly 1836. The ratio is getting larger for heavier atoms.
Following this fact one can argue further, that the electrons move much faster and there-
fore immediately adjust to any change of the nuclei configuration. In this picture R can
be considered as fixed with TN = 0:

Ĥfixed(r;R)Ψ(r;R) = [(T̂e(r)+V̂eN(r;R)+V̂NN(R)+V̂ee(r)]Ψ(r;R). (2.2)

In equation (2.2) the wave function Ψ(r;R) ≈ Φe(r)ΦN(R) can be separated. Inserting
this into equation (2.1) delivers

ΦeT̂NΦN +ΦN T̂eΦe +ΦNV̂eeΦe +ΦNV̂NNΦe +ΦNV̂eNΦe

−

{
∑
N

1
2mN

(2∇NΦe∇NΦN +ΦN∇
2
NΦe)

}
= EΦeΦN .

(2.3)

In the term in curly brackets the kinetic energy operator of the nuclei acts on the electronic
wave function. Following again the argument that ∇NΦe and ∇eΦe give results of similar
dimension the factor 1

mN
is important. As me/mN � 1, the term is neglected.

The equations for electrons and nuclei are now completely separated and one has derived
the standard equations of the Born-Oppenheimer approximation[2]:

ĤeΦe(r;R) = [T̂e(r)+V̂eN(r;R)+V̂NN(R)+V̂ee(r)]Φe(r;R) = Ee(R)Φe(r;R) (2.4a)

ĤtotΦ(R) = [T̂N(R)+Ee(R)]ΦN(R) = EtotΦN(R) (2.4b)
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2.1 Ab initio quantum mechanics

Within this approximation the nuclei move on a potential energy surface given by the so-
lution of the electronic Schrödinger equation, which is independent of the nuclear masses.
In a general system the separation of electronic and nuclear coordinates introduces a mass-
polarisation term

Ĥmp =−
1

Mtot

(
∑
e

∇e

)2

, (2.5)

where Mtot is the total mass of all the nuclei. Within the Born-Oppenheimer approxima-
tion this term can be neglected following the same argument as before.
So far the problem was restricted to one electronic state and the possibility of coupling of
electronic states was neglected. Assuming that the full set of solutions of the electronic
Schrödinger equation is known. The total wave function can be represented now as

Ψ(r;R) =
∞

∑
i=1

Φni(R)Φi(r;R), (2.6)

where i are the orthonormal eigenstates of the electronic Schrödinger equation. Using
this wave function terms of the kind 〈Φi|∇2|Φ j〉 may occur. These can be neglected as
before in the case of the nuclear momentum operator, leaving the Born-Oppenheimer
approximation intact. In the case of the electronic momentum operator, this can not be
done ad-hoc and the mass-polarisation has to be included. The total Schrödinger equation
takes the form

∞

∑
i=1

[T̂N + Ĥe + Ĥmp]ΦniΦi = Etot

∞

∑
i=1

ΦniΦi

...

∞

∑
i=1

∑
N
− 1

2mN
(Φi∇

2
nΦni +2∇nΦi∇nΦni+

Φni∇
2
nΦi)+ΦniEiΦi +ΦniĤmpΦi

= Etot

∞

∑
i=1

ΦniΦi

(2.7)

Multiplying this equation with Φ∗j and integrating over the electronic coordinates results
in

T̂nΦn j +E jΦn j +
∞

∑
i=1

 ∑
N
− 1

2mN
(2
〈
Φ j
∣∣∇n |Φi〉∇nΦni+〈

Φ j
∣∣∇2

n |Φi〉Φni)+
〈
Φ j
∣∣ Ĥmp |Φi〉Φni

= EtotΦn j (2.8)

The nuclear kinetic energy and electronic energy terms are the same as before. The first
and second term in brackets are the first- and second-order non-adiabatic coupling ele-
ments.
In the adiabatic approximation, the total wave function is restricted to one electronic
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2 Basic Physics and Methods

surface and the off-diagonal coupling elements are zero. The diagonal first-order non-
adiabatic coupling constants are zero, except for spatially degenerate wave functions. In
the adiabatic approximation also the mass-polarisation can be neglected leaving(

T̂n +E j +∑
N
− 1

2mN

〈
Φ j
∣∣∇2

n
∣∣Φ j
〉)

Φn j = EtotΦn j. (2.9)

The difference between the adiabatic and the Born-Oppenheimer approximation is now
the diagonal second-order correction. It is roughly mN

me
smaller than Ee, as the other ne-

glected terms. Therefore, it is reasonable to stay with the Born-Oppenheimer approxima-
tion for most cases.
Although both approximations are very reliable for most cases they break down where
two or more solutions of the electronic Schrödinger equation have similar energies.

2.1.2 Self-Consistent Field Hartree-Fock

In order to solve the electronic Schrödinger equation for a specific system the form of
the electronic potential has to be known and a technique to solve the equation has to be
chosen.
An electron can be considered a point-like particle or be described by a probability dis-
tribution, depending on the purpose and the system under consideration. In any case the
Pauli principle has to be taken into account. The principle states that fermions are in-
distinguishable objects which are described by antisymmetric wave functions. In other
words, electrons with identical quantum numbers tend to spatially avoid each other.
The electronic Hamiltonian given by equation (2.4a) can be written as the sum of one-
electron and two-electron terms.

Ĥcore
1 = T̂e +V̂eN +V̂NN = ∑

i
ĥi +V̂NN ,with ĥi =−

1
2

∇
2
i +∑

n

Zn

rin
(2.10)

Ĥ2 = V̂ee = ∑
i> j

1
ri j

(2.11)

These equations are written in atomic units, which are generally assumed, if not stated
otherwise. Within the Hartree theory the Coulomb interaction between electrons is ap-
proximated by the total charge density. It has to be mentioned, that after calculating
the total charge density, the density of electron i has to be subtracted when calculating the
two-electron integrals for this electron. The electrons are not explicitly coupled and there-
fore the wave function can be written as a product of one-electron functions. Therefore,

8



2.1 Ab initio quantum mechanics

the Hartree-Fock theory is an independent particle theory. These functions are generated
by ĥi satisfying

ĥiφ j(xi) = ε jφ j(xi). (2.12)

The φ j are one-electron spin orbital functions, but also orthogonal spatial orbital func-
tions could be used. The issue of orbital functions in ab-initio calculations is covered in
section 2.1.3, here generic definitions are used. Since the total wave function Ψ has to be
antisymmetric for the exchange of electrons it can be written as a Slater determinant as
proposed by Fock [3] and Slater [4]:

Φ =
1√
N!

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φN(1)
φ1(2) φ2(2) · · · φN(2)

...
... . . . ...

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣∣
(2.13)

The electronic energy is written as the solution of a matrix eigenvalue problem and the
matrix elements are integrals. The usage of one-electron building blocks for the wave
function and their orthogonality, does significantly simplify the evaluation of the Hamil-
tonian. The one-electron and two-electron integrals do not depend on the complete wave
function, but just the terms which include these electrons. The one-electron integrals

∑
i
〈Φ| ĥi |Φ〉= ∑

i
〈φi| ĥi |φi〉 (2.14)

are completely separable. In the case of two-electron integrals the 1
ri j

operator prevents
total separation, so that two orbitals are coupled:

〈Φ|V̂ee |Φ〉= ∑
i> j
〈Φ| 1

ri j
|Φ〉 (2.15)

Taking a two-electron system as example, the anti-symmetrised two-electron integral can
be written down easily.

〈φ1(1)φ2(2)|
1

r12
|φ1(1)φ2(2)〉

=
1
2

∫
[φ1(1)φ2(2)−φ1(2)φ2(1)]

1
r12

[φ1(1)φ2(2)−φ1(2)φ2(1)]d1d2

=
∫ 1

2
φ1(1)φ2(2)

1
r12

φ1(1)φ2(2)d1d2−
∫ 1

2
φ1(1)φ2(2)

1
r12

φ1(2)φ2(1)d1d2

−
∫ 1

2
φ1(2)φ2(1)

1
r12

φ1(1)φ2(2)d1d2+
∫ 1

2
φ1(2)φ2(1)

1
r12

φ1(2)φ2(1)d1d2

=
1
2
[〈12|12〉−〈12|21〉−〈21|12〉+ 〈21|21〉] = 〈12|12〉−〈12|21〉= 〈12| |12〉

(2.16)
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2 Basic Physics and Methods

In this notation 〈12|12〉 is a short form of the two-electron integral including the r−1
12

operator and 〈12| |12〉 is a short form of the anti-symmetrised two-electron integral. The
Hartree-Fock energy equation can now be written down as

EHF = 〈Φ| Ĥe |Φ〉= 〈Φ| Ĥcore
1 + Ĥ2 |Φ〉= ∑

i
〈φi| ĥi |φi〉+∑

i> j
〈i j| |i j〉 . (2.17)

Up to now, the wave function was considered generic of form φi(x j) = φi( j), where x

could represent spatial as well as spin functions. Now φ shall be defined as a product of
the spatial function ψ times the spin function, which is denoted α for spin-up and β for
spin down:

φ1(x) = ψ1(r)α and φ2(x) = ψ1(r)β (2.18)

This leads to the following two-electron state notation in one spatial orbital with opposite
spins:

|φ1(1)φ2(2)〉= |ψ1(r1)ψ̄1(r2)〉= |ψ1ψ̄1〉 (2.19)

The integrals have to be determined for this basis, too. The one-electron integral does not
change at all, because the spin function can be integrated easily giving factors of 1 for
each integral. In the apparent basis each spatial orbital is doubled, as it can be occupied
by spin-up and spin-down electrons. There are three distinguishable states: The orbital
is doubly occupied (docc) by two electrons with opposite spin or the orbital is singly
occupied (socc) with an α or β electron.

∑
i
〈Φ| ĥi |Φ〉= 〈ψ1| ĥ1 |ψ1〉+ 〈ψ̄1| ĥ1 |ψ̄1〉+ 〈ψ2| ĥ2 |ψ2〉+ · · ·

= (ψ1| ĥ1 |ψ1)+(ψ1| ĥ1 |ψ1)+(ψ2| ĥ2 |ψ2)+ · · ·

= 2h11 +h22 + · · ·

= 2
docc

∑
i

hii +
socc

∑
i

hii

(2.20)

A new notation is introduced here: 〈ψ̄1| ĥ1 |ψ̄1〉= (ψ1| ĥ1 |ψ1). At the right-hand side the
spin integration has been executed and only the spatial integration is left.
For the inspection of the two-electron integral again a two electron system is shown first
with different spins but identical spatial orbits:

〈φ1φ2|φ1φ2〉= 〈ψ1ψ̄1|ψ1ψ̄1〉= (ψ1ψ1|ψ1ψ1) (2.21)

〈φ1φ2|φ2φ1〉= 〈ψ1ψ̄1|ψ̄1ψ1〉= 0 (2.22)

10



2.1 Ab initio quantum mechanics

The two-electron integral between identical states, also called two-electron expectation
matrix (element), is reduced to the spatial integral immediately, because the spin integral
is not perturbed by the spatial 1

r12
operator. In the case of opposite spin, the spin integral

can not the separated. As in the integral two different states are ”compared”, the integral
is now called two-electron transition matrix (element). In this case the integral has to be
zero, as these spin states are orthogonal. Two-electron systems with parallel spin require
different spatial orbitals.

〈ψ1ψ2| |ψ1ψ2〉= 〈12| |12〉= 〈12|12〉−〈12|21〉= (12|12)− (12|21) = J12−K12 (2.23)

The Coulomb integral Ji j accounts for the classically known Coulomb repulsion of elec-
trons in orbitals i and j. The exchange integral Ki j, however, has no classical equivalent,
nor even a true physical interpretation. The total Hartree-Fock energy equation in molec-
ular orbitals can now be written as sums over N electron terms as

EHF =
Nelec

∑
i

hi +
Nelec

∑
i, j

(
Ji j +Ki j

)
+VNN . (2.24)

The task is now to find a set of molecular orbitals with respect to which the energy is
stationary, or better minimal, for variations of the orbitals. The variational theory delivers
the corresponding tools. As the molecular orbitals must stay orthonormal, the Lagrangian
takes the form

L = E−
Nelec

∑
i j

λi j
(〈

φi|φ j
〉
−δi j

)
. (2.25)

The variational condition forces the variation of the Lagrangian to be zero. The variation
is applied to the energy and the orbitals:

δL = δE−
Nelec

∑
i j

λi j
(〈

δφi|φ j
〉
−
〈
φi|δφ j

〉)
(2.26)

The variation of the energy can be expressed in one-electron and two-electron terms

δE = ∑
i

(
〈δφi| ĥi |φi〉+ 〈φi| ĥi |δφi〉

)
+∑

i j

(
〈δφi| Ĵ j− K̂ j |φi〉+ 〈φi| Ĵ j− K̂ j |δφi〉

)
. (2.27)

If one defines the Fock operator, an effective one-electron operator, as

F̂i = ĥi +∑
j

(
Ĵ j− K̂ j

)
, (2.28)

11



2 Basic Physics and Methods

the variation of the energy can be written shortly as

δE = ∑
i

(
〈δφi| F̂i |φi〉+ 〈φi| F̂i |δφi〉

)
. (2.29)

Accordingly, the variation of the Lagrangian becomes

δL = ∑
i

(
〈δφi| F̂i |φi〉+ 〈φi| F̂i |δφi〉

)
−

Nelec

∑
i j

λi j
(〈

δφi|φ j
〉
+
〈
φi|δφ j

〉)
= ∑

i
〈δφi| F̂i |φi〉−

Nelec

∑
i j

λi j
〈
δφi|φ j

〉
+∑

i
〈δφi| F̂i |φi〉∗−

Nelec

∑
i j

λi j
〈
δφi|φ j

〉∗
= 0.

(2.30)

As the variation of either 〈δφ| or its complex conjugate has to make the variation of the
Lagrangian zero, either the first two terms must cancel, or the last two. If one subtracts
the complex conjugates of the third and fourth term one gets

∑
i j

(
λi j−λ

∗
ji
)〈

δφi|φ j
〉
= 0. (2.31)

This means that the Lagrange multipliers are part of a Hermitian matrix. The Hartree-
Fock equations now take the form

F̂iφi = ∑
j

λi jφ j. (2.32)

Physically this equation is sufficient. Yet, for the computation it is advantageous to intro-
duce a unitary transformation of the molecular orbitals such that the λi j are diagonal. In
this canonical orbitals, φ′, the Hartree-Fock equations take the form of pseudo-eigenvalues
equations

F̂iφ
′
i = εiφ

′
i. (2.33)

The final Hartree-Fock energy equation can be written as the sum of Fock effective one-
electron energies and the two Coulomb interaction terms J and K:

E = ∑
i

εi +
1
2 ∑

i j

(
Ji j−Ki j

)
+VNN , (2.34)

with
εi = hi +∑

j

(
Ji j−Ki j

)
. (2.35)

Unfortunately, the value of one Fock integral can only be obtained, if the values of all
other Fock integrals are known. The solution for this is an iterative self-consistent field
(SCF) approach, as illustrated in figure 2.1. Starting from an initial guess, usually the

12



2.1 Ab initio quantum mechanics

Figure 2.1: Illustration of the Self-consistent field (SCF) cycle.

atomic orbitals, the two-electron integrals are calculated and the Fock matrices are solved.
The resulting molecular orbitals/electron densities are taken as input for the next iteration.
Two-electron integrals and Fock matrices are evaluated in this cycle, until convergence is
reached. This iterative procedure is usually converging fast to the correct Hartree-Fock
energy. Nevertheless, convergence or convergence to a minimum are not guaranteed.
The molecular orbital functions are optimised during the SCF cycles, but their functional

form was not discussed up to now. Usually these functions are expanded in a set of atomic
orbitals, forming a linear combination of atomic orbitals (LCAO)

φi =
Mbasis

∑
α

Cαiχα, (2.36)

where Mbasis is the number of atomic basis functions χα and Cαi are the coefficients of the
expansion. The Fock equations in atomic orbitals is written

F̂i

Mbasis

∑
α

Cαiχα = εi

Mbasis

∑
α

Cαiχα. (2.37)

Multiplying left-hand-side with the basis functions and executing the integrals one ends
with the Roothaan-Hall equations

¯̄F ¯̄C = ¯̄S ¯̄C~ε, (2.38)

13



2 Basic Physics and Methods

which are the Hartree-Fock equations in atomic orbitals. The orbital overlap matrix is
defined as Sαβ =

〈
χα|χβ

〉
and the Fock matrix as

Fαβ = 〈χα| F̂
∣∣χβ

〉
= 〈χα| ĥ

∣∣χβ

〉
+

occ.MO

∑
j
〈χα| Ĵ j− K̂ j

∣∣χβ

〉
= 〈χα| ĥ

∣∣χβ

〉
+

Mbasis

∑
γδ

Dγδ

(〈
χαχγ

∣∣ ĝ ∣∣χβχδ

〉
−
〈
χαχγ

∣∣ ĝ ∣∣χδχβ

〉)
,

(2.39)

with gi j =
1
|~ri−~r j| and Dγδ = ∑

occ.MO
j Cγ jCδ j, where occ.MO are the occupied molecular

orbitals. The energy equation in atomic orbitals, which can be realised in computer pro-
grams, is

E =
Mbasis

∑
αβ

Dαβhαβ +
1
2

Mbasis

∑
αβγδ

(
DαβDγδ−DαδDγβ

〈
χαχγ

∣∣~g ∣∣χβχδ

〉)
+VNN . (2.40)

2.1.3 Basis functions

One intrinsic approximation of all ab initio methods is the expansion of an unknown,
like the molecular orbitals (MO), in basis functions. If the expansion was infinite, this
is no approximation, but in reality only truncated expansions can be calculated. As de-
scribed in the previous section, the MO orbitals are unknown functions, described in the
n-dimensional space spanned by the basis functions. Ab initio methods usually scale at
least with the fourth power of the number of basis functions. This strongly limits realistic
sizes of basis sets. Therefore it is very important to choose functions which converge fast
and are also easy to calculate. This is important as one- and two electron integrals are
calculated using these functions, which can be very time consuming.
The optimal basis type depends on the problem at hand. For small molecular systems
Gaussian type basis sets[5] are nowadays the standard general purpose basis sets. These
bases can be written in polar coordinates

χζ,n,l,m(r,θ,ϕ) = NYl,m(θ,ϕ)r2n−2−le−ζr2
(2.41)

or in Cartesian coordinates

χζ,lx,ly,lz(x,y,z) = Nxlxylyzlze−ζr2
. (2.42)

The Yl,m are spherical harmonic functions, N is a normalisation constant. The parameter
ζ is optimised in the basis sets to yield optimal results.
Basis sets are classified according to their size. The smallest possible basis set has one
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2.1 Ab initio quantum mechanics

function for each electron. For example, this would be one s orbital for hydrogen and
two s and one p orbital for carbon. The next improvement is the doubling of all orbitals.
Such a basis is called Double Zeta (DZ) type. Using more than doubling one obtains
Triple Zeta (TZ), Quadruple Zeta (QZ), Quintuple Zeta (5Z) basis sets, and so on. The
core electrons are relatively unimportant for the chemical behaviour. Therefore, valuable
functions can be saved if these are not included into the doubling scheme. Such basis sets
are called Valence X Zeta (VXZ, X = D, T, . . .). Another effect, which has to be taken into
account is polarisation. The chemical bonding between two atoms changes the electron
density distribution. Assuming that s electrons are responsible for a bonding, then these
s orbitals can not describe the different electron densities along and perpendicular to the
bond axis. This polarisation can be described by a p orbital. Further d orbitals describe
the polarisation for p electrons and so forth.
A popular line of basis sets are the correlation consistent (polarised) basis sets (cc-pVxZ)
by Dunning and co-workers[6, 7]. These sets are tailored such that the functions which
add approximately the same amount of correlation energy are included in one step. Im-
provements to these bases can be done by adding either tight and/or diffuse functions.
Tight functions have large exponents and help to take the core-core and core-valence
correlations into account. These bases are abbreviated as cc-pCVXZ. Diffuse functions
have a small exponent and are important for the description of loosely bound electrons
or whenever tails of the wave functions are important. These bases are called augmented
(aug-cc-pVXZ).

2.1.4 Post-Hartree-Fock methods

The Hartree-Fock (HF) self-consistent field method does not describe chemical bondings
correctly, as described in section 2.1.2. A variety of treatments have been developed
over the decades, which aim at the recovery of the correlation energy. The HF method
determines the lowest energy one-determinant trial wave function. This section focuses
on methods, which contain more than one determinant. The trial wave functions are then
written as

Ψ = a0ΦHF +∑
i=1

aiΦi. (2.43)

The different post-HF methods are distinguished by how they derive the ai. The three most
common methods are Møller-Plesset (MP) perturbation theory, configuration interaction
(CI) and coupled cluster (CC). The latter two methods are described in the following, as
these are used in this work.
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2 Basic Physics and Methods

Figure 2.2: Excited Slater determinants obtained from a Hartree-Fock reference.

2.1.4.1 Excited Slater determinants

If the chosen basis set is not minimal, one can distinguish between occupied and unoccu-
pied molecular orbitals (MO). Orbitals which are not occupied in Hartree-Fock are called
virtual orbitals. The additional Slater determinants in equation (2.43) are obtained by
replacing one or more occupied orbitals by virtual ones. Depending on the number of
replaced MO the determined are referred to as Singles (S), Doubles (D), Triples (T) etc.
Figure 2.2 shows how these determinants are generated. On the left side there is spin free

(singlet) Hartree-Fock reference occupation with three closed orbitals. A single excitation
can come from any of the occupied orbitals in any virtual ones. The second S-type deter-
minant is not spin free (triplet), as the excited orbital switched its spin. Double excitations
can come from one or two orbitals, there are no restrictions if all types of excitations are
allowed.

