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Zusammenfassung

Im Verlauf der letzten Jahre hat die Bedeutung der Magnetresonanztomographie (MRT)
stark zugenommen. In der Diagnostik sowie zur Vorbereitung chirurgischer Eingriffe oder
im Rahmen neuartiger Techniken wie funktioneller Bildgebung oder MR-Angiographie
ist sie heute unentbehrlich geworden. Da die erreichbare Bildqualität in all diesen Ver-
fahren durch Artefakte limitiert wird, steigt die Notwendigkeit effektiver Korrekturver-
fahren für diese Bildstörungen.
Auch in der Krebstherapie kann die MR-Bildgebung genutzt werden. So werden am Uni-
versitätsklinikum Charité in Berlin Patienten mit einer neuartigen Therapie, der Hyper-
thermie, behandelt, die durch gezielte Erwärmung des Tumors dessen Empfindlichkeit
für Bestrahlung und Chemotherapie erhöhen soll. Zur besseren Kontrolle der dabei ap-
plizierten Energie wird der Temperaturverlauf während der Therapie mit Hilfe des MRT
überwacht (MR-Thermometrie). Da ein Kompromiss zwischen einer möglichst hohen
Endtemperatur im Tumorgebiet und dem Schutz des umliegenden gesunden Gewebes
gefunden werden muss, sind exakte und störungsfreie Temperaturmessungen von großer
Bedeutung. Leider treten auch hier Bildstörungen in Folge von Lufteinschlüssen auf und
erfordern dringend eine Korrektur. Das Ziel dieser Arbeit ist es daher, die Ursachen
und Auswirkungen dieser Bildartefakte zu untersuchen, wobei insbesondere die bei der
MR-Thermometrie auftretenden Effekte berücksichtigt werden. Die hierbei gewonnenen
Erkenntnisse werden anschließend zur Entwicklung von angepassten Korrekturverfahren
für die MR-Thermometrie genutzt. Zu diesem Zweck werden analytische, numerische
sowie experimentelle Verfahren angewandt, wobei letztere zur Validierung der entwick-
elten Korrekturmethoden eingesetzt werden.
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1 Introduction

During the last decade magnetic resonance imaging (MRI) has become a very impor-
tant tool for medical diagnostics. Recent developments enable physicians to monitor
important characteristics of the human body, such as the blood flow (MR angiography),
brain activity (functional MRI) or the concentration of metabolites (MR spectroscopy).
With the aid of these new methods MRI has become a basic instrument in other medi-
cal fields, like cancer therapy. Among many existing treatments hyperthermia is one of
the most promising for certain cancer species. This method is based on local heating
of cancer tissue up to a temperature of 43◦C making it more susceptible to additive
medical treatments like “chemo-therapy”. The use of radio-frequency allows for non-
invasive heating being one advantage of this method. The success of this therapy mainly
depends on the precision of the heating, both concerning the location and the achieved
temperature. For this reason online temperature control is mandatory which can be ac-
complished using MRI (MR thermometry). At the university hospital Charité in Berlin
patients are already treated with this procedure for several years with great success
[44, 45, 15, 16, 14, 42]. Despite these encouraging results, the method is not free of
challenges which have to be overcome to implement the technique as a standard tool for
the clinical practice. One of these challenges is to deal with image distortions, which
occur especially in the vicinity of air cavities such as the lungs or the intestinal and lead
to disturbances in the acquired temperature maps (Fig. 1.1).

These image artifacts are also known from anatomic MR images of structures in the
vicinity of metallic implants. Consequently, methods for artifact correction are of great
interest and have thus been developed and studied for many applications. First studies
date back to 1985 by Lüdeke et al [27] who discovered, that one key problem of distortion
correction is related to the determination of the magnetic field inhomogeneities. Since
that, these distortions have been tackled by several groups and solutions were proposed
using a large variety of approaches [1, 7, 25, 4, 35, 36, 22, 23]. Nevertheless, only a
few groups also applied the achieved results to experimental data to correct them [35].
Furthermore, most of them focus mainly on the correction of geometric distortions, and
thus studies related to temperature measurements are rare [37].
In this context we combine the methods used so far and emphasise their applicability
to MR thermometry. The focus will be on studying the causes of image artifacts with
respect to their temperature dependence as well as the development of correction pro-
cedures for both geometrical image artifacts and related temperature deviations.

As a consequence this work combines numerical, analytical and experimental techniques
leading to the following structure. The second chapter will give an overview over the ba-
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1 Introduction

Figure 1.1: Time temperature series acquired at the university hospital Charité in Berlin during the
EORTC study 62961. The images show a high grade soft tissue sarcoma in the right leg (left side in the
picture). As can be seen, the encircled air-cavity leads to a false temperature calculation in its vicinity.
This also disturbs the temperature control in the area nearby that is to be treated by heating it locally.

sic principles of magnetic resonance imaging, especially concerning the spatial encoding.
Based on this, the influences of magnetic field inhomogeneities on the image restoration
process are examined to find the causes of geometric image distortions. To validate the
numerical algorithm, we solve analytically Laplace’s equation for simple geometries as
a reference result. Furthermore, different methods for temperature measurements with
MRI are presented and compared. Finally, the effects of magnetic field distortions on
temperature measurements are analysed and used to derive a promising way to correct
for these deviations. The third chapter deals with the basic numerical techniques which
are applied in this work. Starting with a presentation of different numerical methods for
the solution of Laplace’s equation focusing on finite volumes and Fourier transform this
chapter also presents a self-developed unwrapping algorithm for phase images and two
different geometrical correction algorithms. The analysis of the experimental data is the
subject of the fourth chapter which also includes a discussion of the signal-to-noise-ratio
of the acquired images. Additionally, the effect of an altered readout bandwidth on the
image quality is examined and the susceptibility of a mixture used in the experiment is
calculated. The fifth chapter presents the results obtained by combining experiment and
numerical modelling concerning the magnetic field and temperature. Finally, we con-
clude by summarising the achieved results and proposing possible further applications
and developments.
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2 Basic physics

This chapter will provide the principles of magnetic resonance imaging. Thus, the in-
fluences of magnetic field inhomogeneities on the imaging process will be explained in
detail. Afterwards, various methods for temperature measurements with MRI will be
described and evaluated. Finally, a method for the correction of temperature maps in
the presence of field deviations is presented.

2.1 Spin dynamics

2.1.1 Spins

Basic quantum mechanics tells us that elementary particles like electrons, protons and
neutrons possess, in addition to the classical known angular momentum, an intrinsic
property called spin which is a quantity related to the symmetry of the particle with
respect to rotations around its axis. As MRI mainly works with protons we will further
concentrate on them. The z-component of the spin of a proton can only take the two
distinct values sz = +1

2 and sz = −1
2 corresponding to “spin up” or “spin down”.

This also corresponds to two different energy states in the hyperfine structure of the
hydrogen atom divided only by an energy difference ∆E on the order of µeV (Fig. 2.1
a). In thermal equilibrium1 the distribution of spins within a sample can be described
by the Boltzmann distribution

n↑

n↓

= e−
∆E
kT (2.1.1)

1The thermal equilibrium of a system defines a balanced state and is characterised by the minimum of
a thermodynamic potential.

9
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Figure 2.1: a) Energy states for a spin 1/2 system like hydrogen divided by an energy gap of ∆E.
b) Precession of a proton spin around the direction of an external magnetic field with the Larmor
frequency ω0.