2.1.4.2 Configuration Interaction

The Configuration Interaction (CI) method is the oldest and one of the simplest ap-
proaches for post-HF calculations. The CI wave function is linearly expanded in the
(excited) Slater determinants

ΨCI = a0ΦHF +∑
S

aSΦS +∑
D

aDΦD +∑
T

aT ΦT + . . .= ∑
i=0

aiΦi. (2.44)

These determinants are obtained from a previous HF run. The molecular orbitals (MO)
are fixed and not further optimised. The CI energy can be obtained with variational ap-
proaches. Using Lagrange multipliers the problem can be written as

L = 〈ΨCI| Ĥ |ΨCI〉−λ(〈ΨCI|ΨCI〉−1) . (2.45)
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2.1 Ab initio quantum mechanics

If one inserts the definition of the CI wave function as expansion in Slater determinants,
one gets an equation of the energy eigenvalues

〈ΨCI| Ĥ |ΨCI〉= ∑
i=0

∑
j=0

aia j 〈Φi| Ĥ
∣∣Φ j
〉
= ∑

i=0
a2

i Ei +∑
i=0

∑
j 6=i

aia j 〈Φi| Ĥ
∣∣Φ j
〉

(2.46)

and an equation for the normalisation constraint

〈ΨCI|ΨCI〉= ∑
i=0

∑
j=0

aia j
〈
Φi|Φ j

〉
= ∑

i=0
a2

i . (2.47)

If the wave function is expanded, like in equation (2.46), the problem takes the form of
matrix equations with Hi j = 〈Ψi| Ĥ

∣∣Ψ j
〉
. The diagonal elements can be calculated di-

rectly, as these are the eigenenergies of the Slater determinants. The variational approach
is to restrict the derivative of the Lagrangian with respect to the ai equal to zero:

∂L
∂ai

= 2∑
j

a jHi j−2λai = 0 (2.48)

This can be further simplified to

ai(Ei−λ)+ ∑
j 6=0

a jHi j = 0 (2.49)

for each ai. The next step is to transform the equation into a form, where only one- and
two-electron integrals are present, like in section 2.1.2.
A remark has to be given about the Slater determinants. The MO are spin-orbitals, that
means that excited Slater determinants have a spin. There are α and β spin-MOs, depend-
ing on whether they have spin up or spin down. Not all excited Slater determinant fulfil
the condition of being eigenfunction of Ŝ2. To circumvent this, linear combinations of ex-
cited Slater determinants with the same spatial occupation, but opposite spin function are
formed. These are called Configurational State Functions (CSF), as the spin is separated
out.
Now, the procedure is similar to the Hartree-Fock case. All matrix elements between
CSFs which differ by more than two MO are zero, as there are only one- and two-electron
integrals and the functions are orthogonal. Also, matrix elements between the HF ref-
erence CSF and Singles CSFs are zero, due to Brillouin’s theorem. There are ways to
reduce the number of integrals further by symmetry and spin considerations.
The number of terms in the CI expansion in equation 2.44 is directly given by the size
of the basis set. A Full CI, where the expansion is complete, can only be used for small
molecules (meaning few electrons) and small basis sets. For real applications the expan-
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2 Basic Physics and Methods

sion must be truncated. This is usually done at the Doubles level (CISD), which scales
with the number of basis functions like M6

basis. All truncated CIs lack two very important
features: Size Consistency and Size Extensivity. Size consistent means that the summed
energy of two or more compounds obtained from independent calculations is the same
as the energy from one calculation in which all compounds are present, but they are sep-
arated. Far away in this context is a distance longer than the interaction distance, like
100a0. A simple example would be a D-type excitation in two H2 molecules. These
excitations can act on one molecule or on one orbital from each molecule, also for large
distances. Multiplying the result for one H2 by two, would generate results like CISDTQ
for 2 H2. This example leads to the second short-coming, the lack of size extensivity.
Truncated CI methods recover less and less correlation energy with increasing number of
(interacting) electrons in the system.

2.1.4.3 Coupled Cluster theory

The Coupled Cluster (CC) theory[8, 9] is an alternative approach, which is always size
consistent and size extensive. The idea is to include all corrections of a given type (like
Doubles), up to an infinite order in perturbation theory. The Coupled Cluster theory has
some similarities with CI, and Coupled Cluster and Full CI are equivalent in the limit of
completeness. In CI the expansion of the wave function was directly written down, in
Coupled Cluster one first defines an excitation operator

T̂ = T̂1 + T̂2 + T̂3 + . . .+ T̂Nelec (2.50)

as a sum of excitation operators T̂i. Each T̂i generates all i-times excited Slater deter-
minants from the Hartree-Fock reference wave function. For Singles and Doubles these
are

T̂1Φ0 =
occ

∑
i

vir

∑
a

ta
i Φ

a
i (2.51)

and

T̂2Φ0 =
occ

∑
i< j

vir

∑
a<b

tab
i j Φ

ab
i j . (2.52)

Orbitals which are occupied in the reference functions are counted with i, j, . . . and the vir-
tual ones with a,b, . . . . The expansion coefficients t are conventionally called amplitudes.
With these operators the CI wave function (2.44) could be written as

ΨCI =
(
1̂+ T̂

)
Φ0. (2.53)
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2.1 Ab initio quantum mechanics

The CC wave functions are generated in a more sophisticated way:

ΨCC = eT̂
Φ0 =

(
1̂+ T̂ +

1
2

T̂ 2 +
1
6

T̂ 3 + . . .

)
Φ0 (2.54)

If one enters the expansion of the excitation operator in the expansion of the exponential,
the terms are ordered according to their total excitation level:

eT̂ = 1+ T̂1 +

(
T̂2 +

1
2

T̂ 2
1

)
+

(
T̂3 + T̂2T̂1 +

1
6

T̂ 3
1

)
+ . . . (2.55)

Doubles can be connected, T̂2, or disconnected, T̂ 2
1 . This corresponds to the simultaneous

excitation of two interacting electrons and the excitation of two non-interacting electrons
respectively. At all excitation levels also products of lower levels are included. This en-
sures the size consistency of the Coupled Cluster equations.
As the Schrödinger equation ĤeT̂ Φ0 = EeT̂ Φ0 can not conveniently be solved by varia-
tional techniques, it is usually projected onto the reference wave function:

〈Φ0| ĤeT̂ |Φ0〉= ECC

〈
Φ0|eT̂

Φ0

〉
(2.56)

The integral on the right-hand side is unity, as the wave functions are orthogonal. In this
equation all but T̂1 and T̂2 vanish, as the Hamiltonian only contains one- and two-electron
operators. After inserting the expansion of the excitation operator and some algebra one
obtains an equation for the Coupled Cluster energy in terms of the Singles and Doubles
amplitudes and two-electron integrals:

ECC = E0 +
occ

∑
i< j

vir

∑
a<b

(
tab
i j + ta

i tb
j − tb

i ta
j

)(〈
φiφ j|φaφb

〉
−
〈
φiφ j|φbφa

〉)
(2.57)

Equations for the amplitudes can be formed by projecting the Schrödinger equation onto
the spaces of the excited determinants:

〈Φe
m|e−T̂ ĤeT̂ |Φ0〉= 0〈

Φ
e f
mn

∣∣∣e−T̂ ĤeT̂ |Φ0〉= 0

...

(2.58)

The explicit equations are lengthy and therefore not written down here.
Truncated CCs are generated by truncating the expansion of T̂ , while the expansion of the
exponential is complete with the truncated T̂ . This causes higher excitations to occur in
the expansion than indicated by the truncation level, because of the product/disconnected
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excitations. CCSD scales with M6
basis, CCSDT with M8

basis. The latter one is usually not
applicable. A broadly used variation is CCSD(T), where first a CCSD calculation is per-
formed and the Triples contribution is obtained by perturbation theory. This level scales
with M7

basis.
The Coupled Cluster theory is superior in accuracy compared with configuration interac-
tion of the same level. There is, however, a crucial drawback. The standard CC methods
are based on a single HF reference determinant. If the HF wave function is not a good
approximation of the real wave function, the Coupled Cluster will loose its reliability sim-
ilar to perturbation theory. As the Singles mimic an orbital relaxation, they can be used
to measure the multi-reference character of the wave function. A popular method is the
T1-diagnostic[10] for CCSD wave functions:

T1 =
1√

Nelec
|~t1|. (2.59)

The norm of the Single amplitudes vector normalised by the square root of the num-
ber of the electrons is not a strict measure of the quality of CC. Experience shows, that
CCSD(T) is expected to give results near the Full CI limit for T1 < 0.02. If T1 is larger,
a multi-reference method should be used. Coupled Cluster is usually reliable around the
equilibrium of the molecule, but it is going to fail if one approaches dissociation. Due to
the way how the Coupled Cluster state is constructed, only the lowest eigenstate for each
symmetry can be calculated. There are also multi-reference CC methods and methods
which allow excited states, like equation-of-motion coupled cluster (EOM-CC), but these
are limited, e.g. to singlet states, and not widely used.

2.1.4.4 Multi-reference techniques

As discussed, the Hartree-Fock wave function is not always a good trial wave function.
This is the case in the (pre-)dissociation regions, where the actual electronic state is a
mixture of the bound and dissociated molecule. Other examples are avoided crossing and
other phenomena, where two electronic states have similar eigenvalues. Naturally, the
Hartree-Fock wave function is not suited for excited electronic state calculations.
In order to overcome this problem, so-called multi-reference (MR) methods are used.
The most common methods are based on CI theory, rather than coupled cluster. Although
CC offers superior qualities, as discussed in 2.1.4.3, MR-CC methods are complicated to
derive and to implement. Therefore, they are not widely used up to now and deliver only
limited applicability.
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Multi-Configuration Self Consistent Field. The simplest multi-reference method,
is the Multi-Configuration Self-Consistent Field (MCSCF) method[11, 12]. It is, to some
extent, a CI method, where also the molecular orbitals are optimised. Starting from
Hartree-Fock orbitals, the orbitals are optimised self-consistently in CI calculations. This
is a very time-consuming procedure if all electrons and orbitals are included. It is much
more efficient to invest into expanding a standard CI to higher excitations. Therefore,
MCSCF is usually only used for qualitative calculations, with restricted sets of excita-
tions. The most common approach is to divide the molecular basis in active and inactive
orbitals. Inactive orbitals are either fully occupied or empty. Active orbitals are allowed to
have any occupation number (0,1,2). This Complete Active Space Self-Consistent Field
(CASSCF) method is further classified by the number of electrons n which are distributed
into m active orbitals, [n,m]-CASSCF. This method is valuable for physical studies of the
electron density, orbital occupations etc. It also offers analytical solutions for diabatic
couplings and spin-orbit couplings, which are not available in CI or CC implementations.
The MCSCF method has a major disadvantage. As it is based on an SCF optimisation,
there is no guaranty of convergence to a minimum, or to the correct minimum. The
Hartree-Fock methods has the same limitations, but advanced methods were developed,
that help the convergence for one Slater determinant. For MCSCF convergence problems
are more common.

Multi-Reference Configuration Interaction. The Multi-Reference Configuration
Interaction (MRCI) is the most advanced commonly used multi-reference method[13, 14].
The standard CI uses a wave function generated by excitations from a reference Hartree-
Fock wave function. MRCI uses all the Configuration State Functions (CSF) from a MC-
SCF calculation. MRCI is therefore able to calculate energies for the whole configuration
space and many excited states[15]. As the number of CSFs can easily reach millions or
hundreds of millions, truncation methods are used. These remove CSFs internally, which
are not important, according to some criteria. Still, the computational costs of a MR-CISD
calculation are much larger than for a single reference CCSD(T) calculation.

2.2 Potential energy surface

Within the limits of the Born-Oppenheimer approximation (see 2.1.1), the motion of the
nuclei in a molecular complex is taking place in an effective electronic potential. This
potential is the solution of the electronic Schrödinger equation including nuclei-nuclei
and electron-nuclei interaction with the coordinates of the nuclei as parameters. These
potentials are (3N− 6)-dimensional, where N is the number of nuclei in the molecular
complex. In the case of linear configurations the number of degrees of freedom is 3N−5.
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The numerical determination/exploration and representation of high dimensional potential
energy surfaces (PES) is a challenging task and subject of ongoing research.
This work uses an approach developed by B.J. Braams[16, 17]. It aims at a general
description of the potential, valid for many different molecules but still taking advantage
of inherent molecular symmetry properties.

2.2.1 Internuclear distance coordinates

For the description of potential energy surfaces the choice of coordinates is very crucial.
The set of coordinates should adapt the symmetry and/or geometry of the system surveyed
to reduce dimensionality. For the PES we do not have to choose coordinates, where the
Hamiltonian is represented efficiently, but only the potential itself, suggesting some kind
of affine/relative coordinates. The coordinate system should be a good choice for all
the configuration space under consideration and usually a minimal set of coordinates is
preferable.
For potentials used for spectroscopy, often called force fields in this context, symmetry
adapted internal coordinates are a common choice. They present the most natural choice
of a minimal set of coordinates accounting for the symmetry of the molecule as well as for
the symmetry of the fundamental molecular motions, namely the normal mode vectors.
While this is sufficient for most spectroscopic cases, these coordinates become inappro-
priate for large amplitude motions and reactive behaviours, since every molecule has a
different set of symmetry-adapted internal coordinates.
Internuclear distances coordinates present a far more general and flexible alternative. A
molecular system of N atoms has (N−1)N

2 unique internuclear distances d(i, j) = d( j, i) =

‖~ri−~r j ‖, where i and j are different atoms and ~r are their coordinates in a Cartesian
coordinate system. Only 3N−6 of these coordinates are independent, because the repre-
sentation is invariant to translation or rotation of the molecule. The quadratic increase of
coordinates restricts the application to small- and medium-sized systems. Nevertheless, it
is a favourable choice, where it is computationally treatable, because it allows the poten-
tial to be formulated invariant against exchange of like nuclei. In addition the coordinate
system is identical for any configuration of the N atom system, especially the fragment
(meaning reactant and product) and complex region for a reactive system.

2.2.2 Potential representation

The invariant theory offers the generators for non-orthogonal polynomials for N-atom
systems. While it is possible to use these polynomials directly, further optimizations can
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2.2 Potential energy surface

be done.
For potentials used only for spectroscopic purposes it is sufficient to stay with one poly-
nomial expansion. In the case of reactive surfaces a many-body expansion, also called
cluster expansion, is beneficial. For a system consisting of m atoms of type X and n atoms
of species Y the expansion has the form

V =VX +VY +VX2 +VY2 +VXY + . . .+VXmYn. (2.60)

This form allows a better description of the local potential of the fragments and dissocia-
tion energies. Also, it reduces the calculation time for the PES when only fragment data is
asked for. Which terms of the expansion are included is user-defined. When a many-body
expansion is used, each function is meant to govern certain regions in the configuration
space. The smooth switching between the potential terms is guaranteed by a damping
function t0. First, an average internuclear distance is defined as

d =

√√√√ 1
(N−1)N

N

∑
j=2

j−1

∑
i=1

(r2(i, j)+ r2( j, i)) =

√√√√ 2
(N−1)N

N

∑
j=2

j−1

∑
i=1

r2(i, j). (2.61)

The damping function is defined as

t0 = max
(

0,
(1−d/a)k

dl

)
, (2.62)

where k and l are integer parameters, usually taken as 3 or 5 and 0 or 1, respectively. If d

is larger than the cut-off length a, which is usually chosen as a = 8a0, the corresponding
term will not contribute to the total potential. Figure 2.3 shows the behaviour of the damp-
ing function for typical combinations of parameters. While the choice of k only slightly
influences the slope, the functions with l = 1 decrease much stronger and therefore effec-
tively remove the corresponding term much earlier from the complete potential.
The general form of the potential contributions is

VXmYn = ∑
i1<...<im∈′X ′

∑
j1<...< jn∈′Y ′

fXmYn(ri1i2, ..,rim−1im,ri1 j1, ...,rim jn,r j1 j2, ...,r jn−1 jn),

(2.63)
where

f = p(y) · t0, with y = e−r/λ. (2.64)

The polynomial p is now expressed in terms of Morse-like variables. If there is more
than one possibility to produce a certain fragment from the complete molecular system,
functions f from all these permutations have to be included, as indicated by (2.63). For
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Figure 2.3: Damping function according to (2.62) with a = 8a0 with distances in atomic
units.

example, having a CH2 molecule, there are two combinations to form a CH fragment. The
one-body terms are simply the product of the atomic energy times the number of atoms
of this species in the system: VX = EX ·nX .

2.2.3 Fitting

The potential is fitted by computing the minimum-norm solution to a real linear least-
squares problem using the Lapack DGELSX1 routine. It minimizes ||A ∗X −B||, where
A is a nb× n matrix with nb being the number of unknowns and n the number of con-
figurations used for the least-squares system. B is the vector containing the n calculated
potential values and X is the solution vector containing the nb coefficients of the polyno-
mial.
In the fitting process itself all regions are equally weighted, but in some applications not
always all regions of the configuration space are equally important. For example, wave
functions usually show higher sensitivity to low energy regions of the potential. In strictly
bounded cases their expectation value should be zero for higher energy regions. There-
fore, a weighting according to the energy of a configuration is justified. The weighting

1See http://www.netlib.org/lapack/double/dgelsx.f

24



2.2 Potential energy surface
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Figure 2.4: Weight according to (2.65) for different weight parameters as a function of
relative energy above the global minimum. The energy is given in atomic units.

function w(i) of the i-th’s configuration is defined as

w(i) =
dw1

dw1 +Ei−Emin
· dw2

dw2 +Ei−Emin
, (2.65)

where dw1 and dw2 are the weighting parameters and Emin is the lowest energy of the
set. Finding appropriate parameters is entirely empirical. The standard choice is dw1 =

0.1hartree and dw2 = 1.0hartree. As shown in figure 2.4 among other choices, this combi-
nation gives strong weight for the low energy region only, but contains reasonable weight
for configurations up to ≈ 0.5hartree. Such a compromise gives rise to sufficient accu-
racy around the global minimum, but includes also the energy scales typical for reaction
paths and other minima. In the case of high energy reaction paths this choice has to be
adjusted. A test with the alternative set dw1 = 0.05hartree and dw2 = 0.75hartree showed
no significant improvement for the spectroscopic properties of the methane PES.
The matrix A is filled as A′(i, j) = w(i) · f (i, j) and B is written as B(i) = w(i) ·(Ei−Emin).
The entries in A′ can differ by many orders of magnitude, causing an ill conditioning of
the numerical problem. The matrix is normalized row-wise A(∗, j) = A′(∗, j)/s( j) with

s( j) =
√

1
n ∑i A′(i, j)2 to circumvent this problem. The coefficient vector is normalized in

the same manner after applying the DGELSX routine: X ′( j) = X( j)/s( j). It appears that
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2 Basic Physics and Methods

despite the measures taken, an ill-conditioning of the system can be found when going to
higher order polynomials, like 9’th order in the case of methane.

2.2.4 Dipole moment surface

The presented routines are adjusted for the construction of dipole moment surfaces (DMS)
as well. The dipole moment is a vector property and may not directly be expressed in
terms of polynomials over internuclear distance coordinates. Therefore, the dipole mo-
ment is internally defined as the product of the Cartesian coordinates and the effective
atomic charge of the system. With this the same set of invariants as for the PES can be
used for the DMS. In the case of the PES for each configuration one vector with length nb

is used to fill the coefficient matrix A. In the case of the DMS a matrix M with dimensions
N×nb contains the polynomials. The coefficient matrix is filled with a 4×nb matrix for
each configuration. Three rows contain the product of the Cartesian coordinates with M

having the dipole moment components as right-hand side. The fourth row contains the
sum over all nuclei of each term of the polynomials having the right-hand side set to zero.
This ensures neutrality of the system. This DMS of a certain degree includes significant
more coefficients than a PES. Fortunately, dipole moment surfaces are less complex and
can be handled with polynomials of lower order.

2.3 Lagrange-Mesh Method

The analytical solution of the one-dimensional Schrödinger equation is a computation-
ally difficult task. Therefore, methods for approximate solutions have been developed for
many decades. Many of them use mesh methods to replace the analytical integral by nu-
merical quadrature. The following introduction is based on an article of Baye[18], which
gives a good introduction to this topic.
Harris et al.[19] first introduced a simple approximate way to calculate potential matrix
elements by using values of the potential at discrete values of the coordinate, which was
later linked with the Gauss quadrature by Dickinson and Certain[20]. Lill et al.[21] and
Light et al.[22] simplified this idea into a method known as the discrete-variable rep-
resentation (DVR). In this approach one works directly with representations for which
the approximate potential matrix is diagonal. The non-diagonal kinetic-energy matrix is
calculated by transformations from another representation. Both representations are re-
lated by a Gauss quadrature formula. This method was developed further over the years
and was also expanded to multi-dimensional systems. Another path was followed by
Schwartz[23], who constructed global interpolation functions which vanish at all but one
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2.3 Lagrange-Mesh Method

mesh point. He showed that such functions naturally lead to mesh equations when a
Gauss quadrature is employed. The concept of a Lagrangian basis, which is used in this
work, was introduced by Baye and Heenen[24] in 1986. The indefinitely differentiable
basis functions are very similar to Schwartz’s interpolation functions but, in addition, the
basis is required to be orthogonal. This requirement introduces strict conditions on pos-
sible meshes. It allows us to interpret the mesh equations as an approximate variational
calculation involving a basis of square-integrable functions. The Lagrange-mesh method
became applicable to realistic problems after Vincke et al.[25] proposed the idea of regu-
larisation in order to eliminate singularities which are not compatible with the conditions
of accuracy of the Gauss approximation.
As mentioned before the Lagrange-mesh method has strict conditions for basis functions.
For the introduction of this method one starts with a set of N indefinitely differentiable
basis functions φk(x) which satisfy the orthonormality conditions

〈ϕk|ϕl〉=
∫ b

a
ϕ
∗
k(x)ϕl(x) = δkl (2.66)

over a given interval [a,b] of x values. The square root of the normalisation factors are
included in the definition of the ϕk(x). For this basis N mesh points xi are selected in the
interval. Each mesh point is given a weight

λi =

[
N

∑
k=1
|ϕk(xi)|2

]−1

. (2.67)

These mesh points and corresponding weights define an approximate Gauss type quadra-
ture rule ∫ b

a
g(x)dx≈

N

∑
i=1

λig(xi). (2.68)

The quality of this approximate quadrature rule depends on the choice of the mesh points
xi. If chosen properly, as will be shown, the quadrature can be made exact for any
g(x) = ϕ∗k(x)ϕl(x). It is then expected to be a good approximate quadrature rule for all
indefinitely differentiable functions g(x).
Baye defined another set of N basis functions fi(x), which are build from the former:

fi(x) = λ
1/2
i

N

∑
k=1

ϕ
∗
k(xi)ϕk(x). (2.69)

These functions satisfy the orthogonality relations

〈
fi| f j

〉
= λ

1/2
j f ∗i (x j) = λ

1/2
i f ∗j (xi). (2.70)
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2 Basic Physics and Methods

This equation relates the scalar product of f , a global property defined over the whole
interval, to the value of f at mesh points, which are a local property of the basis functions.
The functions fi(x), as defined in equation (2.69), are called Lagrange functions if they
satisfy the Lagrange conditions

fi(x j) = λ
−1/2
i δi j. (2.71)

If inserted into equation (2.70) this directly provides the orthonormality relation

〈
fi| f j

〉
= δi j (2.72)

for these basis functions. This is the condition, that the approximate Gauss quadrature
rule (2.68) is exact for any product fi(x) f j(x) or ϕk(x)ϕl(x).
If one applies the Lagrange and orthonormality conditions to the definition of the basis
functions fi in equation (2.69) this yields N(N− 1)/2 conditions for the N mesh points
xi. For N ≥ 4 the number of conditions is larger than N. For all real applications N is
larger than four. Therefore, no Lagrange meshes need to exist for any set of indefinitely
differentiable basis functions. If one combines equations (2.67) and (2.69) under the
conditions above, one finds

N

∑
k=1

ϕ
∗
k(xi)ϕk(x j) = λ

−1
i δi j. (2.73)

This equation is automatically satisfied, if the Gauss quadrature rule (2.68) is exact for
〈ϕk|ϕl〉. If these conditions are true one has

N

∑
i=1

λiϕ
∗
k(xi)ϕl(xi) = δkl. (2.74)

This implies the matrix with elements λ
1/2
i ϕk(xi) is unitary and that equation (2.73) is

satisfied[20, 22]. Lagrange functions always exist when some Gauss-like approximation
is exact for 〈ϕk|ϕl〉.
The Lagrange functions provide a variational basis for the study of Hamiltonians of the
form

H =− d2

dx2 +V (x) (2.75)

for some given boundary conditions. The wave function is expanded as

Ψ(x) =
N

∑
i=1

λ
1/2
i Ψ(xi) fi(x). (2.76)
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2.4 Recap

If the variational basis is large enough, the variational coefficients Ψ(xi) are accurate
approximate values of the wave function at the mesh points.
The matrix elements of the kinetic energy operator T =−d2/dx2 are written as

Ti j = 〈 fi|T
∣∣ f j
〉
, (2.77)

while those of the potential V(x) are approximated as

Vi j = 〈 fi|V
∣∣ f j
〉
≈V (xi)δi j. (2.78)

With this, the variational system for the Schrödinger equation is

N

∑
j=1

{
Ti j +V (xi)δi j−Eδi j

}
λ

1/2
j Ψ(x j) = 0. (2.79)

This equation has the usual form of mesh equations, as obtained, for example, in a finite
difference method. However, these equations are obtained from a variational approach
and are expected to be much more accurate for a given number of points. They provide
not only energies and values of the wave function at mesh points, but also values of the
approximate wave function over the whole interval, if desired. These equations are very
simple to generate as they do not require any analytical integration.

2.4 Recap

In this chapter the basic methods used in this work were introduced. In the following these
methods are applied to applications of increasing complexity. Different ab initio methods
are major tools used in the following. The polynomial fit ansatz for the potential energy
surfaces will be used for spectroscopic and reactive studies of hydrocarbons. As a next
step multiple electronic states for MgH are calculated using the Lagrange-mesh method to
obtain energies and transition moments. With them line lists and photodissociation cross
sections will be calculated for MgH. In the last chapter, extensive reactive studies will be
presented based on a global ab initio potential energy surface of CH+

2 .
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3 Potential energy surfaces for
small hydrocarbons

Hydrocarbons are among the most common molecules in the universe. Hydrogen, as the
most common element in the universe, can be found practically everywhere since the be-
ginning of time. Carbon is generated by fusion in stars. It is spread by novae and can be
found in stars, interstellar dust, comets, planets etc. Both elements are very reactive and
tend to form a large variety of molecules. This makes them interesting candidates for the
computational chemical physics. Small hydrocarbons have the advantage, that high level
methods can be applied, which are too costly for larger molecules. In order to survey
spectroscopic and reactive behaviours, reliable potential energy surfaces are needed.
In this chapter potential energy surfaces (PES) for small hydrocarbons of the type CHx,
with x = 1,2,3,4, are presented. The potentials are based on the internuclear distances fit
approach of B.J. Braams (see 2.2). The surfaces are primarily designed for spectroscopic
purposes, but reactant data were included were possible. This offers limited access to re-
action dynamics. The emphasis of this chapter is on the capabilities and bottlenecks of ab

initio methods and potential fits. It delivers a classification of the fundamental methods
used throughout the thesis. This corresponds to the first two steps of the multi-step work
flow, as presented in figure 1.1.
The CHx potential energy surfaces are designed to have a similar accuracy, which implies
the usage of the same ab initio methods for all levels. The best results can be obtained
with Coupled Cluster methods (see 2.1.4.3), as their implementations recover most cor-
relation energy of all methods. In contrast to Configuration Interaction methods, they
are size consistent and extensive. If the surfaces shall be used for reaction dynamics, they
should include fragment data for the reactants. This also means, that the cluster expansion
(or many body expansion) should be used (see section 2.2). As Coupled Cluster methods
do not converge, or converge to wrong results, for the dissociation regions, they are rarely
used for reaction dynamics potentials. On the other hand, they have to be used for the
cluster expansion, as configuration interaction is not size consistent and size extensive.
As the focus is on spectroscopic applicability and high quality, a Coupled Cluster method
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3 Potential energy surfaces for small hydrocarbons

was chosen for this work. As a consequence not all reaction channels could be included
for some molecules, as will be shown. For some of the potentials test calculations for
rovibrational energies were performed.

3.1 Choice of ab initio method

The best Coupled Cluster methods which can be applied to all molecules in this chapter,
are the explicit correlated methods. The quality of ab initio calculations depends very
much on the basis set. Unfortunately, the convergence to the basis set limit is very slow
for increasing basis size. It is approximated to converge with the maximal angular mo-
mentum lmax in the basis function as l−3

max. The reason lies in the short-range interaction of
two electrons. If two electrons approach each other the potential diverges with one over
their distance. In order to keep the results finite, the kinetic energy must cancel the infinite
potential at the pole. This causes the wave function to have a discontinuous derivative at
this point, and a linear behaviour at near distances. These are poorly represented by the
expansion of the wave function in terms of Slater determinants with Gaussian type basis
sets. Explicit correlated wave functions are wave functions which depend explicitly on
the distance between two electrons. The exact implementation involves three- and four-
electron integrals, which are computationally much too expensive. The many-electron in-
tegrals are approximately expressed in terms of sums of products of simpler two-electron
integrals. The current state-of-art approximation, the F12 method[26, 27], uses the ex-
ponential expression F12 = e−βr12 for the explicit correlation. The geminal coefficient β,
must be given as input parameter. In Coupled Cluster theory the wave function is gener-
ated by excitations from a Hartree-Fock wave function. In the case of the CCSD level,
the excitation operator is restricted to eT̂1+T̂2 . The one-electron excitation operator is not
changed in the F12 theory, as it aims at two-electron correlation effects. The two-electron
operator in standard Coupled Cluster theory was defined in equation (2.52) as

T̂2Φ0 =
occ

∑
i< j

vir

∑
a<b

tab
i j Φ

ab
i j , (3.1)

where i, j are occupied orbitals and a,b virtual orbitals. In the F12 theory the Coupled
Cluster wave function gets its explicit correlation terms by additional excitation operators
from a standard Hartree-Fock reference wave function:

T̂2Φ0 =
occ

∑
i< j

vir

∑
a<b

tab
i j Φ

ab
i j +

occ

∑
i< j

complete

∑
α<β

T αβ

i j Φ
αβ

i j . (3.2)
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3.2 Potential energy surfaces

α and β refer to a complete basis set. As there is no complete basis set in an ab initio

calculation, the additional amplitudes T αβ

i j are approximated by

T αβ

i j = 〈αβ| Q̂12F̂12 |kl〉 tkl
i j . (3.3)

The operator Q̂ is designed to ensure orthogonality of the additional Slater determinants
to the reference wave function and the standard Doubles. There are different implementa-
tions of the CC-F12 method, each with different additional assumptions and approxima-
tions, which shall not be discussed here. For convenience and reproducibility the standard
implementation of the MOLPRO2010 ab initio program package was used[28], called by
the ”RCCSD(T)-F12a” directive with enabled Triples correction (scale trip=1). Further-
more, the innermost s-shell electrons of carbon were included in the optimisation. Only
results with a T1 diagnostic of less than 0.025 were included for the potential fitting.
In conjunction to the CC-F12 method, a specialised basis set was chosen. The cc-pVXZ-
F12 basis sets[29, 30] correspond to the standard aug-cc-pVXZ basis sets of Dunning
and co-workers, but the exponents are tuned for the usage with F12 methods. Normal
basis sets have to account for the missing explicit short-range two-electron correlation
in the wave function expansions, which is no longer needed, if F12 methods are used.
Therefore, these new basis sets improve the quality for CC-F12 calculations even further,
without the addition of basis functions. In this work triple-ζ basis sets were used, cc-
pCVTZ-F12 for carbon and cc-pVTZ-F12 for hydrogen. The results have the quality of
at least CCSD(T)/aug-cc-pCV5Z level.

Table 3.1: Fit parameters and root-mean-square (rms) error estimates. The damping pa-
rameter a and the coordinate transformation parameter λ are used according to equations
(2.62) and (2.64). The errors estimates are given for the intervals [0,0.1), [0.1,0.2) and
[0.2,0.5) atomic units above the global minimum. Weighted errors are given according to
weighting function (2.65).

coeff. degr. a / a0 λ / a0 rms / 10−4 au fragments
H2 10 9 8 1.8 0.012 / 0.020 / 0.135 / w: 0.013 H
CH 10 9 9 2.0 0.099 / 0.287 / 0.196 / w: 0.066 H, C
CH2 308 13 10 2.5 2.43 / 8.53 / 3.72 / w: 2.16 H, C, H2, CH
CH3 960 9 10 2.8 2.04 / 6.55 / 7.73 / w: 1.76 H, C, H2, CH
CH4 4685 9 1e36 2.3 2.94 / 11.0 / 21.9 / w: 3.28 -
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3 Potential energy surfaces for small hydrocarbons

3.2 Potential energy surfaces

In the standard application of the Braams potential surface all coefficients are calculated
simultaneously during the least-squares fit, also if the cluster expansion is used. This
has two disadvantages which can have impact on the quality. In the Braams polyno-
mial potential representation each polynomial has five input parameters. The three most
important ones are the order/degree of the polynomial, the damping length a from equa-
tion (2.62) and the coordinate transformation parameter λ from equation (2.64). In the
standard procedure, all fragments with the same number of atoms are fitted using the
same parameters. This limits the number of parameters, which has to be determined by
trial-and-error. On the other hand, each molecule has a specific combination of optimal
parameters, which are influenced by the equilibrium distances and the internuclear sepa-
ration needed to reach the asymptotic dissociation energy. Second, the weight given to a
configuration depends on its energy relative to the global minimum. Fragment data with
relative large energies might not be represented properly due to that. In this work, the
fitting scheme was changed to allow a successive fitting of the fragments. Optimal fits
for the fragments are taken as given for a certain molecule, so that only one term of the
cluster expansion has to be calculated at once. A side remark should be given to the fitting
for molecules with different dissociation channels. In theory each channel has different
optimal fit parameters, yet this can not be realised with this kind of invariant polynomial
fits. Compromises for the parameters have to be used. Experience suggests increased
root-mean-square errors by factors 2 to 3 due to this. The fit parameters as well as the
root-mean-square (rms) error estimates for the fits can be found in table 3.1.

The build up of potential energy surfaces of hydrocarbons start with the asymptotic
atomic energies of hydrogen (2S) and carbon (3P). For the chosen method these are
−0.499946au and −39.844523au, respectively. The hydrogen potential is near the an-
alytic limit of −0.5au. The aug-cc-pVTZ basis set for comparison, gives a value of

Table 3.2: Equilibrium distances, angles and dissociation energies, compared with exper-
imental results.

re / a0 αe De / eV rexp
e / a0 α

exp
e Dexp

e / eV
H2 1.402 — 4.759 1.401 — ???
CH 2.113 — 3.653 2.116 — ???
CH2 2.032 133.87◦ 3.511[ / 4.615† 2.050 135.5◦ 4.301†

CH3 2.034 120.00◦ 4.947‡ / 5.091# 2.039 120.0◦ 4.871#

CH4 2.052 109.47 n.a. 2.054 109.47 4.363\

[ C+H2; † H+CH; ‡ CH+H2; # H+CH2;\ H+CH4
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3.2 Potential energy surfaces

−0.499821au, which is one order less converged. The aug-cc-pVTZ is an often used
standard basis set and was also used by me for a previous version of a methane potential.

H2, CH. The H2 potential was built from 649 ab initio points in the interval between
0.48a0 and 3.445a0. As one can see in figure 3.1 the ab initio data covers most of the
potential well, but the Coupled Cluster fails near the dissociation limit. Fortunately, the
asymptotic potential value is known, so that a fair representation of that region could be
found. Typical weighted errors and errors in the first interval between zero and 0.1 au
above the global minimum are typically in the order of few 10−4 au for Braams poly-
nomial potential energy surfaces. For H2 values of 1.28 · 10−6 au and 1.16 · 10−6 au are
significantly better. If there is no ab initio data for a larger piece of the configuration
space, the fit is free to take any form, which allows better fitting of the neighboured parts
of the configuration space. Yet, within this region the fit tends to take non-physical form.
In that sense, the fit with the lowest possible rms errors is not necessarily the best one.
The second two-body potential is the CH potential energy curve. It was built from 500
ab initio points in the interval from 0.5675a0 to 4.29a0. The Hartree-Fock part of the
ab initio calculations is failing in the dissociation up to almost 10a0. Afterwards the
calculations converge, but to the singlet state of carbon. Therefore, these data had to be
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Figure 3.1: Potential energy curve for H2. Ab initio data is drawn with green crosses.
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Figure 3.2: Potential energy curve for CH. Ab initio data is drawn with green crosses.

removed from the data set. Accordingly, the fit was forced smoothly to the atomic ener-
gies, as for hydrogen. The fit errors are in the order of 10−5 au. The manual adjustment
of the potential in the dissociation regions can not replace proper ab initio data. In these
cases the consequences reduce to slightly changed energies highly rovibrationally excited
levels, which are rarely important. MRCI methods would converge in these areas of the
configuration space, where CC did not. But MRCI has a significantly reduced accuracy.
An alternative would be to fill only those parts of the configuration space with MRCI
energies, where CC results are not available. While this idea is appealing, practical im-
plementations suffer from the risk of side effects. The MRCI results must be somehow
scaled and shifted to fit the CC data. In general, it is difficult to find such regions and
properly adjust the data for high-dimensional molecules.

CH2. The first three-body term in the cluster expansion is H3. As H3 is not a sta-
ble molecule this term is omitted. The other three-body term is CH2. This molecule
has a triplet ground state, X 3B1, and an excited state, ã 1A1, which is only 0.396eV =

3191cm−1 higher in the present calculations. Both states have been subject to previ-
ous numerical studies,e.g. Alexander et al. [31], Bunker et al. [32], Neugebauer and
Häfelinger [33], Dawes et al. [34]. For the ground state 9896 ab initio points were calcu-
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Figure 3.3: Two-dimensional cut through the potential energy surface of CH2. The dis-
tance r(C-H(1)) = 2.03a0 is fixed. r2 = r(C-H(2)) and α = ∠H-C-H

lated. The fragments for the cluster expansion are H+CH and C+H2, which results in
11046 ab initio points for the fit. The weighted fit error of 2.16 ·10−4 au is typical for the
size of the molecule and the degree of the polynomial. As both fragment channels could
be included in the fit of CH2, this specific surface is suited for spectroscopic calculations
as well as reaction dynamics. This is of course under the condition, that the accuracy of
the fit is sufficient for the specific application. Figure 3.3 shows a two-dimensional cut
through the potential surface. The distance between carbon and one hydrogen atom was
held fixed at 2.03a0. This is approximately the equilibrium distance for CH and CH2.
The other C-H distance and the angle H-C-H were varied. Accordingly, the figure shows
an overview over the potential well as well as the H+CH reaction channel. The potential
shows a smooth transition from the fragment to the complex region, as intended.

CH3. The only four-atom compound in this work is the methyl radical CH3. For this pla-
nar molecule 8168 ab initio points were used. The CH+H2 fragment data was included,
while the H+CH2 fragment was not. The reason for this is an incompatibility between the
data sets. The asymptotic minimum of the H+ +CH2 fragment is −39.648278au. As one
can see in figure 3.4, the CH3 data have a local maximum above −39.60au, which makes
the data incompatible. As the bond dissociation energy of 5.09eV is not far from the
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Figure 3.4: Two-dimensional cut through the potential energy surface of CH3 showing
the H+CH2 channel. One C-H distance was varied with r2. The other two C-H distances
are fixed at 2.03a0. α is the angle between the latter H atoms.

experimental value of 4.87eV, the fragment data can be considered correct. It is possi-
ble, that Coupled Cluster results were included, which show a too strong multi-reference
character. For the H-abstraction potential, the Hartree-Fock energy does not converge to
an asymptotic energy, but it is increasing further. At a certain point the SCF algorithm
might also fail to converge. As the Coupled Cluster results strongly depend on the quality
of the reference Hartree-Fock, artificial potential walls can appear in the dissociation re-
gion. This can be prevented by restricting the T1-diagnostic threshold for ”good” Coupled
Cluster results. On the other hand this might produce holes in the fitting procedure, if
the space without any ab initio data gets too large. The CH+H2 channel is represented
correctly with the included fragment data. Figure 3.5 shows a two-dimensional poten-
tial energy surface cut for this channel. The area of the complex well is on the left side
around r2 = 2 to 3a0. Due to the choice of coordinates the dissociation channel is shown
as a small stripe on the lower end of the figure.

CH4. The largest molecule considered in this work is methane. The potential for this
molecule is ten dimensional in internuclear distance coordinates and was built from 60004
ab initio points including also fragment configuration spaces. These ab initio energies
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3.2 Potential energy surfaces

Figure 3.5: Two-dimensional cut through the potential energy surface of CH3 showing the
H2 +CH channel. One C-H distance was fixed at 2.11a0. The other two C-H distances
are identically changed as r2. α is the angle between the latter H atoms.

were calculated using MOLPRO2009[35] with the cc-pVTZ-F12 basis set. Although frag-
ment ab initio points are included, the high dimensionality makes it difficult to guarantee
smooth transitions from the complex to the fragment regions of the configuration space.
Therefore, the fit presented in this work is classified as purely spectroscopic. The rms
fit error for the first 0.1au above the global minimum is 2.94 · 10−4 au small, which is
similar to the errors of the smaller molecules, but it increases relatively fast for higher en-
ergies. Diagnostics of potential energy surfaces of high dimensionality are difficult. The
rms errors used in this work diagnose how well the fit represents the ab initio data for a
certain energy interval. But this does not tell anything about the total quality compared to
the ”real” values. Also this does not allow a more specific analysis for the configuration
space, to find out, where larger deviations occur. The common one- or two-dimensional
cuts through the surface are of limited use for a ten-dimensional surface. Usually these are
done for the normal mode displacement motions for spectroscopic potentials and along
the lowest energy reaction path for reactive potentials. One-dimensional potential cuts
along the normal mode displacement vectors are shown in figure 3.6. As this figure ex-
plicitly shows the potential for the vibrational eigenmodes of methane, the energy is given
in reciprocal centimetres (offset = 40.512066 au; 1au = 27.2107eV = 219474.6cm−1).
Details of the vibrational modes are discussed in 3.3.2. Here, it is only important that
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Figure 3.6: One-dimensional cuts through the potential energy surface of CH4 along the
normal mode displacement vectors. Displacements qi in arbitrary units.

the potential cuts are unsuspicious in the energy range up to 20000cm−1 or 50000cm−1,
which is important for spectroscopy. One of the v2 displacements, the straight line, shows
atypical changes in the slope above 50000cm−1 for negative displacements and above
80000cm−1 for positive displacements. These can be artefacts of the fit or a result of a
changing characteristic of the molecular configuration. If nuclei come near each other,
or a dissociation-like configuration is reached the potential form varies from the normal
asymmetric or symmetric curves like the ones shown in figure 3.6. Further diagnostics
have to be performed, if these energy ranges are of interest or the vibrational energies do
not show the expected quality.

3.3 Application

The CHx potential energy surfaces presented are suited for the usage in rovibrational spec-
troscopy. In addition the CH2 potential can be used for reaction dynamics. The quality of
the potentials can not only be described by the fitting errors. More important is the quality
of the vibrational energy levels compared to experiments.
In this work the MULTIMODE[36–39] code was used to calculate vibrational and rota-
tional energy levels of polyatomic molecules. MULTIMODE uses a method called Varia-
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tional Configuration interaction (VCI) to obtain vibrational energies. In this method the
wave functions are expanded in the normal mode vibrations and their overtones. The ex-
citation level is user-defined and has to be adjusted until the expansion is converged. For
vibrational energies up to six different normal modes can be combined at once. This is
called mode coupling. The quantum number of the eigenvalues is given by the largest co-
efficient in the expansion. While this expansion allows to calculate accurate energies also
for higher excitation levels, the quantum number assignment is not necessarily unique.
For dipole transition moments only a coupling of four modes is implemented. The Hamil-
tonian used by MULTIMODE has a pole, when a non-linear molecule is bent to linearity.
The ground state of CH2 has a barrier to linearity of only 1935cm−1. Therefore, MULTI-
MODE can only be used to calculate energies for CH3 and CH4.

3.3.1 CH3

The methyl radical CH3 is an intermediate product in hydrocarbon chemical networks,
like the ones in the interstellar medium. It has also been detected in the atmospheres
of Saturn and Neptune. CH3 recombines very fast with other chemical compounds in
gas phase. Therefore, it is very difficult to obtain accurate data from laboratory experi-
ments. This makes this molecules an interesting candidate for spectroscopic and reactive
computations. In this work, the potential energy surface CH3 is primarily suited for spec-
troscopy.
CH3 has six vibrational degrees of freedom of which four are doubly degenerate. This
leaves four distinctive vibrational modes. The lowest energy motion, v2, is an out-of-plane
bending mode, also called umbrella motion. It is infrared active, because the out-of-plane
bending produces a large dipole moment. The second mode in energy, v4, is a doubly
degenerate in-plane bending mode, which should be weakly infrared active. The sym-
metric stretch mode v1 is infrared inactive, as a symmetric motion does not induce dipole
moments. The asymmetric stretch v3 is doubly degenerate and weakly infrared active.
A list of the lowest lying vibrational levels is given in table 3.3. Experimental vibrational

energy levels are only available for the fundamental vibrational levels, besides v4, and
the v2 = 2,3 overtones. There are a limited number of vibrational levels available from
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3 Potential energy surfaces for small hydrocarbons

Table 3.3: Selected vibrational energies of CH3. Calculations from Medvedev et al. [40],
Schwenke [41] and experiments[42–45] are compared. All energies in cm−1.

v1v2v3v4 new Med. Schw. Exp.
zpe 6512.0 6445.9 6449.2 ???

0100 612.5 591.7 596.3 606.5
0200 1298.4 1266.2 1278.9 1288.1
0001 1396.5 1388.4
0101 2017.7 1991.8 1997.0
0300 2032.9 1994.2 2025.6 2019.2
0201 2711.5 2674.0 2690.6
0002 2765.4 2750.7 2748.2
0002 2784.3 2767.8 2766.1
0400 2804.6 2763.2 2829.0
1000 3015.2 2988.5 2991.5 3004.4
0010 3171.2 3142.8 3144.4 3160.8
0102 3399.9 3367.1 3371.1
0102 3414.7 3383.0 3388.5
0301 3455.3 3407.5 3447.8
0500 3605.2 3557.7 3686.0
1100 3614.8 3572.8 3575.5
0110 3760.8 3710.0 3716.0
0202 4104.2 4057.5
0202 4116.8 4073.1
0003 4127.5 4107.8
0003 4163.0 4138.0
0401 4243.3 4179.7
1200 4286.7 4234.3

numerical studies of Schwenke [41] and Medvedev et al. [40]. All these data are included
in table 3.3. The vibrational energies are 6− 14cm−1 larger than the experimental val-
ues. The deviation is relatively constant over the energy. This is positive, as it implies,
that the potential has a constant quality over the energy. More important, the transition
energies are differences of energy levels. If their errors are similar, the line positions are
more accurate than the energies. The other numerical studies tend to underestimate the
vibrational energies by a larger amount than the overestimation in this work. The work of
Schwenke seems to switch from an underestimation to an overestimation for higher ex-
cited states. This produces increased errors in the line positions. The deviations between
the data of Schwenke and Medvedev et al. are strongly varying from a few cm−1 to over
100 cm−1 for v2 = 5. The energies from this work are consistently larger compared to the
results of Medvedev et al.. The good agreement with the few experimental data and the
rather constant deviation from Medvedev et al. suggest a superior quality of the new data
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obtained in this work.
All rovibrational states up to 7000cm−1 over the zero point energy (zpe) have been cal-
culated for rotational levels up to J = 5. Transitions between these states were calculated,
which has been used to obtain Einstein coefficients of spontaneous emission. These coef-
ficients measure the transition probability for one molecule per second. This information
can be used as input for radiation models. The line list is not complete and is mainly
intended as an estimate of the line strengths of the different vibrational states. Figure 3.7
shows the Einstein coefficients A ji over the emission energy. While there are transitions
over the whole energy range, most of them are small. There are two major emission bands.
The lower one ranges from 3000 to 3300cm−1. These are mainly transitions where v3 is
reduced by one, although the v3 mode is considered to be only weakly infrared active. The
interesting point is, that the initial and final states for these transitions are excited in the
strong infrared active v2 mode, which has a transition energy around 600cm−1. It appears,
that the combination of v2 with another mode, produces stronger transitions, than for this
mode alone. This hypothesis is strengthened by the transitions of the second strong emis-
sion band between 4350 and 4700cm−1. There, the v3 and v4 modes are simultaneously
decreased by one quantum number each. Again, the final and initial states are excited
in v2. For the moment there are no line lists available for this molecule. Therefore, the
potential energy surface provided by this work should be used to create one.

3.3.2 CH4

Methane is a very common hydrocarbon and is found in most environments, where hy-
drocarbons are around. It is chemically very stable, with the exception of substitution
reactions with halogens. Besides the typical astrophysical environments, which were al-
ready mentioned, it is often used in experimental plasma physics. In the last years it also
became famous as an important greenhouse gas, which is mainly produced by cattle.
Methane has nine vibrational eigenmodes of which all but one show degeneracies, leaving
four distinctive modes. The non-degenerate v1 mode is a symmetric stretch and therefore
infrared inactive. The v2 mode is two-fold degenerate and represents a torsional bend.
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Figure 3.7: Einstein coefficients for spontaneous emission of CH3 up to J = 5. The
maximal rovibrational energy is limited to 7000cm−1.

As two normal mode vectors belong to this mode, two curves are drawn for this mode
in figure 3.6. The asymmetric stretch mode v3 and the umbrella bend mode v4 are both
threefold degenerate. Only these two ones are infrared active.

In this work two generations of methane potentials were used. The original one has
been used to calculate all rovibrational eigenvalues up to 6200cm−1. From these a line
list has been generated[47], which was tested in atmospheric modelling of Brown dwarfs
by Hauschildt et al. [51]. This potential surface was based on RCCSD(T)/aug-cc-pVTZ
ab initio data. The current potential, as presented in section 3.2, used a better ab initio

method, a better basis set, more ab initio points and a higher order polynomial. Selected
vibrational energies of these potentials are shown in table 3.4 together with energies from
other works and experiments. The new potential shows significantly improved vibrational
energies compared with the original fit. Deviations from experiments could be reduced
from 20− 30cm−1 for the worst cases to about 10− 15cm−1. The new fit is of similar
quality like the octic force field T8 from Schwenke and Partridge [52], which was used by
Wang and Carrington [46]. The octic force field uses an expansion in symmetry-adapted
internal coordinates. These coordinates are optimal coordinates for near equilibrium con-
figurations. In addition the lower coefficients of the potential have direct physical mean-
ing like harmonic frequencies, which can be adjusted to experimental results. For large
amplitude motions these coordinates become more and more inappropriate, because they
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Table 3.4: Vibrational energies of CH4 below 5000cm−1. Comparison with calculations
from Wang and Carrington [46], Warmbier et al. [47] and experiments[48–50]. All ener-
gies are in cm−1.

v1v2v3v4 irrep. Exp. new War. Wang
0000 A1 9708.55 9662.18 9691.53
0001 F2 1310.76 1310.61 1308.63 1311.74
0100 E 1533.33 1532.66 1521.44 1533.25
0002 A1 2587.04 2587.68 2583.67 2589.77
0002 F2 2614.26 2614.44 2610.56 2616.24
0002 E 2624.62 2624.96 2621.25 2627.30
0101 F2 2830.32 2830.76 2818.54 2831.53
0101 F1 2846.08 2845.42 2834.37 2846.91
1000 A1 2916.48 2918.13 2901.46 2913.71
0010 F2 3019.49 3019.73 3003.65 3013.6
0200 A1 3063.65 3056.45 3044.13 3063.49
0200 E 3065.14 3062.19 3045.86 3065.01
0003 F2 3870.49 3871.58 3866.82 3874.75
0003 A1 3909.19 3909.69 3905.11 3912.27
0003 F1 3920.52 3920.86 3915.88 3924.09
0003 F2 3930.92 3931.67 3925.96 3935.34
0102 E 4104.62 4103.11 4090.89 4104.48
0102 F1 4128.73 4131.62 4120.57 4131.31
0102 A1 4133.02 4134.65 4130.62 4135.80
0102 F2 4142.86 4143.68 4146.67 4144.88
0102 E 4151.00 4151.88 4161.90 4153.76
0102 A2 4161.91 4161.95 4172.96 4164.36
1001 F2 4223.46 4224.24 4207.74 4221.85
0011 F2 4319.21 4319.69 4303.07 4314.23
0011 E 4322.20 4322.22 4306.00 4317.59
0011 F1 4322.58 4323.02 4307.34 4317.83
0011 A1 4322.69 4323.15 4309.46 4318.42
0201 F2 4348.71 4344.87 4335.11 4350.10
0201 F1 4363.59 4362.25 4349.12 4364.74
0201 F2 4378.98 4374.51 4378.77 4379.77
1100 E 4435.12 4436.54 4413.18 4432.22
0110 F1 4537.55 4538.36 4512.45 4531.37
0110 F2 4543.76 4543.32 4519.6 4537.82
0300 E 4592.01 4580.43 4568.28 4591.94
0300 A2 4595.28 4585.46 4570.30 4595.17
0300 A1 4595.46 4591.84 4571.07 4595.44

...
...

...
...

...
...
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Figure 3.8: Relative intensities of methane at 1000 K[47]. Comparison between intensi-
ties obtained from this work (red) and HITRAN2004[53].

are coupled to the symmetry properties of the molecule. Deviations in the order of few
reciprocal centimetres from experiment can originate from the potential as well as from
the solver for the rovibrational eigenvalues. Both potentials, or solvers, have problems
with overtones of the v4 state. The new potential mainly shows larger deviations for the
E modes, which points at problems with the MULTIMODE code, which is used to obtain
rovibrational eigenvalues.

The MULTIMODE code is used in this work for all polyatomic eigenvalue problems.
As described above, it can accurately solve the eigenvalue problems even for higher ex-
cited states. As it is a general code using a normal mode expansion, not all problems
can be solved with the same accuracy. States which are poorly represented by the nor-
mal modes, internal rotations and degenerated modes are problematic. The version 4.9.1
of MULTIMODE was used to generate a complete-as-possible line list of methane. For
this, approximations to the dipole matrix elements and the line positions had to be done.
MULTIMODE does not allow automatic detection of degenerated states and does not even
produce correct degeneracy patterns for higher excited states. Some higher excited modes
split. This can be seen in table 3.4 for example for the 0300 mode. 0100 is an E mode.
That means there are two degrees of freedom with the same energy (0+1 and 1+0). The
overtone 0200 can formed either by two excitations from one of these degrees of freedom
(0+2 and 2+0), or one each (1+1). This mode therefore splits in an E and an A1 mode
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Figure 3.9: Radiative flux distribution as a function of wave length for 1000 K. Only
methane absorption lines are shown. Upper part: HITRAN2004, lower part: this work.
Blue and red lines: averages for HITRAN2004 and Warmbier et al. lines, respectively.

with different energies. 0300 splits into three different modes and so on. This could not be
treated correctly, but the average energy of these was used. Therefore, it is not sensible to
use the new potential to redo the line list calculations with MULTIMODE as the improved
quality of the potential would be taken away by the averaging process.
While the limited numerical possibilities limit the quality of the methane line list, this
does not make it less important. While single line position might not be accurate there
are applications where other properties are more important. In the case of radiation trans-
port calculations for brown dwarfs, as have been performed by Hauschildt et al. [51],
the completeness of line lists are very important. The HITRAN[53, 54] database offers
line lists for 39 different molecules. This and other databases depend on experimentally
measured and/or calculated transition information. Usually the emphasis is on accurate
line positions of few lines. For radiation transport, as mentioned, it is more important
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to have complete lists. An incomplete list, like shown in figure 3.8 for HITRAN2004,
causes unnatural gaps in the spectra. The line list from this works fills the gaps, which
can be found around 2µm and between 10 and 20µm in the HIRAN2004 database. The
impact of these gaps can be observed in radiation transport calculations. Figure 3.9 com-
pares radiative fluxes calculated for brown dwarf atmospheres at 1000 K. To improve the
visual impression, only methane lines were used. It can be seen that the HITRAN data
has radiative holes, which are not presented in the new line list. As a consequence the
temperature profile of the atmosphere changes. In this case local temperatures diverged
up to 80 K between the models.

3.4 Recap

The calculation of ab initio data and the fitting of potential surfaces (PES) are the first
two steps in the work flow (see figure 1.1) of this thesis. They are prerequisites for any
spectroscopic or reactive calculation. In this chapter potential energy surfaces for small
hydrocarbons were presented. These potentials were fitted from high level ab initio data.
It could be shown, that they provide accurate equilibrium configurations and vibrational
energies. The chosen ab initio method needs a Hartree-Fock reference wave function,
which is a good initial guess. This is not the case for the (pre-)dissociation parts of the
configuration space, where this method can not be used. It could be shown, that a cluster
expansion of the potential in fragments can partly overcome this problem. This makes
the CH2 PES suitable for spectroscopic as well as reactive purposes. The CH3 and CH4

potentials are limited to spectroscopic studies only, because not all fragments could be
sufficiently included by the cluster expansion.
While polyatomic molecules are mainly interesting for infrared spectroscopy, the inclu-
sion of electronic transitions will be discussed for diatomic molecules in the next chapter,
which is taking the step from fitting and rovibrational energies to rovibronic line lists and
photodissociation.
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photodissociation studies of
magnesium hydride

In the last chapter applications of ab initio and potential fitting methods were presented.
The potential energy surfaces of hydrocarbons were used for rovibrational spectroscopy.
This chapter extents the application of computational chemical physics to rovibronic tran-
sitions of diatomic molecules. It completes the first branch in the work flow of this thesis
(see figure 1.1).
Cold stellar atmospheres and gas giants can contain a large diversity of molecules. Many
of these are diatomic molecules like metal hydrides and metal monoxides. While compu-
tational spectroscopy for larger molecules is limited to rovibrational transitions, it is pos-
sible to calculate electronic transitions for diatomic molecules. In this work a code was
developed which can calculate complete lists of transitions with Einstein coefficients and
oscillator strengths for a number of given electronic states as well as bound-continuum
photodissociation cross sections. The MgH molecule was chosen as an example. This
molecule is of vital interest for astrophysics. MgH has been found in the sun and the
atmospheres of many cold stars. MgH lines are even prominent in spectra from other
galaxies. Its spectra can be used to determine the relative abundance of Mg isotope in
stellar atmospheres. Together with other metallic diatomic molecules MgH is used as an
indicator for the relative abundance of metals in stellar atmospheres. In addition to the
importance of MgH there are older theoretical works available, which can be used for
comparison and validation of this work.

4.1 Methods

The computational strategy for this project is as follows. First a set of ab initio data has to
be acquired, including energies, dipole moments and transition dipole moments between
the electronic states. The accuracy required for spectroscopy is beyond the limits of fitting
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4 Spectroscopic and photodissociation studies of magnesium hydride

procedures for potential energy surfaces. Therefore, a cubic spline interpolation is used
in this case. It is notable, that this is only possible due to the low dimensionality of the
configuration space, namely one-dimensional. For larger numbers of coordinates fitted
potentials can not be avoided. The rovibronic eigenstates and transitions are obtained
using a Lagrange mesh method.

4.1.1 Choice of ab initio method

The ground state of MgH X 2Σ+. All higher bounded states are also doublet states. The
lowest excited states A 2Π and B’ 2Σ+ have the same dissociation limit. These three states
have been subject to previous spectroscopic studies and are therefore suited for the vali-
dation of the code. This work also includes the E 2Σ+ and C 2Π states. While these states
are relatively high in energy they may be accessed by energetic photons, by two-photon
excitation or by two-photon photodissociation.
The difficulty in ab initio calculations for several electronic states is the quality of the
resulting energies. The calculation is a three step process. For a certain atomic con-
figuration a Hartree-Fock calculation of the ground state is performed. This calcula-
tion yields canonical orbitals, molecular orbitals with integer occupation numbers, as
described in section 2.1.2. These are taken as a starting guess for a state-averaged multi-
configurational self consistent field (MCSCF) calculation. In a MCSCF (see section
2.1.4.4) molecular orbitals (MO) and electron densities are obtained using more than one
Slater determinant. If more than one electronic state is requested the molecular orbitals
are averages over all these states. In the third step these MOs are taken as basis for the
MRCI calculations (see 2.1.4.4). If the MO basis is an average over several states this
can have an influence on the final MRCI energies. The MCSCF and MRCI states do not
necessarily coincide. In seldom cases the inclusion of an additional MCSCF state can
enter contributions to the basis, needed for the MRCI to converge to the correct state.
Yet it is more probable, that the state averaging causes the basis to be non-optimal for a
specific state. This would cause a less optimised MRCI energy. If one wants to calculate
more than one state of the same irreducible representation this can hardly be avoided, as
one can not skip roots in the MCSCF part. The most important reason for this work is
though, that state averaged MOs are a prerequisite for the calculation of transition dipole
moments between electronic states. It is not possible to compare two states described by
different bases.
The next consideration is the size of the active space. This is the set of molecular orbitals
which are optimised and occupied. If the set is chosen small the expansion of orbitals
is insufficient to represent all states properly and one obtains wrong energies. If the set
is chosen too large the computational costs increase dramatically and the computational
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algorithm might fail to converge, as the higher orbitals are practically unoccupied and
the numerical algorithm can sometimes not decide which orbital to include and which to
exclude. Moreover steps in the potential might occur, as the ab initio has an irregular con-
vergence. This can also happen if the chosen active space is only suited for a part of the
configuration space, like the near equilibrium part. While going to the dissociation limit
the electronic structure changes and molecular orbitals get replaced by other ones, causing
steps. An additional restriction lies in the symmetry requirements. Taking the example of
a diatomic molecule. The largest Abelian point groups usually implemented in computer
programs are D2h and C2v. In C2v the s orbitals are of the irreducible representation A1.
The p orbitals split in pz , px and py which have irreducible representations A1, B1 and
B2. If a pz orbital is included, it is advisable to include also the px and py orbitals, else
the calculation is unbalanced. In the case of diatomic molecules the expectation value of
the angular momentum along the z-axis, L2

z , is non integer for unbalanced active spaces
or unpropitious chosen combination of states, e.g. only one of two (nearly) degenerate
states of different L2

z are included.
The Dunning-type correlation consistent basis sets[6, 55] offer the best quality for a num-
ber of basis functions. The largest set available are aug-cc-pV6Z and aug-cc-pWCV5Z for
hydrogen and magnesium, respectively. As a rule of thumb it is recommended to use the
same level of basis set for all atoms. The Dunning basis sets are composed in a way that
going from one level to the next, atomic orbitals are added which recover approximately
the same amount of correlation energy. If a larger set is used for one atom the binding is
tweaked towards this atom, which changes results. The MCSCF for the five states does
not converge for large parts of the configuration space, if a 5-ζ basis for magnesium is
used. Therefore, the aug-cc-pVQZ and aug-cc-pWCVQZ for hydrogen and magnesium
were used.

4.1.2 Lagrange Mesh Solver for the molecular Schrödinger
equation

The time-independent molecular Schrödinger equation for MgH solved in this work is:{
− h̄2

2µ
d2

dr2 +V (r)+
h̄J(J+1)

2µr2 −Ev,J

}
Ψv,J(r) = 0, (4.1)

with the interatomic separation r, the reduced molecular mass µ and the rotational and
vibrational quantum numbers J and v. This equation neglects effects like spin-orbit cou-
pling, spin-rotation coupling and Born-Oppenheimer breakdown effects. This differential
equation can be solved using the Lagrange mesh method as described in section 2.3. The
computer program written for this work uses a constant step Lagrange mesh for central
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potentials derived by Baye[18]. The mesh is defined in equation (32) in the paper of
Baye[18] and is presented here briefly.
The basis uses orthonormal sine functions of the form

ϕk =
√

2sin(π(k−1/2)x) , (4.2)

with k = 1, . . . ,N, which are defined in the interval [0,1]. The functions vanish at 0 and
their first derivatives at 1. The interval can be scaled to fit the needs of physical systems.
The choice of sine basis functions is advantageous, because the wave functions have a si-
nusoidal form. Another common choice are orthogonal polynomial basis functions. They
are usually not equally spaced and therefore represent certain parts of the configuration
space better than others. For example Hermite polynomials are suited for bound rovibra-
tional wave functions. The mesh points for the sine basis are defined as

xi =
i
N
, (4.3)

with weights

λi =
1

(1+δiN)N
. (4.4)

The weight for xN is reduced as this point is at the upper boundary of the interval. For the
kinetic energy matrix T =−d2/dx2 the off-diagonal matrix elements are given by

Ti j = (−1)(i− j)π

2

[
cos(π

2 (xi− x j))

sin2(π

2 (xi− x j))
−

cos(π

2 (xi + x j))

sin2(π

2 (xi + x j))

]
1√

1+δiN

1√
1+δ jN

. (4.5)

The diagonal matrix elements are given by

Tii =
π

2

[
1
6
(4N2−1)− cos(πxi)

sin2(πxi)

]
(4.6)

for i < N and by
TNN =

π

12
(4N2−1). (4.7)

The matrix form of the Hamiltonian leads to a standard eigenvalue problem, where the
eigenstates are the vibrational energy levels for a given rotational quantum number. The
eigenvectors are the approximate values of the wave function at the mesh points. The
system is solved using the SYEVR Lapack routine1 for a given number of eigenvalues.
This routine calculates eigenvalues and eigenvectors, if desired, of a square real matrix.
The computed eigenvectors are orthonormal. The routine allows to specify the number of
eigenvalues which shall be calculated. The output wave functions already contain weights

1see http://www.netlib.org/lapack/double/dsyevr.f
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Figure 4.1: Effective potential energy curve (black) of the electronic ground state for
J = 24. Bound wave functions for v = 0 (red), v = 2 (green) and v = 6 (blue) are given.
The wave function for v = 7 (light blue) is quasi-bound. A continuum wave function
(purple) is given too. The base lines are shifted corresponding to the vibrational energies.
Amplitudes are magnified.

λ
1/2
i , which has to be taken into account for the calculation of expectation values.

There are three distinguishable solutions for the Schrödinger equation: bound, quasi-
bound and continuum solutions.

Figure 4.1 shows examples for all three types of solutions for the J = 24 levels of
the electronic ground state. The effective potential is shown, which is the sum of the
adiabatic electronic potential and the rotational energy. The bound solutions are levels
with an energy lower than the dissociation limit. The lower three wave function in figure
4.1 are bound. These levels are stationary solutions and represent the normal rovibrational
levels. As the wave functions are naturally limited by the potential, the domain boundary
conditions are irrelevant. Continuum solutions have an energy larger than the dissociation
limit. The uppermost wave function in figure 4.1 is a continuum solution. Their time-
independent wave functions behave asymptotically as

Ψk,J(r→ ∞) =

(
2µ

πh̄2k

)1/2

sin(kr− π

2
J+δk,J), (4.8)
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where k =
√

2µE/h̄ is the wave number of the continuum wave function and E is the
energy of the continuum wave function measured from the dissociation limit of the po-

tential. The factor
√

2µ/πh̄2k is the square root of the density of states ρ(E). The wave
functions from the Lapack routine are normalised such that ∑

N
i=1 |Ψ(xi)|2 = 1. As this

normalisation is wrong for continuum wave functions, they have to be renormalised. For
this the information about the actual asymptotic amplitude is needed, which is extracted
from the amplitude of the last extremum of the wave function in the interval. The above
mesh was chosen, because it guarantees an extremum at the outer boundary of the interval.
The wave functions take the form (4.8) only at a certain distance, which depends on the
potential and the energy of the continuum solution. Especially for rotational excited states
the centrifugal potential shifts this point to larger distances. As the number of periods in
the calculation box [0,rmax] increases by one for each eigenstate, high lying continuum
solutions will have an extremum near rmax in any case. For the low lying eigenstates this
is different. The lowest continuum solution has one extremum outside the potential well,
but may have several within the well. If the boundary condition was Ψ(rmax)) = 0, this
extremum would be somewhere in the middle of the configuration space, where it might
not be asymptotic. This is avoided by the condition Ψ′(rmax)) = 0, which forces the ex-
tremum to be the last mesh point.
The third kind of possible solutions are quasi-bound states. The rotational energies can
be interpreted as a centrifugal potential, which adds to the adiabatic potential and forms
an effective potential, as in figure 4.1. For large rotational quantum numbers the effec-
tive potential shows a reduced depth and a potential wall in the pre-dissociation regions,
which can be significantly higher than the dissociation limit. This wall allows stationary
solutions above the dissociation limit, as shown by the second highest wave function in
figure 4.1. The wall has a limited width, therefore there is a certain tunnelling probability.
The numerical procedure used in this work does deliver all three kinds of solutions. The
handling of the quasi-bound states is difficult. There is no direct information about the
expected dissociation life time of such a state, therefore it is hard to decide whether transi-
tions involving such states should be included in the line lists or not. Shayesteh et al.[56]
experimentally found some, but by far not all, of the quasi-bound states they predicted.
All states are assigned a tag ”b” and ”q” whether they are bound or quasi-bound. This
offers full flexibility for the future usage of the line lists.
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4.1.3 Radiative oscillator strength and photodissociation
cross sections

The Lagrange-mesh solver delivers the wave functions and eigenvalues for the rovibra-
tional levels vJ of the electronic states n. With the dipole moments and transition dipole
moments from the ab initio calculations transition dipole matrix elements |Dn′,n′′

v′J′,v′′J′′ |
2 =

|〈Ψn′
v′J′|D

n′,n′′(r)|Ψn′′
v′′J′′〉|

2 can be calculated. Information about the spectroscopic line
strengths are given by the line absorption oscillator strength

f n′,n′′
v′J′,v′′J′′ =

2
3

∆En′,n′′
v′J′,v′′J′′

1
2J′′+1

SJ′(J
′′)|Dn′,n′′

v′J′,v′′J′′ |
2 (4.9)

and the Einstein coefficient for spontaneous emission, or line transition probability, is

An′,n′′
v′J′,v′′J′′ =

2
c3 (∆En′,n′′

v′J′,v′′J′′)
2 2J′′+1

2J′+1
f n′,n′′
v′J′,v′′J′′/tau, (4.10)

as defined by Larsson[57]. The energetic lower state is conventionally assigned the double
primes. The factor tau ≈ 2.42 ·10−17 s is the atomic time unit in seconds. SJ′(J′′) are the
Hönl-London[58] factors as defined by Hansson and Watson[59]. All right hand side units
are expected to be atomic units, with c = 1/α. The oscillator strength has no unit and the
Einstein coefficient is given in s−1. The bound-continuum photodissociation is described
by the photodissociation cross section

σ
n′,n′′
v′′J′′ =

π

3c
∆En′,n′′

k′J′,v′′J′′
1

2J′′+1

J′′+1

∑
J′=J′′−1

SJ′(J
′′)|Dn′,n′′

k′J′,v′′J′′ |
2. (4.11)

If cross sections in the unit cm2 are desired, the factor π

3c , including unit transformations,
has the numerical value of 2.689 ·10−18.

4.2 Results

4.2.1 Ab initio

The ab initio electronic potentials, dipole moments and transition dipole moments were
calculated at 262 points in the interval between 1.8a0 and 32.6a0 using the MOLPRO2010
program package[28]. The ab initio potentials are compared with experimental data. The
experimental reference data were taken from Shayesteh et al.[56], who provided data for
the X 2Σ+ state. Fragmentary data for the A 2Π and B’ 2Σ+ states could be derived
from the supplementary line list. Their dissociation energies De and the (0;0)→(0;0) ex-
citation energies Te differ significantly from older experimental results from Balfour et

55



4 Spectroscopic and photodissociation studies of magnesium hydride

al.[60–62]. A comparison of potential characterisations is given in table 4.1 and vibra-
tional energies are given in table 4.2. As can be seen from the tables, the ab initio data
shows an overestimation of binding energies for the lowest three electronic states. The
equilibrium distances are too far and the potential wells are to wide. This effect increases
with the approach of the basis set limit. This suggests that either one or both of the
bases are not entirely suited for this molecule or that the ab initio methods are not exact
enough. According to Shayesteh et al. the dissociation energy of the electronic ground
state is 11104.5cm−1. Different combinations of correlation consistent basis sets yield
dissociation energies between 11400cm−1 and 11600cm−1. This large discrepancy is not
a problem of unbalanced basis set sizes, but rather an intrinsic error in at least one basis
set or a problem of the ab initio method.
In order to improve the electronic potentials the ab initio was scaled and morphed linearly

to fit experimental data as good as possible. Ab initio results usually do not agree exactly
with experimental data. If enough experimental information is available, this can be used
to adapt the ab initio potential accordingly. In this case, the procedure is as follows: First
the ground state dissociation energy is fitted by applying a factor Dexp

e /Dab
e to the poten-

tial values, which is the ratio of experimental and ab initio dissociation energies. Now the
coordinate r is scaled (r̃ = m · r) such , that the vibrational energies of the ground state fit
as good as possible to the experimental data. An offset is given afterwards (r̃ = m · r+n)
such, that the equilibrium distance matches experimental values. This scaling of the co-
ordinate is applied to all potentials and dipole moments, as electronic transitions could
not be calculated otherwise. The excited states vibrational levels can now be adapted by
changing Te and De. The scaling and offset factors are given in table 4.3. It has to be
clarified, that this morphing of potentials, although common in computational chemistry,
is rather over-estimated and a source of errors and false conclusions.
In this case, the ground state vibrational energies (see table 4.2) are all improved com-
pared to the unscaled potential. Larger deviations, between 11 and 14cm−1, remain for
vibrational states between v = 8−10. The error is not increasing linearly or quadratically
with the vibrational energy, but shows a more erratic character. This indicates that not
all parts of the configuration space are of equal quality. Especially the high energy pre-
dissociation regions might show larger errors, as the strongly mixed electronic states are
more difficult to describe in the molecular orbital basis. Tendency is, that the basis is less
complete for theses cases.
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Table 4.2: Numerical vibrational energies (in cm−1) before and after morphing and ex-
perimental values from Shayesteh et al.. For A 2Π and B’ 2Σ+ only values up to v = 3
are available. Energies are given relative to the zero point energy of the electronic ground
state.

v Ab initio morphed exp.
X 2Σ+ 0 737.52 740.74 739.11

1 1428.58 1433.10 1431.98
2 2793.80 2800.18 2800.68
3 4094.98 4100.49 4102.33
4 5329.79 5330.69 5331.39
5 6488.47 6480.06 6479.65
6 7562.03 7538.02 7534.81
7 8533.47 8484.60 8478.00
8 9378.96 9290.54 9279.65
9 10058.93 9907.01 9892.72

10 10511.28 10260.65 10249.39
11 10686.44 10354.73 10352.23
12 10715.18 — —

A 2Π 0 18942.97 19273.83 19273.23
1 20461.17 20808.69 20807.72
2 21914.57 22276.07 22273.71
3 23301.50 23673.53 23665.89

B’ 2Σ+ 0 21868.52 22083.24 22082.36
1 22660.97 22889.35 22887.47
2 23431.21 23672.34 23671.47
3 24179.57 24432.61 24428.04

Table 4.3: Scaling and morphing factors for the coordinate r and the potential energies.

scaling offset
r 0.98 0.0455a0
X 2Σ+ 0.969580 —
A 2Π 0.984 0.003610au
B’ 2Σ+ 0.995 0.002793au

58



4.2 Results

-1

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14  16  18  20

E
p
o
t 
/ 
e
V

r / a0

X 
2
Σ

+

B’ 
2
Σ

+

E 
2
Σ

+

A 
2
Π

C 
2
Π

Figure 4.2: Potential energy curves for the five lowest doublet states of MgH.

The scaling of the coordinate has to be applied to all electronic states. The re are now
nearer to the experimental values, besides the re(C 2Π), which was already slightly under-
estimated before. The potentials of A 2Π and B′ 2Σ+ were adapted to fit the experimental
vibrational levels of Shayesteh et al. as shown in table 4.2. The agreement is within few
cm−1, which is satisfactory compared to the agreement of the ground states. It has to be
noticed although, that this does not guarantee agreement with other experimental values,
which are not available yet. It also does not mean, that the dissociation energy must be
correct. The morphed dissociation energies are about 280cm−1 and 570cm−1 smaller
than the ones measured by Balfour and Lindgren. Yet these data have been assigned a
large uncertainty of 250cm−1. Together with the fact, that even the Te of B′ 2Σ+ shows a
difference of about 230cm−1 between Shayesteh et al. and Balfour and Cartwright, this
puts the results of Balfour and Lindgren in doubt. For the E 2Σ+ and C 2Π states only data
from Balfour and Cartwright is available. This is not considered reliable, or at least not
necessarily better than the ab initio data of this work. Therefore, no scaling of De or Te

has been applied for these electronic states.
The final potential energy curves are shown in figure 4.2 and the corresponding dipole

moments are shown in figure 4.3. The ground state of MgH has a single-welled, Lennard-
Jones-like potential curve, which enters the dissociation region around 8a0. The mini-
mum lies at 3.269a0 and is 11104.5cm−1 = 1.37675eV deep. The dipole moment along
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Figure 4.3: Dipole moments for the five lowest doublet states of MgH along the Mg-H
axis. The dipole moments are given in the atomic unit elementary charge times Bohr.

the axis of symmetry is negative, with the extremum d(4.5a0) = −0.963au. This weak
dipole moment results from the charge transfer to the hydrogen atom. The A 2Π state has a
tighter well for low energies, but a wider pre-dissociation region. Its minimum is located
at 3.178a0 with a depth of 13362.1cm−1 = 1.65665eV. The rovibrationless excitation
from the ground state has an energy of 19273.8cm−1 = 2.38959eV. The dipole moment
is weak, as for the ground state, with the minimum of d(3.68a0) =−1.05au. The B′ 2Σ+

state has the same dissociation limit as the A 2Π state. Its minimum is at a larger distance
of 4.916a0 with a potential depth of 10220.9cm−1 = 1.26720eV. The potential is broader
than the first ones and reaches its dissociation regions as far as 10a0. The ground state ex-
citation energy is 22083.2cm−1 = 2.73790eV. The dipole moment is negative for small
distances and shows a strong gradient around 2.5a0 and a maximum at 3.43a0, where it
increases from ≈−2.5au to 1.010au. In this region the B′ 2Σ+ shows a strong interaction
with the E 2Σ+ state. After that maximum the dipole moment is decreasing until 6.71a0,
where it has a minimum with −2.0au. The dipole moment is non-zero up to approxi-
mately 13a0. The E 2Σ+ is a double well state. Besides its global minimum at 3.164a0 it
has a local minimum at 7.59a0. The dipole moment is overall strong. It starts from 4au
at 2a0 and decreases to −6.4au at 9.85a0. There is a local minimum at 3.03a0 due to the
interaction with the B′ 2Σ+ state. The zero-crossing of the dipole has the same location
as the local maximum of the potential between the wells at ≈ 5.5a0. From this point on
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Figure 4.4: Transition dipole moments for the perpendicular transitions between the five
lowest doublet states of MgH.

this state develops a strong ionic character, which diminishes only at 16a0. The highest
state in this work, C 2Π, is also the weakest bound one. The minimum at 3.132a0 is only
4467cm−1 = 0.5538eV deep. A second, very shallow, minimum is located at 4.65a0.
The barrier to the local maximum in between is only 202cm−1 = 0.0250eV high. The
dipole moment is very weak, with several extrema. The strongest point at 3.97a0, near
the local maximum, has a dipole moment of −0.42au.
The intensity of electronic transitions strongly depends on the transition dipole moment

between these states. The sign of these moments depends on the relative phase of the
electronic wave functions involved and does not carry physical information. Extrema of-
ten correspond to extrema in one of the potentials. The electronic rotational momentum
Λ is either 0 (Σ states) or 1 (Π states) for the electronic states in this work. As transi-
tions are allowed for ∆Λ = 0,±1, all five electronic states in this work are connected.
Transitions with ∆Λ = 0 are called perpendicular and ∆Λ = ±1 transitions are orthogo-
nal. The perpendicular transition dipole moments are shown in figure 4.4. The largest
amplitudes of the transition dipole moments vary between 0.6au and 3au. The strongest
two dipole moments appear for the E 2Σ+← X 2Σ+ and E 2Σ+← B′ 2Σ+ transitions, while
the B′ 2Σ+← X 2Σ+ transition dipole moment is a factor of two smaller. The E 2Σ+ state
tends to have reasonable transition dipole moments with all states, because the double-
well structure covers all the configuration where the other potentials have their wells. In
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Figure 4.5: Transition dipole moments for the orthogonal transitions between the five
lowest doublet states of MgH.

contrast to this the wells of X 2Σ+ and B′ 2Σ+ are shifted relative to another. The states
can only couple around the global minimum of B′ 2Σ+, as can be seen in figure 4.4 from
the maximum around 5a0. The E 2Σ+ ← X 2Σ+ transition has a finite transition dipole
moment of 2.4au for r→ ∞, which is the atomic transition dipole moment between the
Mg (3s2 1S) and Mg (3s3p 1P) states. The weakest orthogonal transition dipole moment
belongs to the C 2Π← A 2Π transition. Its two amplitudes are about 0.6au strong, each
located approximately at one minimum of C 2Π.
The orthogonal transition dipole moments are shown in figure 4.5. The amplitudes are in
the same ballpark as the perpendicular ones. The C 2Π← B′ 2Σ+ transition has a maxi-
mum transition dipole moment of almost 3.5au, but at a distance of approximately 2.2a0

which is too small to play an important role, as the B′ 2Σ+ well is at a relatively large
distance. The E 2Σ+ ← C 2Π transition has a very strong transition dipole moment of
4.4au at 3a0. The C 2Π← X 2Σ+ shows the same asymptotic transition dipole moment as
E 2Σ+← X 2Σ+ , because of the asymptotic atomic state of both final states.

4.2.2 Rovibrational states

For the five electronic states all together 2531 bound and 464 quasi-bound rovibrational
levels were calculated. Quasi-bound states were only included, if their 〈r〉 is smaller
than a threshold. This distance is different for each electronic state and also depends on
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Table 4.4: Maximal vibrational (J = 0) and rotational (v = 0) quantum numbers and
numbers of bound and quasi bound states. The maximal expectation value for r, for which
a state is considered quasi-bound, is also given.

vmax Jbound
max Jquasi

max nbound nquasi < r >quasi
max (a0)

X 2Σ+ 11 44 56 318 57 min(12,14.32x−0.385 +1.2)
A 2Π 13 48 58 415 64 min(9,14.74x−0.304)

B’ 2Σ+ 18 65 83 743 139 min(14,17.99x−0.232)
E 2Σ+ 24 67 95 929 191 18; 10 for J ≥ 20
C 2Π 8 24 26 126 13 20

the rotational quantum number. If one plots 〈r〉 over the rotational quantum number for
all eigenvalues of one electronic state, one finds patterns. For a given value of J, the
vibrational levels have an increasing 〈r〉 and each vibrational eigenstate has an increasing
〈r〉 with increasing J. The increase of 〈r〉 for increasing v is caused by the anharmonicity
of the potential. The inner wing is increasing faster than the outer wing. Therefore higher
energy states are located more outwards. Some of the localised eigenstates above the
dissociation limit have an 〈r〉 which is the continuation of one of these patterns. Those
are chosen as quasi-bound states in this work. This is a conservative treatment as the
included quasi-bound states behave like bound ones and this excludes some of the higher
quasi-bound states, which have a larger 〈r〉. Higher quasi-bound states tend to have larger
amounts of their wave function beyond the centrifugal wall. These states dissociate after
a certain time, which disqualifies these states for bound-bound transitions. The number
of bound and quasi-bound states, as well the 〈r〉-thresholds, are given in table 4.4.
Figure 4.6 shows the energy of the bound and quasi-bound rovibrational eigenstates of

X 2Σ+ versus the rotational quantum numbers of these states. The dissociation energy is
also indicated. The energy levels show the expected behaviour for single-well potentials.
Harmonic oscillator energy levels are equally spaced. Real potentials are anharmonic,
which causes the energy difference between successive levels to decrease with energy.
The energies of the eigenstates increase quadratically with J. The rotational excitation
also shrinks the energy difference between vibrational levels of the same rotational energy.
There are no states with energies lower than the dissociation energy for J > 44. As can
also be seen from figure 4.6, starting with J = 13 some of the listed states have energies
larger than the dissociation limit. These quasi-bound states get more with larger rotational
energy, until they disappear together with the centrifugal wall. For X 2Σ+ the largest J

with quasi-bound state, according to the definition from the beginning of this section, is
J = 56. Table 4.4 gives the largest vibrational, bound and quasi-bound rotational levels
for all electronic states.
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It is worth to mention, that the pattern is more complicated for multi-well potentials. As
can be seen in figure 4.7 for the E 2Σ+ state, the double-well causes two overlaying single-
well patterns. For low energies only the deepest well is responsible for the eigenvalues
and a clear single-well pattern exists, in this case up to approximately 6400cm−1 above
the global potential minimum. Higher vibrational eigenstates show a strongly increased
density of states, as the potential is effectually broadened. The rotational pattern looks,
as mentioned above, like the overlay of two single-well potentials. This also means,
that double-well potentials usually have much more rovibrational eigenstates, bound and
quasi-bound ones, than single-welled potentials.

4.2.3 Spectroscopic data

Bound-bound rovibrational and rovibronic transitions were calculated for all five elec-
tronic states. Absorption line oscillator strengths versus photon energy are given for rovi-
bronic transitions in figures 4.8 and 4.9. These transitions include quasi-bound states as
initial as well as final states. The oscillator strengths are colour-coded for the rotational
P-,Q-,R-branches. Σ← Σ transition have no Q-branch due to selection rules. The en-
ergy ranges as well as the form of distributions is different for each pair of electronic
states. It is this very specific mixture of lines which make metal hydrides interesting for
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Figure 4.7: Energies of the (quasi-) bound rovibrational eigenstates of E 2Σ+ relative to
the potential minimum over the rotational quantum numbers. The dissociation energy is
the horizontal line.

the computational astrophysics. These spectral lines can be easily identified opening a
window into physical and chemical properties of an interstellar environment. Most of the
transitions have an oscillator strength in the order of 10−2− 10−1. The B′ 2Σ+ ← A 2Π

and C 2Π← A 2Π transitions show only weak oscillator strengths in the order of 10−4

and 10−3. The largest single line oscillator strength can be found for C 2Π← X 2Σ+ and
C 2Π← E 2Σ+. The (v′′ = 11,J′′ = 0)→(v′ = 7,J′ = 1) transition of C 2Π← X 2Σ+ has an
oscillator strength of 0.85, followed by (10,0)→(5,1) with 0.53. Several other strong tran-
sitions from vibrational highly excited X 2Σ+ levels can be found. As the transitions have
an energy of about 34500cm−1 = 4.28eV = 290nm, they need environments with rea-
sonable amounts of ultraviolet radiation to play an important role. These lines can not be
measured with earth-based telescopes, as this part of the ultraviolet spectrum is blocked
by earth’s ozone layer. The same is true for the C 2Π← E 2Σ+ transitions. Although the
strong low-vibrational transitions have energies of only around 6500cm−1, it is unlikely
that the initial states are highly populated.
The newly added C 2Π and E 2Σ+ states are more important as final than initial states.

For example the E 2Σ+← A 2Π transitions have oscillator strengths of the same strength
as the bulk of the most important A 2Π← X 2Σ+ transition. The photon energy range be-
tween 15000cm−1 and 16000cm−1 (625−670nm) is within the range where excitations
are likely for many systems.
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Figure 4.8: Absorption line oscillator strengths fi j over the photon energy. The rotational
branches are colour-coded.

Another look has to be given to the quasi-bound states. These add a considerable amount
of transitions. For the most cases these are enclosed in the bulk of a transition band and
are therefore not too critical. The A 2Π← X 2Σ+ transitions are special here. The bulk
oscillator strengths for all three branches between 19000cm−1 and 21000cm−1 are rela-
tively constant over the rotational levels. The quasi-bound states are seamless expanding
these bands to higher energies. This might significantly change the absorption pattern of
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Figure 4.9: Absorption line oscillator strengths fi j over the photon energy. The rotational
branches are colour-coded.

MgH, provided these states are physical. Therefore all transitions in the line lists have
indicators, whether the initial or final states were quasi-bound or not.
As mentioned in the introduction, Skory et al.[63] and Weck et al.[64] calculated line
oscillator strengths for the B′ 2Σ+ ← X 2Σ+ and A 2Π← X 2Σ+ transitions in 2003. As
there is no experimental data available for line oscillator strengths, a validation of the
calculations is naturally performed by the comparison with other calculations. Skory and
Weck used potentials based on the ab initio calculations of Saxon et al.[65] from 1978
and further adapted it to the experimental data from Balfour et al.[60–62].
Figure 4.10 shows a comparison between the B′ 2Σ+← X 2Σ+ transition from Skory et al.

and this work. All quasi-bound contributions were removed from my data as Skory et al.

did not include them. The data sets are almost identical. There is a small shift in the line
positions, which is mainly caused by the different ground state excitation energies Te in
both works. The A 2Π← X 2Σ+ oscillator strengths, which are compared in figure 4.11,
show some differences. The line positions are overall similar, but the line strength are
a factor of 2 larger in this work. This is correct, because the Hönl-London factors from
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Figure 4.10: Absorption line oscillator strength for bound-bound B′ 2Σ+ ← X 2Σ+ tran-
sitions are shown in (a). The same plot with data Skory et al.[63] is shown in (b) for
comparison. No quasi-bound states are included.
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Figure 4.11: Absorption line oscillator strength for bound-bound A 2Π← X 2Σ+ transi-
tions (a) and data from Weck et al.[64] (b) for comparison. No quasi-bound states are
included.

Hansson and Watson[59] are a factor of 2 larger than the ones used by Weck et al.[64].
The overall agreement between this and previous works is excellent which validates this
work. I used corrected Hönl-London factors and fitted to updated experimental data,
which improves the quality of the data for the lowest three electronic states. In addition
two additional electronic states are included, which expand the energy range for which
spectroscopic data is available into the near-ultraviolet region.
The line lists from this work can be used as input for the radiation transport calculations

in stellar modelling. Peter Hauschildt used this new data to calculate a test spectrum with
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Figure 4.12: Synthetic spectrum with MgH absorption lines only at Te f f = 3500K and
log(g) = 5.0. Tine lists from this work (red) and Weck et al. (green) are compared.

the PHOENIX2 code with MgH lines only. Figure 4.12 shows the radiative flux Fλ over
the wave length for Te f f = 3500K and log(g) = 5.0. The figure contains spectra calcu-
lated from the current line list and from the data of Weck et al.. The absorption between
470nm and 565nm is dominated by the A 2Π← X 2Σ+ transitions. Three strong areas
can be directly identified with the line oscillator strengths in figure 4.8(a). A comparison
with the spectrum obtained from Weck’s line lists shows two relevant differences for this
part of the spectrum. First of all, the absorption intensity is increased for the new line
list. This is caused by the corrected Hönl-London factor in this work. In addition, the
absorption bands are extended to lower wave lengths. This is a sign, that the quasi-bound
states, included in this work, contribute to the overall opacity. These two improvements
to the line lists of MgH are significant. The opacity of an atmosphere hinders the radia-
tion transport. On earth this is known as the greenhouse effect. In a star it changes the
temperature gradients. A higher opacity in the synthetic spectrum will cause changes in
the predicted temperature and pressure gradients in a stellar atmosphere. The line lists of
Weck et al. start at approximately 330nm. For higher photon energies absorption lines are

2PHOENIX is a general-purpose state-of-the-art stellar and planetary atmosphere code. It can calculate
atmospheres and spectra of stars all across the HR-diagram including main sequence stars, giants, white
dwarfs, stars with winds, T-Tauri stars, novae, supernovae, brown dwarfs and extrasolar giant planets.
See http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html
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completely missing. This is a major difference to this work. The new line lists contribute
to the whole spectrum of the PHOENIX calculation. The major absorption bands between
250nm and 290nm are dominated by the E 2Σ+← X 2Σ+ and C 2Π← X 2Σ+ transitions.
The main contribution comes from E 2Σ+← X 2Σ+. Only the strong absorption lines at
290nm come from C 2Π← X 2Σ+.

4.2.4 Photodissociation

The photodissociation cross sections of MgH are generally weak. They are of the order of
10−18 cm2, except for resonances which are much stronger (∼ 10−13 cm2). A compilation
of figures with cross sections can be found in the appendix. This section is focused on the
general physical discussions and the comparison with results from Weck et al..
Figure 4.13 shows photodissociation cross sections for the A 2Π← X 2Σ+ transition with

J′′ = 0. One can see, that for each v′′ the curves end at a different wave length. These
wave lengths correspond to the minimum transition energy needed to reach the continuum
from a given initial state. The cross sections have no maximum energy within this theory,
but in practise photon energies are limited. Another general feature of photodissociation
cross sections are the modulations. They are produced by the changing phase and period-
icity of the continuum wave functions. The exact form and frequency is unique. As one
can see in figure 4.13, the cross sections are relatively constant for wave lengths smaller
than ≈ 330nm, but are increasing strongly for larger wave lengths. A comparison with
the corresponding data from Weck et al.[66] in figure 4.13(b) shows qualitative agree-
ment in slope, pattern and magnitude. There are, however ,differences in the periodicity
of the modulations. This is caused by different potentials and transition dipole moments,
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Figure 4.13: Photodissociation cross sections of A 2Π←X 2Σ+ for v′′= 0, 4, 8and11 with
rotation free initial state (J′′ = 0). Comparison between this work (a) and Weck et al.[66]
(b) is shown.
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Figure 4.14: Photodissociation cross sections of A 2Π← X 2Σ+ for J′′ = 0, 1, 2and3 with
v′′ = 11. Comparison between this work (a) and Weck et al.[66] (b) is shown.

which were used. There is no expectation of the deviation derivable from the known dif-
ferences between the potentials. Another comparison for the A 2Π← X 2Σ+ transition is
given in figure 4.14. Here, the initial vibrational level is kept at maximum, v′′ = 11. The
differences between the potentials can be seen clearly. The cut-off wave lengths differ by
10nm and the form of the curves is rather different. Both works show a clear peak near
the cut-off wave lengths. The maxima for J′′ = 0 differ by a factor of two, which is iden-
tifiable with the different Hönl-London factors. The data of Weck et al. shows two visible
peaks in this scale, one around 444nm and one around 455nm. This work shows only one
peak, which is broadened at the left flank, as if it includes both of Weck’s peaks. Another
difference is the much less pronounced rotational dependence in this work, which seems
more realistic, as the differences between wave functions of low J’s are only small. In
fact the strong decrease of the cross section for J′′ = 0 to J′′ = 1 in Weck’s data is not
consistent with the significantly smaller decreases between the other J’s.

Another comparison can be done for the B′ 2Σ+ ← X 2Σ+ transition. The J′′ = 0 tran-
sitions, as shown in figure 4.15, are more regular than for the A 2Π← X 2Σ+ transition.
The largest peaks are not located at the cut-off energy, but around 385nm. This is caused
by the different positioning of the B′ 2Σ+ potential and the more complicated transition
dipole moment. Both works agree in the periodicity of the nodes, but the amplitudes,
depending on the energy, do not match. The v′′ = 0 transitions in figure 4.16 show a
feature, which has not been that obvious before. Directly before the cut-off wave length
resonances occur which can be several orders of magnitude stronger than the surrounding.
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Figure 4.15: Photodissociation cross sections of B′ 2Σ+← X 2Σ+ for v′′ = 0, . . . , 11 with
rotation free initial state (J′′ = 0). Comparison between this work (a) and Weck et al.[67]
(b) is shown.
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Figure 4.16: Photodissociation cross sections of B′ 2Σ+ ← X 2Σ+ for J′′ =
0, 20, 35, 40and44 with vibration free initial state (v′′ = 0). Comparison between this
work (a) and Weck et al.[67] (b) is shown.

4.3 Recap

In this chapter the spectroscopic properties of MgH were studied. Magnesium hydride is
an important indicator species for stellar atmospheres. Complete spectra are important for
the modelling of stellar atmospheres and the interpretation of measured spectra. Further-
more, destruction and formation processes of molecules must be included in atmospheric
models.
The electronic potential and dipole moments of the five lowest doublet electronic states
were calculated from ab initio methods. This work is an improvement compared with
existing numerical studies, as the potentials represent newer experimental data and quasi-
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bound states are included. Two further electronic states are taken into account, which
expand the range of the line lists into the near ultraviolet spectral range. This adds a
significant amount of opacity for stellar radiation transport modelling. A second appli-
cation is the calculation of photodissociation cross sections. The photodissociation cross
sections of MgH reveal a stronger dependence of the underlying potential than the bound-
bound lines.
The rovibronic line lists calculated in this chapter complete the spectroscopy oriented
studies of this thesis. The second branch is reaction dynamics. A first example was the
calculation of photodissociation cross sections from the wave functions obtained for the
rovibronic transitions. In the next chapter a binary reaction of the type A+B−−→ C+D
will be surveyed.
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5 Reactive studies of the
Methylidyne cation

The previous chapters focused spectroscopic applications of ab initio-based potential en-
ergy surfaces. But, as explained in chapter three, these potentials can also be applied for
reaction dynamics. This second branch of the thesis is covered in this chapter with the
example of the CH+

2 reactive system.
The methylidyne cation, CH+, is a common molecular ion in interstellar environments
and comets[68]. Although it was the first cation ever identified in interstellar space[69],
its dynamics of formation and destruction are not yet completely understood. The mea-
sured abundances of CH+ are often several orders of magnitude larger than predictions
from standard gas-phase models (see Godard et al.[70] and references therein). This im-
plies, that either the models or the reaction rate coefficients are incorrect. Therefore, one
has to find mechanisms which either prevent destruction reactions or lead to an additional
formation of the methylidyne cation, especially at low temperatures.
CH+ can be easily destroyed by H, H2 and electrons[71]. This work focuses on the colli-
sion with a neutral hydrogen atom

H+CH+ −−→ C++H2, (5.1)

which is a reaction intuitively expected to be important, because of the high abundances
of neutral hydrogen atoms in the interstellar space. This reaction is exothermic and has
no known activation barrier.
Stoecklin and Halvick[72] published a potential energy surface for this reaction which
was based on single electronic state ab initio calculations and a sixth-order polynomial
fit for the three-body potential, including an ad-hoc term for the conical intersections.
This potential was used by Halvick et al.[73] for quasi classical trajectory (QCT) and
phase space theory (PST) analysis of the H+CH+ reaction. The C+ abstraction cross
sections are predicted to be monotonically decreasing between 1K and 1000K. New
measurements of Plasil and Gerlich[74–76] show a maximum of the rate coefficient at
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60K and a strong gradient of the thermal rate for lower temperatures, which diverges
from theoretical results[72, 73].
This discrepancy of experiment and theory and the unexplained abundance of CH+ in
interstellar environments motivate further research. The aim of this work is to improve
the numerical predictions for the reaction rate coefficients. For this an ab initio-based
potential energy surface was developed which was tested and used for QCT and reactive
quantum scattering calculations.
In this chapter the chemical and physical properties of the CH+

2 molecular system are
presented. The potential energy surface is characterised and reaction cross sections and
rate coefficients are given[77].

5.1 Properties of the CH+
2 reactive system

The methylidyne cation, CH+, can be created by several gas-phase processes, which in-
clude reactions of carbon cations for neutral H or H2. A detailed discussion of creation
and destruction processes can be found in Plasil et al.[74].
The binding energy of CH+ is 4.255eV, which is approximately 0.5eV less than H2. The

permanent dipole moment is 0.658au along the symmetry axis C-H. Figure 5.1 compares
the electron densities of CH and CH+ at re(CH+) = 2.137a0 obtained from a MC-SCF
analysis of ground states. The electron densities are largest around the carbon nucleus. In
the case of CH the electron density is decreasing continuously outside. The slope of the
electron density between the nuclei is approximately symmetric. The Mulliken charges

Figure 5.1: Electron density for CH+ X 1Σ+ (left) and CH X 2Π (right) along the yz plane.
The molecule is shown as a grey stick with the H atom on the left end. Contour lines have
an increment of 0.05.
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2 reactive system

(a) (b)

Figure 5.2: Molecular orbital function of the second (a) and third (b) σ orbitals of the
ground state of CH+. The C atom is encoded in orange, the H atom in white. Only
yz-plane cut is shown.

for C and H are −0.26 and 0.26 respectively. This reflects a slight polarisation of the
covalent bond towards the carbon, as expected from the slightly larger electronegativity
of carbon, 2.55 versus 2.20 of hydrogen. CH+ has one electron less, which causes a de-
crease in the off-axis electron density near the carbon. The density between the nuclei is
increased on the carbon side, reflecting a stronger charge transfer from the hydrogen. This
is also reflected in the increased hydrogen Mulliken charge of 0.49. The six electrons are
distributed primarily over three σ molecular orbitals. The lowest one is the doubly occu-
pied 1s atomic orbital of carbon. As this orbital always keeps its atomic character, it is
usually not included into the optimisation during configuration interaction calculations.
A MC-SCF analysis gives an occupation number of 1.96 (0.78 H 1s + 0.52 C 2s) for the
second σ orbital. The corresponding molecular orbital function is shown in figure 5.2(a).
The second σ orbital shows three peaks along the axis of symmetry. One at each nucleus
and one in between, but nearer to the carbon. As this orbital already shows a strong mix-
ing of different atomic contributions, all but the innermost s-shell of carbon have to be
optimised. The third σ orbital is more localised around the carbon. It reflects a part of the
bond and the valence electron behaviour. The occupation number is 1.88 (-0.93 C 1s +
0.59 C 2pz + 0.17 H 1s).
The ground state of CH+

2 is X 2Σ+. This C2v state has an equilibrium distance of 2.088a0

with a H-C-H bending angle of 139.8◦. For comparison, water has 1.81a0 and 104.48◦.
For the H+CH+ reaction, for which a correlation diagram is given in figure 5.3, one finds
in the ground electronic state a peculiarity for the two linear configurations. In this C∞v

symmetry the X 1Σ+ CH+ has no open pair for an additional hydrogen atom to couple
with, as discussed earlier. This causes a repulsive potential. In the a 3Π configuration
the C 2p electron stays in a π orbital. Therefore, an attractive potential for an incoming
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Figure 5.3: Selected features of the potential energy surfaces of the H+CH+ reaction.
For a complete correlation diagram, see Ervin and Armentrout[78]. In Cs symmetry the
strongly bound CH+

2 intermediate can be reached directly on a purely attractive surface.
Collinear approach of the reactants (2Σ and 2Π state) leads to an energy barrier, due to
a conical intersection. According to Halvick et al. the crossing seam is 0.113eV high.
The right part presents some information for C2v symmetry, indicating, that there are no
energy barriers for reaching the product. The exothermicity of the reaction, 0.393eV, is
sufficient to populate rotational states of H2 up to 6. The J = 7 state is endothermic. This
figure is taken from Plasil et al..

H atom is formed. This combination causes conical intersections between H and C to
appear. Assuming a pure adiabatic behaviour, a reaction stays on the lowest energy po-
tential. If the the molecule is slightly bend out of the linear configuration, the Σ and Π

states become A′ and A′+A′′ states in Cs symmetry. Two curves of the same irreducible
configuration can not cross. Therefore, the intersections transform into avoided crossings
in bend configurations.
The H2 product lies 0.393eV lower than CH+, populating H2 rotational levels up to J=6.
As CH+ has a smaller spacing between rotational levels, the thermal population favours
H2 for low temperatures and CH+ for higher temperatures.

5.2 Methods

5.2.1 Choice of ab initio method

Depending on the electronic structure, appropriate methods for ab initio calculations have
to be chosen. As described in the previous section, the system at hand shows a strong
mixing of states or electronic configurations. The conical intersections are one reason.
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The other one is the span of the configuration space, which has to be covered. There
are three major configurations of the system: The CH+

2 complex, the H + CH+ chan-
nels and the C+ +H2 channel. All these have a different electronic structure. A multi-
reference method, here multi-reference configuration interaction (MRCI)[13–15], has to
be employed, because in the intermediate regions of the configuration space the electronic
structure is often difficult to converge. As MRCI results depend on the symmetry used
for the computation, Cs symmetry was used for all configurations. In order to correctly
represent the region in the configuration space governed by the conical intersections and
avoided crossings both intersecting/ avoided crossing electronic states have to be calcu-
lated simultaneously in these regions. These are two A′ states and one A′′ state in Cs

symmetry. Only the two A′ states have to be calculated as including the A′′ in the optimi-
sation process does not improve the A′ state energies. Far outside the crossing regions only
the lowest electronic state is of interest. Yet, both A′ states are computed over the whole
configuration space to avoid discontinuities in the regions where energies are computed in
two different ways, meaning that one or two states of the same irreducible representation
included in the optimisation process. This can happen as the starting orbitals from the
MCSCF calculation (see below) are different for these cases.
The choice of active space and basis sets is a compromise between accuracy and speed. In
this case, the aim was a convergence threshold respective to basis sets and active space of
less than the typical error of the fitting procedure. This can be estimated to be several 10−4

atomic units (Hartree), which corresponds to about 10meV. The augmented correlation-
consistent valence triple zeta (aug-cc-pVTZ) basis sets of Dunning[6, 55] were chosen.
A larger basis like aug-cc-pVQZ would have been too expensive. The non-augmented
cc-pVQZ basis has a size between aug-cc-pVTZ and aug-cc-pVQZ. The augmented ver-
sions of Dunning’s basis sets have additional diffusive terms[55]. These terms can be
important in the pre-dissociation phase and for non-localised or weakly bound electrons.
The cc-pVQZ basis was ruled out, because it lacks these diffusive terms.
For each configuration, first complete active space self-consistent field[11, 12] (CASSCF)
orbitals and electron densities are calculated. As the lowest two A′ states are included in
the calculation, these orbitals and densities are state averaged (SA-MCSCF) with equal
weights for each state. The innermost s-shell of C is considered closed, leaving 5 electrons
to be distributed over 10 active molecular orbitals (8 A′, 2 A′′). In the following, Davidson-
corrected internally-contracted multi-reference configuration interaction[13–15] (MRCI)
was used, where both states were optimized simultaneously with the C 1s electrons treated
as core. Core electrons are not further optimised and no excitations from core orbitals are
included. As the C 1s orbital keeps its atomic character also in molecular bonds, MRCI
energies show only small changes. All ab initio calculations were performed using MOL-
PRO2009.1[35].
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5.2.2 Potential energy surface

b b
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Figure 5.4: Coordinates used to describe the CH+
2 molecular system.

The standard form of the PES (see section 2.2) is well-suited for single-valued global
potentials without cusps. In order to account for conical intersections this approach has
to be modified. One needs a representation for the conical intersection, which smoothly
transforms into an avoided crossing form at near-linear configurations. It is reasonable to
stay with the well-tested potential fit and to add another set of polynomials for each inter-
section. These should be non-zero only in the vicinity of the corresponding intersection.
Using this approach one has the full flexibility to choose appropriate functions/functionals
for the intersections, while keeping all advantages of the well-known PES, including the
simultaneous least-squares fit of all coefficients. In the case of a x2y1-type system the
internuclear distances are rx(1)x(2) , rx(1)y, rx(2)y, as shown in figure 5.4 for CH+

2 , and the

invariant basis is rx(1)x(2) , rx(i)y and r2
x(i)y

.

This work uses the standard variable transformation y = e−r/λ for the xy-distances, the
xx-distance is transformed as

y = e−|r−r0|/b, (5.2)

where r0 is the position of the conical intersection, which might depend on the other
coordinates as well. First or second degree polynomials should be used with these coor-
dinates, otherwise a poorly chosen r0 might produce erratic behaviour of the fit close to
r0. In addition to the modified polynomial a modified damping function was introduced:

t0 = e−k∗min(α,π−α)max
(

e
−l|r

x(1)y
−a|

,e
−l|r

x(2)y
−a|)

. (5.3)

α is the angle x-y-x , which can be easily calculated from the internuclear distances. The
chosen form of the potential near the intersection is very sensitive to the parametrisation,
but it offers a representation of intersections with an accuracy similar to the accuracy of
the potential fit.
The overall computational cost of the added polynomials is insignificant compared to the
original PES, which can use up to 19th order polynomials for triatomic systems.
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5.2.3 Dynamics

The quasi classical trajectory method (QCT) was applied for the calculation of cross sec-
tions and rate coefficients. In QCT the atoms of the molecular system are moved following
Newton’s equations of motion. The force is usually given by an analytical or fitted po-
tential calculated with quantum mechanical methods. The initial conditions for rotational
and vibrational energies are quantised. Quantities like impact parameters and phases are
varied using Monte-Carlo sampling for a large number of trajectories. This allows to
calculate statistical properties of the reactive system, like reaction cross sections. As the
particles are moved by Newton’s equations of motion in QCT, no quantisation of vibra-
tion or rotation is preserved over the trajectories. Especially in the case of low kinetic
and internal energy, where the vibrational zero-point energy is a large fraction of the total
energy, quantum-mechanically forbidden results dominate, which leads to incorrect cross
sections.
In this work a QCT code was developed using fifth-order Gear[79] predictor-corrector
integration and adaptive time-step management. A velocity verlet integrator is also im-
plemented and can be selected by the user. The Gear integrator itself consumes more op-
erations per cycle than the simpler velocity verlet algorithm, yet it is more stable for long
simulation times and allows larger time steps. Automatic time-stepping was implemented
using the energy conservation between time steps as a measure and a three-limit system.
If the error is smaller than the lower limit ll1 = 0.000075meV, the time step for the next
cycle is increased by 5%. If the error is larger than the threshold ul1 = 0.00075meV
the time step is decreased by 10%. These two thresholds were chosen such that the total
energy conservation over a run is not significantly improved by tightening these limits.
If the energy conservation is worse than the ul2 = 0.001meV threshold the whole time
step is recalculated with a halved time step. Additionally, absolute minimal and maxi-
mal time steps of dtmin = 0.0001fs and dtmax = 0.1fs as well as a repetition counter were
introduced, to avoid infinite loops and unreasonable low or high time steps. The total
error for the energy conservation depends on the initial conditions but was limited to few
meV or less. The parameters must be checked and eventually changed if other systems
or potentials are used. The calculation of initial conditions was implemented using the
semi-classical Einstein-Brillouin-Keller quantisation of the action integral.
In the standard weighting each quasi classical trajectory has a weight of unity and product
quantum numbers for final state resolved cross sections are given by the nearest integer to
the semi-classical ones. The standard weighting is therefore often referred to histogram
binning (HB). The cross sections are defined as

σ
HB
α = πb2

α

Nα

N
, (5.4)
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where N is the total number of trajectories with impact parameter b ≤ bα, the largest
impact parameter leading to channel α. The channels are inelastic collision, hydrogen
exchange and carbon abstraction. As mentioned above the histogram binning is known to
yield non-physical results for many systems due to zero point energy violation, popula-
tion of energetically closed final states and wrong final state distributions[80]. Therefore,
alternative post processing techniques were developed.
Bonnet[80–83] suggested a modified treatment for inelastic collision calculations, where
the product state rotational distributions have to be corrected in the standard QCT. Starting
from the classical S matrix theory (CSMT), see e.g. the work of Miller and Marcus[84–
86], the product side state distribution is expressed in terms of Dirac distributions. Cross
sections deduced at this point are exact in the context of CSMT, if the contribution from
the interference term of the semi-classical probability is negligible (see Bonnet[80] equa-
tions 4 and 6). The set of trajectories with integer semi-classical quantum number is
usually of zero measure with respect to the set of all trajectories. In order to compensate
that the Dirac distribution is substituted by a Gaussian distribution, whose widths have
to be small to mimic the Dirac distribution. This treatment is called Gaussian weighting
(GW) or Gaussian binning. Although this method is derived for an inelastic collision
case, it has been successfully applied for reaction dynamics as well. The Gaussian weight
is defined as

wi(δvi) =
1√
2πs

e−
(δvi)

2

2s2 , (5.5)

where δvi is the difference between the final vibrational quantum number and its nearest
integer value of trajectory i and s2 is the variance of the Gauss function.
If N and Nα are replaced in equation (5.4) with the corresponding sum over weights (5.5),
the Gaussian weighting cross sections are defined as

σ
GW
α = πb2

α

∑
Nα

i wαi

∑
N
i wi

. (5.6)

In practise this definition causes problems with the elastic trajectories. In QCT even tra-
jectories which do not form complexes sometimes do not preserve their integer quantum
numbers, as there is still an interaction potential between the reactants. Also numerical
errors can add up over the millions of steps of a trajectory. If included into weighting
these trajectories would loose most of their weight. If one measures the minimum dis-
tance between the reactants over the trajectory one finds a separation of collisional and
non-collisional trajectories. This is shown in figure 5.5 for J = 5 and Ekin = 100meV. In
this figure non-elastic trajectories have a minimum distance between the reactants of less
than 2a0. Elastic cases, however, have a minimum distance of at least 3a0. There are also
cases, where the complex region is reached and the Gaussian binning of the trajectories
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Figure 5.5: The time of trajectories in the complex region versus the minimum distance
between the reactants for initial conditions J = 5 and Ekin = 100meV. Elastic collisions
are distinguished, whether (type 2) or not they enter the complex region.

identifies them as elastic, these are marked as type 2. This separation distance is getting
smaller for larger initial energies, but it does not diminish for the energy ranges used in
this work. The distance between the fragments was defined as the second shortest internu-
clear distance. The shortest one would define the bound diatomic molecule. A rescaling
of the internuclear distance to the equilibrium distances of the corresponding diatomics
might be used for systems were the simple ansatz is failing. The encounter distance was
set to 3a0.
Using the knowledge how to identify the complex forming trajectories Nc, these can be

separated in the cross section equation. Defining weights wα = ∑
Nα

i wi and wc = ∑
Nc
i wi

the final equation of the Gaussian is

σ
GW
α = πb2

α

Nc

N
wα

wc
. (5.7)

The Gaussian weighting does not necessarily provide satisfactory results, if the width of
the Gaussian can not be chosen small enough or if the CSMT is failing. As an alternative
an empirical modification of the Gaussian weighting (mGW) is introduced, which allows
a better fitting of the results. The width of the Gaussian varies for the different channels
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and the normalisation is removed. The equation (5.5) reads now

wi(δvi;a) = e
− (δvi)

2

2s2
α . (5.8)

Varying the Gauss width sα over the channels allows active changing of the weights of
these channels for the cross sections. This allows a fitting of cross sections to desired
values, but it is also a shortcoming of this procedure, as results now strongly depend on
parameters, which can not be justified easily.
For this system the largest drawback of HB-QCT is the population of energetically closed
product states, which should be taken care of by the Gaussian weighting. Let me approxi-
mate the rotational energy of the diatomic product as a rigid rotor with Erot( j) =B j( j+1)
and the vibrational energy as a harmonic oscillator Evib = ω(v+ 1

2), with rotational con-
stant B, harmonic frequency ω, rotational and vibrational quantum numbers j and v. The
difference of the vibrational energy from the integer quantum number value δv should be
less than the smallest rotational transition energy: ω δv < 2B. As in this case the Gaussian
weighting is meant to prevent the population of closed channels, an effective weighting
follows sα ∝ Bα/ωα. An appropriate proportionality factor has to be chosen manually, yet
it can not be much larger than unity as the weighting would allow forbidden low energy
transitions.
It is also possible to use Gaussian weighting for the final rotational quantum number as
well. Tests have shown no significant change in the cross sections for rotational weighting
widths sJ in the order of 10−1 and a strong gradient in the cross sections depending on sJ ,
if it is chosen in the order of 10−2, with no sign of convergent behaviour. Therefore, this
work is not using rotational weighting.
To obtain an error estimate of equation (5.7) error propagation of independent variables
is used. f (xi) being a function of independent variables xi and their standard deviations
∆xi, the deviation ∆ f is given by

∆ f =

√
∑

i

(
∂ f
∂xi

∆xi

)2

. (5.9)

The maximum impact parameter bα is obtained from trajectory calculations. Assuming
that all reaction channels α need a complex formation, the maximal impact parameters
of all these channels should be identical. Therefore, the standard deviation of the im-
pact parameter can be calculated directly. The first addend for the error propagation is

therefore
(

2∆bα

bα

)2
σ2

α. N and Nc are dependent variables as N = Nc +Nn, where Nn is the
number of non-complex-forming trajectories with b ≤ bα. As these variables represent
the convergence of a Monte-Carlo process, their error can be estimated by their square
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root, e.g. ∆Nc =
√

Nc. This yields N−Nc
NcN σ2

α as the second term in the error propagation.
This term converges with 1/N. I have chosen to use two terms for the error estimate of
wα and wc. As the weights are calculated over finite sums with upper bounds Nα and Nc,
respectively. The same scheme is applied for the error estimates of the w as for the error
estimates of the N’s. The third term of the error propagation is therefore wc−wα

wαwc
σ2

α. Using
both terms, for N and w, yields a small overestimation of the error, as Nc and wc are not
independent. This overestimation is negligible for small

√
1/Nc. Another uncertainty lies

in the definition of the wi in equation (5.8). The parameter sα has no analytically defined
value. The sensitivity of the cross sections to the choice of sα is included by a separate
term in the error propagation calculation. Defining normalised weights Ωα = wα

wc
one can

use the standard deviation of Ωα with respect to changes of sα. This does not necessarily
measure the convergence, but rather the slope of the sα dependency of the cross sections.
All these terms result in a variance estimate for σα given by

sσα
= σα

√(
2∆bα

bα

)2

+
N−Nc

NcN
+

wc−wα

wαwc
+

(
∆Ωα

Ωα

)2

. (5.10)

Assuming an equilibrated Boltzmann distributed system at temperature T , the thermal
rate coefficients κα(T ) are

κα(T ) =
(

8
πµ(kT )3

)1/2∫ ∞

0
Ecolle−Ecoll/kT

σα(Ecoll,T )dEcoll, (5.11)

with temperature averaged cross sections

σα(Ecoll,T ) =
1

Qα
∑
n

gnσα(Ecoll,n)e−En/kT , (5.12)

where n= {v, j} represents the internal degrees of freedom and σα(Ecoll,n) are the initial-
state resolved cross sections depending on the collisional energy Ecoll . Further quantities
are the reduced mass µ, the multiplicity gn of state n and the canonical partition function
Qα.
As stated in this section, the reliability of the QCT methods is questionable. Therefore, a
modified version of the ABC[87] quantum scattering code is used for comparison. This
program solves the Schrödinger equation of the atom-diatom chemical reaction with a
coupled-channel hyperspherical coordinate method (see section 5.2.4). As the classical S

matrix theory, from which the Gaussian weighting is derived, is the semi-classical limit of
the quantum scattering, this is an appropriate choice for bench marking. As computational
costs grow very fast with the states entering into the scattering matrix, the application of
of ABC is limited to low energy cases.
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5.2.4 ABC: quantum reactive scattering

The ABC[87] code for quantum mechanical reactive scattering for atom-diatom chemi-
cal reactions uses a coupled-channel hyperspherical coordinate method[88, 89] to solve
the Schrödinger equation for the three nuclei on a single Born-Oppenheimer potential
energy surface. Optimal coordinates for one product channel, e.g. mass-scaled Jacobi
coordinates, are inappropriate to describe other product channels. In the coupled-channel
approach the wave function is always expanded in all three chemical arrangements simul-
taneously. ABC uses Delves hyperspherical coordinates[90, 91]. The program uses exact
quantum reactive scattering boundary conditions, avoiding the usage of imaginary ab-
sorbing potentials[92]. As ABC uses Born-Oppenheimer potentials, spin-orbit coupling
can not be treated correctly in this code. In each run, the reactive scattering Schrödinger
equation is solved for one combination of total angular momentum and parity delivering
parity adapted scattering matrices as output. For a more detailed description see Skouteris
et al.[87] and references therein.

5.3 Results

5.3.1 Potential energy surface

The CH+
2 potential energy surface for the lowest A′ electronic state was built from 16259

ab initio points. The standard polynomial was built with 5th order two-body polynomials
and 13th order three-body polynomials. The cut-off lengths were chosen to be 12 and
8 a0, respectively. The additional polynomials were both chosen to be 2nd order. The
0eV-level is set to the asymptotic H+CH+ energy in this chapter work.
The weighted root mean square (rms) error of the PES is 6.3meV. The rms error for
energies smaller than 0.1 au (0.1au ≈ 2.7eV) above the global minimum is 15.5meV
and for energies between 0.1 and 0.2 au above the global minimum it is 17.2meV. This
means, that in the incoming channel variations due to errors in the fitting with amplitudes
in the order of 10 to 20meV have to be expected. These variations have their origin in

Table 5.1: Important reference values of the PES with experimental values in brackets:
Dissociation energies De, equilibrium bond distances re and angles αe. CH+

2 dissociation
energy to CH+ +H.

De / eV re / a0 αe

CH+ 4.195 (4.255) 2.142 (2.137) —
H2 4.711 (4.751) 1.412 (1.401) —

CH+
2 4.778 2.069 (2.088) 141.2◦ (139.8◦)
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the polynomial form of the fitting function. If the kinetic energy is larger than this, the
fragments are decelerated, accelerated and possibly deflected, but not reflected. There-
fore, the reactive behaviour should not change significantly. If an incoming hydrogen hits
a positive hump with a kinetic energy lower than the height of the hump, it is going to be
reflected, causing a corruption of the reaction statistics. A symptom for this would be an
otherwise unexplained increase of elastic scattering events for collision energies of less
than 20meV. Other important quantities of the PES are given in table 5.1. The equilibria
of the complex and the different fragments differ between 0.005a0 and 0.02a0 with the
experimental data, the dissociation energies up to 0.06eV. The exoergicity of 0.518eV
is near the experimental value of 0.496eV. This is well within the expected limits of the
MRCI/aug-cc-pVTZ method and comparable with Stoecklin and Halvick, where bond
lengths are underestimated and dissociation energies are overestimated. This work shows
opposite behaviour with underestimated dissociation energies and partly overestimated
bond lengths. For the complex region this work better fits experiments, but the fragments
are slightly better represented by the former work, which is probably caused by the form
of the fitting functions.
The validity of the extended fit using additional polynomials to describe the conical in-
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Figure 5.6: One-dimensional PES cut for fixed rCH(1) = 2.14 a0 at linear C-H-H (left) and
H-C-H (right) configuration. Blue crosses: Ab initio energies for the lowest two A′ states.
Red line: PES with additional terms. Green dashed line: standard PES.
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tersections can be shown visually. Figure 5.6 shows one-dimensional cuts through the
PES for an incoming H atom with CH+ at equilibrium distance in the collinear C-H-H
and H-C-H cases. From the ab initio data it can be seen how the two lowest A′ electronic
states cross at the upper end of the potential well causing a small hump if one follows
the lowest energy path over rCH(2) . The standard polynomial form of the PES can not
reproduce this form and gives a fit ”ignoring” this feature. The additional polynomials
are able to compensate this shortcoming. The fit in figure 5.6 satisfactorily matches the
intersections with corresponding heights of 68 meV and 99 meV above the asymptotic
energy value, although the intersections are not spiky but smoothed.
Besides the conical intersections themselves, the regions with the avoided crossings are

of particular interest from the fitting point of view. The development of the avoided cross-
ings is shown for the example of the H-H-C intersection in figure 5.7 for 5◦, 10◦ and 25◦

bending angle. At 5◦, figure 5.7(a), the ab initio data still looks like the overlay of an
attractive and a repulsive state. The avoided crossing only influences a small area directly
around the former crossing point. The standard polynomial is therefore not able to re-
produce the ab into data in this region of the configuration space, while the additional
polynomial does. Bending the molecule further to 10◦, figure 5.7(b), the ab initio elec-
tronic states are now clearly separated. The lower state still shows an increased potential
around the crossing region, which can not completely be reproduced without additional
polynomials. At 25◦, figure 5.7(c), one can find no sign of the avoided crossing and the
standard polynomial potential accurately describes the ab initio. The electronic potential
is altered by conical intersections and their residuals, the avoided crossings. The avoided
crossings cause additional walls in the potential. If the height of a wall is higher than
the asymptotic energy, this wall will have an influence on low energy dynamics. If the
height is lower than the asymptotic energy it still might influence certain trajectories, but
this can not be quantified. Following these considerations, the avoided crossings interfere
with the reaction dynamics for bending angels up to approximately 5-10◦. While this
might influence the absolute values of the reaction probabilities, this region of the config-
uration space is too small to change the overall reactive behaviour of CH+, independent
of temperature.
Another overview over the incoming channel is given in figure 5.8, where rCH(1) = 2.14a0

is fixed again and the potential is given as a function of rCH(2) and α. Figure 5.8(a) shows
the complete channel, while figure 5.8(b) shows a more detailed map of the far-field po-
tential of the incoming channel. If the H atom is approaching towards the bounded H
atom, attractive forces are weaker compared to the approach towards the C atom. CH+

has one free 2p orbit compared to its neutral counterpart. This yields a high overall elec-
tron affinity of the system, but the attractivity is mostly located at the C atom. The conical
intersections for both collinear configurations can clearly be seen. Due to the avoided
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Figure 5.7: One-dimensional PES cuts (rCH(1) = 2.14a0) of avoided crossings for bending
angles (a) 5◦, (b) 10◦ and (c) 25◦. Blue crosses: Ab initio energies for the lowest two A′

states. Red line: PES with additional terms. Green dashed line: standard PES.
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Figure 5.8: Two dimensional PES cut for fixed rCH(1) = 2.14a0.
5.8(a): Contour lines between -1.0 eV and 0.1 eV are drawn with an increment of 0.1 eV.
5.8(b): Contour lines (black) are drawn between -0.2 eV and higher with an increment of
0.05 eV and (grey dashed) between -0.1 eV and 0.1 eV with an increment of 0.01 eV.
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crossings at near linear configurations and the attractive character of the potential for bent
configurations a clear gradient towards bent complex configurations around 80◦ to 160◦

appears. There is no barrier for an incoming projectile preventing the formation of a
CH+

2 complex, except while entering and staying in a collinear configuration, which is an
unlikely event. The far-field interaction between CH+ and H is crucial for the low temper-
ature reactive behaviour. Therefore it has to be proven, that no artificial undulations are
erected by the fitting procedure. For an incoming H atom the potential is purely attractive
for all except near linear configurations. Around the 0◦ limit the potential is attractive
for r ≥ 6a0, as can be seen in figure 5.6. The hump caused by the conical intersection
reaches a height larger than the asymptotic energy limit for up to 7◦ of bending. At the
180◦ limit, the hump of the conical intersection is > 0eV up to a bending angle of 168◦.
For this limit a region approximately between 9a0 and 11a0 has a potential value higher
than the asymptotic limit with a maximum of 1.5 meV. This is an artefact of the fit. Due
to the small amplitude and the narrow angular spread of this feature, the influence on the
chemical dynamics should be negligible. Other artificial undulations were not found us-
ing contour plots of the incoming channel with a resolution of up to 5 meV. This implies,
that classical trajectories with a projectile kinetic energy of at least 5 meV should not be
compromised by the PES. A more detailed discussion of the influence of the PES on the
dynamics is presented next.

5.3.2 Sensitivity studies for the potential energy surface

One major concern with ab initio based dynamics is the quality of the potential fit. Diag-
nostics of the fit can be done in several ways: e.g. visually, fit errors or comparison with
experimental data. Another way is to perform exploratory studies on different fits. For
this, ABC quantum scattering calculations were performed for J=0 to 2 with collisional
energies up to 100meV. The reference is the fit used in this work (std). For compari-
son the same fit without the extra polynomials for the conical intersection (wo) was used,
the original fit scaled by 1.01 (scale) to fit experimental dissociation energies and an al-
ternative fit (alt.). The alternative fit is 7th order two-body polynomial and 12th order
three-body polynomial. The damping ranges λ were changed from 12a0 and 8a0 to 10a0

for both n-body terms. Figure 5.9 shows the respective cross sections.
The ab initio data for CH+

2 underestimates the dissociation energies (see table 5.1) for all
channels. The amount is varying but approximately 1% of the experimental values. Using
the accordingly scaled potential for sensitivity study tests the influence of the correct dis-
sociation energies on the dynamics. As the absolute values and the gradients are changed
by the scaling this also gives insight in the general sensitivity on the exact potential form.
The scaled potential does not show any significant change of the cross sections in figure
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5.9. While the dissociation energy De is an indicator for the overall quality of the ab initio

data, this value is not important for the (low energy) dynamics. It seems, that a scaling
of 1% produces only minor changes in the gradients which govern the dynamics. This
also suggests, that the usage of larger basis sets, like aug-cc-pVQZ, will not significantly
improve the quality of the potential, assuming that no additional features are introduced.
The comparison of my fit with the version which ignores the conical intersection tests
the influence of the conical intersections and avoided crossings on the reaction dynamics.
Figure 5.9 shows increased cross sections for energies below 10meV. While this can be
seen easily for J=1 and 2, this effect is more hidden for J=0. In the figure this is reflected
as a maximum around 3meV. The influence of the conical intersection on the dynamics
appears to be rather small, which corresponds to the small fraction of the configuration
space of the incoming channel which is perturbed by the intersections and avoided cross-
ings.
The largest difference appears in the comparison with the alternative 12th order fit. This
fit uses different parameters and has similar root mean square like the fit used in this
work. The different order and damping ranges primarily change the potential at the pre-
dissociation and dissociation regions. To be more precise, polynomial fits have unavoid-
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able modulations in these regions. Their form is changed by the modified parameters. In
this case the low energy cross sections are significantly increased. Such deviations can
be expected from the root mean square errors of the fits between 10meV and 20meV,
while these errors do not state how strong the uncertainties of the cross sections are. The
deviations are found to be about 10%. Also the low energy limit has a flatter slope. Ex-
trapolated to the rate constants this would mean an uncertainty of approximately 10% at
the lower limit which decreases with temperature and should be negligible above 50K.

5.3.3 Cross sections

5.3.3.1 Comparative study of QCT weightings

As mentioned in section 5.2.3, the quality of QCT calculations varies very much with
systems under surveillance. Before reaction cross sections are shown and analysed, the
different QCT weightings are compared.
The C+ abstraction and inelastic collision cross sections for J=0 are compared in figure
5.10. ABC quantum scattering cross sections are taken as reference, since no experimen-
tal data is available. The abstraction cross section are expected to be large at low energies
and drop with increasing energy. The inelastic collision cross sections must be zero be-
low 3.45meV. For higher energies they should increase. This is expected according to
thermal partition function considerations, see 5.3.3.2. The ABC curve is matching these
criteria.
The first candidate for the comparison is the standard histogram binning (HB-QCT). Its
cross sections show much less variation with energy than the ABC results. Especially the
fact, that HB-QCT completely ignores that there can not be any inelastic collisions at low
energy, disqualifies this method. It rather stays at the same value for all energies.
The next candidate is the Gaussian weighting. It is expected to eliminate ”wrong” trajec-
tories from the set and therefore improves the cross sections. Yet, this is only rigorously
true for the limit of very small weighting widths, where only trajectories with almost in-
teger quantum numbers are left. This set is small for small sα and probably empty in the
limit of the Dirac distribution. A tremendous amount of trajectories have to be calculated
to gain a reasonable set size. A small set on the other hand introduces statistical errors.
Medium weighting widths, which decrease the influence of false trajectories but keep a
reasonable large set have to be used. While the Gaussian weighting is physically moti-
vated, it does not necessarily deliver accurate results. This can be the case, if the classical
S matrix theory does not adequately describe the system at hand. It is also possible that
one can not calculate enough trajectories for a sufficiently small weighting width. The
GW-QCT curve in figure 5.10 is calculated with sα = 0.002 for all trajectories. This is
roughly a factor of 8 smaller than the one used by Halvick et al.. As can be seen, the low
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energy inelastic cross sections are decreasing by almost a factor of 100 to approximately
1−2a0. This is a difficult case for any statistical technique, as the set of (allowed) trajec-
tories for low energies is zero for some channels. If the conditions are not rigorous, e.g.
Gaussian instead of Dirac distribution, these cross sections are naturally very noisy. The
general form of the cross sections has improved considerably, yet the abstraction cross
sections are underestimated by the GW-QCT. The high energy abstraction cross sections
get deteriorated by the weighting since an artificial minimum appears.
The modified Gaussian weighting (mGW-QCT) is a purely empirical treatment and was
chosen to prevent the population of forbidden final states. While this method efficiently
erases forbidden reaction paths from the set, there is a risk of artificially preferred chan-
nels caused by the unequal weighting. Using values of sα = 0.004 and 0.015 for CH+ and
H2 forming channels, respectively, I get the mGW-QCT curve in figure 5.10. The sα are
increased linear with the energy. In this case, the abstraction cross sections better fit to
the ABC results. Yet, neither QW-QCT nor mGW-QCT could deliver a constant quality
for all calculated cross sections.

5.3.3.2 Quasi classical trajectory

Initial state selected cross sections from 4.0 million QCT trajectories have been computed
for J = 0, . . . ,10 and collision energies of 1, 2, 4, 8, 16, 30, 60, 100 and 200meV. for the
lowest energy initial conditions I used sα = 0.002 for the standard Gaussian weighting
(GW). For the modified version mGW sα ∼ Bα/kα was used, resulting in sα = 0.004 and
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Figure 5.10: Comparison of J=0 QCT cross sections (Upper plot: abstraction, lower plot:
inelastic collision.) for different binning techniques with ABC quantum scattering results
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0.015 for CH+ and H2 forming channels, respectively. For initial conditions with higher
energies such small weighting widths are not necessary as the rotational level splitting in-
creases and therefore more energy has to be transferred from the zero point energy to the
rotational degree of freedom to open a closed rotational energy path. In addition, a small
weighing width diminishes the statistics. Therefore, the width was increased for initial
conditions with high energy, such that the quantum mechanical results are resembled as
good as possible. As mGW-QCT shows the best results of the three weighting methods,
these are presented in this section.
The behaviour of the cross sections in dependence of the rotational state of the reactants

and the collisional energy is a superposition of the dependence of the maximal impact pa-
rameter and the relative probabilities. The maximum impact parameter for all collisional
channels are identical for almost all cases. Their deviation is usually less then 1%, which
is well within the convergence limit uncertainty. The maximal impact parameters, as
shown in figure 5.11, are relatively independent of the rotational energy of CH+ if J ≥ 2.
A small variation of the maximum impact parameter for different J can be seen, yet this
effect is small with changes between 0.2a0, for 200meV, and 0.5a0, for 1meV. For J ≥ 2
the impact parameter is decaying for increasing collisional energy from roughly 12.6a0

(J = 10) to 7.2a0 (J = 10) for 200meV. This is expected, as higher relative velocities
decrease the interaction between the far field potential of the target and the projectile, re-
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ducing the deflection of the projectile. The same kinetic energy dependence can be found
for J = 0 and J = 1, yet the impact parameters are larger here. Especially the J = 0 im-
pact parameters for energies ≤ 8meV are increased by approximately 1a0. The 1meV
impact parameter is 0.3a0 smaller then the J = 1 value. Comparisons with quantum scat-
tering results (see 5.3.3.3) indicate that this decreased impact parameter is no artefact of
the QCT method, but a characteristic of the PES. This is produced by the collinear and
near-linear regions of the potential. As this is limited to very low kinetic energies this is
most likely not a product of the conical intersections but of the limited accuracy of the fit,
as discussed in section 5.3.1.
Another important factor is the partition function. The first rotational level of CH+ has
a rotational energy of about 3.45meV. If the total energy is less than this, no inelastic
collision can happen and the H-exchange reaction has only one accessible energetic path.
If the energy increases more paths open, however the inelastic case has always less paths
available than the exchange case. The situation for the C+-abstraction is rather different,
as the product composition is different. H2 has a smaller zero-point energy compared
to CH+, allowing several paths even for low collisional energies. On the other hand the
rotational level splitting is larger, thus the increase of open paths with higher energies is
slower than for the other reaction channels. If not governed by other factors, cross sec-
tions should decrease with larger collisional energy. The abstraction cross section should
be large for small total energies and decrease with larger energies. Inelastic and exchange
cross sections should be zero or small for low energies and increase with larger total en-
ergy. Both cases should behave similarly.
In the following selected mGW-QCT cross sections are discussed for inelastic collisions,
H exchange and C+ abstraction, respectively, for different initial rotational states as a
function of collisional energy. Error bars are the 2sσα

confidence intervals obtained from
equation (5.10). This error estimate is dominated by the weight w related term. The bα

and N related terms are smaller than 0.025σα and 0.004σα, respectively. The Ωα related
term, which accounts for the sα parametrisation is large, up to 0.33σα, for small total
energies. There the energy differences between rotational states are small and a smaller
sα would be needed. This would lead to a slower convergence of w, which would require
more trajectories to be calculated than feasible. To give an overview the cross sections for
the whole initial condition parameter space are shown in surface plots.
Figure 5.12 shows initial-state selected inelastic collision cross sections. For J = 0 and

Ecoll < 3.45meV these should be zero. Using the Gaussian weighting it was possible to
get the cross sections as small as approximately 1meV. The errors bars are significant for
small cross sections. This is directly related with the small fraction of trajectories with
a large weight for these cases. The cross sections are increasing for increasing J as well
as increasing kinetic energy. This is consistent with the expectations from the partition
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Figure 5.12: mGW-QCT inelastic collision cross sections. Upper: Plot for several values
of the rotational quantum number J versus the collision energy. Lower: Cross sections
versus J and collision energy.

97



5 Reactive studies of the Methylidyne cation

function considerations. For the largest kinetic energies in this work, 200meV, the cross
sections are rather constant over the rotational quantum numbers and vary between 70a2

0

and 84a2
0. For lower kinetic energies, less than 16meV, the cross sections show a max-

imum in J around J = 7 with a height of 150a2
0. It is not clear, why this maximum is

arising. For J = 10 the cross sections show only small variations depending on the kinetic
energies, around 70a2

0 to 100a2
0. For kinetic energies larger than 200meV the cross sec-

tion will decrease independent of rotational energy at some point, as the lowered impact
parameter will show its effect.

The H-exchange cross sections in figure 5.14 show, as expected, a similar low energy
behaviour like the inelastic collisions, but with some considerable differences for larger
kinetic and rotational energies. The exchange cross sections show a maximum along
changing kinetic or rotational energies for most of the parameters covered in this work.
The absolute maximum is at 134a2

0 for J = 3 and Ecoll = 16meV. One reason for the low
high energy cross section can be found in the time in complex of the trajectories. Figure
5.13 shows the times in the complex regions for a number of different trajectories. The
initial conditions in this case are J = 5 and Ecoll = 100meV. As can be seen, one fourth of
the inelastic collision trajectories have complex lifetimes of less than 10fs. These cases
are more probable for larger kinetic energies and to a smaller extent also for larger ro-
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Figure 5.13: Time in the complex region for a number of trajectories with the initial
conditions J = 5 and Ecoll = 100meV.
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tational energies. If this part is subtracted the relative partition of complex life times is
identical for all channels. Still, the exchange channel has much less trajectories. This
is unexpected, because after a certain time in the complex region all information about
initial conditions is gone and the system can not distinguish between the two hydrogen
atoms. Which one is separated in the end should be completely random.
The C+ abstraction cross sections, as shown in figure 5.15, are large at low energies with
a maximum of 350a2

0. The abstraction cross section decrease with higher kinetic energies
due to the combination of smaller impact parameters and the slower increase of the parti-
tion function. The J dependency is rather unexpected. Up to J = 7 the cross sections are
decreasing, which is expected, but afterwards, they are increasing again. At least this fits
to the decreasing cross sections of the other channels. A possible explanation might be
connected with the centrifugal distortion of the molecule. For high rotational energies the
effective binding of the molecule is decreased due to centrifugal forces. This can increase
the probability that the molecule is torn apart upon a collision with another atom.
Another possible explanation for the switching (increase/ decrease) behaviour with chang-
ing J is rotational shielding. The centre-of-mass for CH+ is near the carbon ion. If brought
into rotation the hydrogen is shielding the carbon, changing the probabilities, whether an
incoming projectile is hitting one or the other. For higher kinetic energies of the projec-
tile this is compensated. It is plausible to assume, that after a certain point, the shielding
reaches an optimum and can not be improved further. Previous publications[73, 93, 94]
claim, that the rotational shielding prefers the product channels with light atom separation.

5.3.3.3 Quantum scattering

As the reliability of QCT cross sections strongly depends on the weighting, the number
of trajectories and whether additional quantum mechanical effects are important, a cross
check with another method is useful. A series of quantum scattering calculations using the
ABC code was performed. The initial diatomic rotational quantum number was restricted
to J ≤ 5 due to computational limitations.
The inelastic collision cross sections, which are compared in figure 5.16, show a good

qualitative agreement for the cross sections with small kinetic energy, besides the J = 1
ones, which are decreased too strong by the Gaussian binning. For both methods the high
kinetic energy cross sections show a decreasing rotational dependence and seem to reach
plateau values. The ABC plateau is approximately a factor of two higher than the QCT
one, yet the overall physical behaviour is consistent.
The comparison of exchange cross sections in figure 5.17 shows much less agreement

between the methods. Both methods predict a decreasing rotational dependency over
energy, which is found in all results of this thesis, but the cross sections seem somehow
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Figure 5.16: Low energy inelastic collision cross sections from mGW-QCT (dots with
error bars) and ABC (lines) calculations.
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Figure 5.18: Low energy C+ abstraction cross sections from mGW-QCT (dots with error
bars) and ABC (lines) calculations.

tilted. The mGW-QCT low energy cross sections are overestimated due to the weighting,
especially for low rotational energies, but they stay at a much higher level for larger
kinetic energies. The ABC cross sections do not show the maximum for medium kinetic
energies, but decrease over the energy. The ABC results are more realistic in terms of
physics. As mentioned already the two major factors are impact parameters and partition
functions. While the ABC cross sections decrease as predicted by the impact parameter
with increasing collisional energy, they are increasing with rotational energies, which
reflects the increasing probability of this channel over J if a complex is formed.
Figure 5.18 shows a comparison of mGW-QCT and ABC low energy abstraction cross

sections. For J = 0 to 2 the QCT results are mostly following the ABC results. Both
methods yield similar results here. For J = 3 to 5 QCT cross sections are generally larger
than the ABC results, which implies a stronger J dependence of the abstraction cross
sections.

5.3.4 Rate coefficients

The energy range chosen in this work allows to calculate rate coefficients up to 300K. As
cross sections are only calculated for energies of 1meV and larger, their dependence for
smaller energies is unknown. Therefore, several low temperature limits (linear, constant,
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divergent) were used, where the constant and divergent limits give almost identical results.
With the exception of inelastic collisions, which do not appear for the low temperature
limit, maximal corrected rates are given as an upper bound of the real value. QCT reaction
rate coefficients are given for standard histogram binning (HB-QCT), Gaussian weighting
(GW-QCT) and the modified Gaussian weighting (mGW-QCT). ABC cross sections were
calculated up to 60 meV only. Therefore, ABC rate coefficients are restricted to 150K.
The results are compared with previous published numerical work of Halvick et al. which
is based on the Stoecklin and Halvick PES. They used GW-QCT as well as phase space
theory (PST) methods. Their maximal cross sections are larger, implying a larger max-
imal impact parameter of at least 25a0, which is approximately twice the size as in this
work.
Figure 5.19 shows inelastic collision rates from QCT and ABC calculations compared

to QCT results of Halvick et al.. The Halvick et al. coefficients are larger than the ones
in this work, besides the HB-QCT results, which are intrinsically overestimates for this
system. ABC, GW-QCT and mGW-QCT results are similar. The results of Halvick et al.

are generally larger with decreasing difference for higher temperature due their larger low
energy cross sections. Therefore, it originates from an area of the parameter space, where
both potentials can not be considered as reliable.

The picture for the exchange reaction is looking rather different, as can be seen from
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Figure 5.19: QCT and ABC rate coefficients for the inelastic collision channel. For com-
parison the QCT results of Halvick et al. are given.
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figure 5.20. Good agreement is found between PST, HB-QCT and ABC results, while all
weighted QCT results are off. The GW- and mGW-QCT results from this work have a
too steep slope and a high temperature limit, which is almost twice as high as PST and
ABC results. The low energy mGW-QCT cross sections are too small compared to the
ABC ones. On the other hand I find too large high energy cross sections. It seems that
Gaussian weighting distorts this particular channel, while the other two are improved over
HB-QCT.
Previous numerical results show a monotonic behaviour for QCT and PST abstraction

rate constants. This is in agreement with theoretical expectations and experimental re-
sults, e.g. from Luca et al.[95] and Federer et al.[96, 97]. Newer experiments from Plasil
et al.[74–76] show a different low temperature behaviour. As can be seen in figure 5.21,
where they measured small low temperature rate coefficients, e.g. 5 ·10−11 cm3s−1 at 12.2
K, which are increasing rapidly up to 60 K. For higher temperatures their measurements
coincide with results from Luca et al., which are not shown in the figure. The QCT and
ABC results from this work are generally lower than the results of Halvick et al.. Both
numerical works agree on the same level with experiment, although they are separated by
a factor of two. My results show a different behaviour for temperatures lower than 50K
as they have a positive slope. Although this work shows a drop of the reaction rate for
low temperatures, this strong decrease could not be reproduced, except for HB-QCT. Yet
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Figure 5.21: QCT and ABC rate coefficients for the abstraction reaction channel. QCT
and PST rate coefficients from Halvick et al. are shown as well. Experimental rate con-
stants from Luca et al. and Federer et al. are also included.

HB-QCT underestimated the low temperature rate coefficients as it underestimates the
corresponding cross sections. The lower reaction rate coefficients for low temperatures
in this work are caused by the relatively small impact parameters at low kinetic energies,
which are defined by the far field potential.

5.4 Recap

In this chapter the reaction dynamics of H+CH+ −−→ C+ +H2 was studied. This reac-
tion is important for the CH+ chemical equilibrium in interstellar environments containing
both hydrogen and carbon. The predicted CH+ abundances in these regions do not match
measured data. Additionally, Gerlich and co-workers presented newer experimental re-
action rates, which diverge from previous numerical expectations. This motivated the
investigation in this work.
A new potential energy surface for the H+CH+ reaction was presented. The potential
has a root mean square error of about one order of magnitude smaller than the one of
Stoecklin and Halvick. Based on this ab initio potential reaction cross sections and rate
coefficients were calculated with quasi classical trajectory (QCT) and quantum reactive
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scattering methods. The standard Gaussian weighting QCT C+ abstraction cross sections
are too small compared to quantum reactive scattering results. Therefore, a new empirical
modification, mGW-QCT, is introduced, which improves the C+ results significantly. In
this work a smaller Gaussian weighting width is used than Halvick et al. and therefore the
weighting errors for low energy cross sections is reduced. The potential and QCT results
in this work are improved compared to previous numerical work.
Discrepancies between different numerical studies indicate a high sensitivity of low tem-
perature reaction rates to the electronic potential used. Fitted ab initio potentials have
fitting errors in the order of 10meV. Depending on the functional form used, the far field
potential can be distorted from the underlying ab initio data by several meV. This can
deteriorate low kinetic energy dynamics using such a potential.
The C+ abstraction rate coefficients from mGW-QCT and ABC agree well with the stan-
dard picture for temperatures larger than 60 K. For lower temperature previous numerical
studies predict the same monotonic behaviour. This work and the experiment from Plasil
et al. show a reduced rate coefficients for lower temperatures. The experimental results
show a drastic inhibited reaction, which can not be found in this work.
This chapter demonstrated the application of computational chemical physics methods to
reaction dynamics.
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Computational chemical physics can give important input to astrophysical modelling and
other fields of physics, where molecular properties are of importance. The aim of this
work was to investigate the capabilities and limitations of ab initio based potential energy
surfaces for spectroscopic and reactive studies and to apply these methods to problems of
rovibrational and rovibronic spectroscopy and reaction dynamics.
The choice of ab initio methods and the potential fitting methods is critical for the com-
putational chemical physics, since all further quantities directly depend on their quality.
In this work modified versions of the Braams polynomial potential energy surface were
used. A series of ab initio based computational chemical physics calculations have been
performed covering spectroscopic and reactive applications of astrophysical interest. It
was possible to improve the spectroscopic data of CH4, MgH and reactive data of CH+

2 .
New partial spectroscopic data for MgH were obtained expanding the spectrum into the
near ultraviolet region.
A high level coupled cluster ab initio method was used to build potentials for a series of
small hydrocarbons. Hydrocarbons, especially of the CHx and C2Hx series, can be found
almost everywhere on earth and in the universe. They exist in laboratory plasmas, stellar
and planetary atmospheres and interstellar gases. In all these cases, light emitted or ab-
sorbed by the molecules is an important or even the only diagnostics of the system. The
potential constructed in this work partly included a cluster expansion, which adds reactant
configuration spaces to the fits. This could not be done for CH3 and higher hydrocarbons,
because of the limitations of the Coupled cluster ab initio method, which is well suited
for the potential wells, but not for the dissociation regions. The examples of methyl and
methane show how the potentials can be used for rovibrational spectroscopy. Results of
radiation transport simulations illustrate the importance of as complete-as-possible line
lists for radiation transport calculations.
The rovibronic spectroscopy of diatomic molecules is another important aspect for the
stellar atmospheric modelling. Metal hydrides and oxides add opacity to the atmosphere
in the visible light and ultraviolet frequency regions, as well as do the hydrocarbons in the
infrared one. In addition the spectra of metal hydrides/oxides can be used to gather infor-

109



Conclusions

mation about metal and their isotope abundances. They are used as markers for the condi-
tions in the atmospheres of stars. In this work a new code was developed, that efficiently
calculates bound-bound transitions between electronic states and bound-continuum cross
sections for diatomic molecules. It also offers an adequate treatment of quasi-bound rovi-
brational states. One important representative of the diatoms is magnesium hydride, MgH.
Before this work, line lists and photodissociation cross section were available involving
the three lowest doublet states of MgH. In this work new potential energy curves were
calculated and adapted to updated experimental data. This causes changes in the relative
energies between the electronic states and therefore shifts in the line lists. These are im-
portant, because accurate line positions are needed for the identification of spectral lines.
In addition two further electronic states were included in the calculations. This expands
the spectral range of MgH into the near ultraviolet region. Radiation transport models
showed significant absorption by MgH from the newly added electronic states. A sec-
ond usage of the diatomic potential energy curves are photodissociation cross sections.
As interstellar environments are chemically active, such data is necessary for a complete
picture of the ongoing processes. The photodissociation cross sections of MgH reveal a
stronger dependence of the underlying potential than the bound-bound lines. In the case
of MgH the cross sections are rather weak, besides occasional resonance lines which can
be several order of magnitudes stronger.
As mentioned, not only spectroscopic, but also reactive behaviour of molecules is impor-
tant in astrophysics. A current problem connected with this is the abundance of CH+

in interstellar clouds. Its measured abundances do not fit the predictions from theo-
retical models. In addition Gerlich and co-workers recently measured low temperature
H+CH+ −−→ C++H2 reaction rates, which diverge from the theoretical picture and which
could not be explained. In this work I built a reactive potential energy surface for the CH+

2

system, which was then used to perform extensive calculations with quasi-classical tra-
jectory and quantum scattering methods. It was found out, that the potentials used in
previous works are not accurate enough to allow low temperature calculations. Results
from these potentials must be taken with care. Furthermore, the results from the new po-
tential energy surface suggest significantly reduced reaction rates compared to previous
numerical studies. This is in agreement with the new results of Gerlich and co-workers.
Nevertheless, the large error bars in the low temperature range for experimental as well
as numerical results strongly suggest refined methods to be developed for both, before a
final conclusion can be made.
This work demonstrated the possibility of modern computational chemical physics to
supply consistent data for spectroscopy and reaction dynamics. These are necessary and
important inputs for fields like astrophysics, plasma physics and chemistry.
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Appendix A - MgH

1 Rovibrational transitions

In this appendix figures are given, which shown the rovibrational line oscillator strengths
of the four lowest doublet states of MgH. The first R branch peak in all graphs are purely
rotational transitions. Q branch transitions are forbidden by selection rule for diatomic
molecules.
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Figure 22: Rovibrational line oscillator strengths are shown for (a) X 2Σ+, (b) A 2Π, (c)
B′ 2Σ+ and (d) E 2Σ+.
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Appendix A - MgH

2 Photo dissociation cross sections

In this appendix figures for all calculated photodissociation cross sections are given. Each
figure contains all cross sections for a pair of electronic states. For each combination of
initial vibrational and rotational quantum numbers a line is drawn.

Figure 23: Photodissociation cross sections for A 2Π← X 2Σ+.
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2 Photo dissociation cross sections

Figure 24: Photodissociation cross sections for B′ 2Σ+← X 2Σ+.

Figure 25: Photodissociation cross sections for B′ 2Σ+← X 2Π.
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Appendix A - MgH

Figure 26: Photodissociation cross sections for E 2Σ+← A 2Π.

Figure 27: Photodissociation cross sections for C 2Π← A 2Π.
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2 Photo dissociation cross sections

Figure 28: Photodissociation cross sections for B′ 2Σ+← B′ 2Σ+.

Figure 29: Photodissociation cross sections for C 2Π← B′ 2Σ+.
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Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nick-
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