2.1.2 External magnetic field

If we apply an external homogeneous magnetic field ~B = B0~ez, for convenience into the
z direction to a probe of protons, the spins will align along the direction of the magnetic
field and precess with the Larmor frequency (Fig. 2.1 b)

ω0 = γ B0 , (2.1.2)

where γ = 2.67522205 · 10−8s−1T−1 denotes the gyromagnetic ratio of the proton. An
additional high frequency pulse with the resonance frequency ω0 will induce a transition
between adjacent energy levels resulting in a spin flip (Fig. 2.2). Depending on the
duration of this pulse the number of spin-flips in the sample increases leading to a
change in the ratio between “spin up” and “spin down”.

ω0

0ω ω0
excitation relaxation

MR−signal

RF−pulse

Figure 2.2: Principle of spin excitation. An applied RF-pulse induces a spin flip. After some time
relaxation takes place leading to a change in magnetisation with time. This can be detected as an
induced voltage which is the MR signal.

10



2.1 Spin dynamics

z

LM

y
M T x

ω0

M xy

t

Figure 2.3: Effect of a high frequency pulse with resonance frequency ω0. The magnetisation vector M
is switched into the xy-plane giving rise for a transverse magnetisation MT . As relaxation takes place
the transverse magnetisation decreases again which can be detected as a sinusoidal signal, the so-called
free induction decay.

As a result the macroscopic magnetisation vector is turned from the z-direction into the
xy-plane (Fig. 2.3), where the angle between the new direction of the magnetisation
vector and the z-axis is called flip angle. After some time the longitudinal magnetisation
will recover again. This process is influenced by two effects. Due to spin-lattice interac-
tions the magnetisation vector will turn back into the z-direction reducing the transversal
magnetisation (Fig. 2.4). Additionally the spins in the xy-plane are dephasing under
the influence of spin-spin interactions (Fig. 2.5). Both effects are characterised by the
longitudinal relaxation time T1 and the transverse relaxation time T2, respectively. The
resulting so-called free induction decay of the transverse magnetisation can be detected
by the induction voltage in receiver coils nearby generating such the MR signal. As the
strength of the signal depends on the excess of “spin up” to “spin down”, according to
(2.1.1) this leads to a very weak signal. At room temperature this relation is close to
one. Hence, the fraction of protons that remains for signal production is only in the
order of 10−6.
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M z

0M

txy

z

Figure 2.4: Interaction of the spin with its molecular neighbourhood increases the longitudinal mag-
netisation Mz again. This process is characterised by the longitudinal relaxation time T1.
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z

Mxy
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t

t

Figure 2.5: Spin-spin interactions result in a locally varying precession frequency which gives rise to
a dephasing in the xy-plane. Here mi denotes the magnetic moment of a single spin. This leads to a
decreasing transverse magnetisation which is characterised by the transverse relaxation time T2.
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0ω

ω

∆ω

z

∆z

z0 z

G  z

Figure 2.6: Principle of slice selec-
tion. A gradient Gz along the z direc-
tion changes the local magnetic field
linearly. An applied RF-pulse with
a certain bandwidth ∆ω will excite a
slice with thickness ∆z.

2.2 Spatial encoding

The described principle works very well. But how can we find out from where the signal
originates? At this point we have to consider the local magnetic field structure which is
the sum of a constant contribution B0 plus the gradient terms

~G = (Gx, Gy, Gz)
T =

(

∂Bz

∂x
,
∂Bz

∂y
,
∂Bz

∂z

)T

. (2.2.1)

Consequently, the local magnetic field is

~B(~r) =
(

B0 + ~r · ~G(~r, t)
)

~ez . (2.2.2)

The basic principle of spatial encoding [28] using these gradients is the subject of this
section.

2.2.1 Slice encoding

If we do not want to excite the whole volume but only a single slice of the object we
have to tailor the RF-pulse accordingly. With a suitable pulse it is possible to excite all
spins precessing with a Larmor frequency ω∗ in the range ω0 −∆ω/2 ≤ ω∗ ≤ ω0 +∆ω/2
where ∆ω denotes the bandwidth of the radio-frequency pulse. An additional linear
gradient Gz along the z-direction changes the magnetic field locally. Thus, all spins
precess with the changed Larmor frequency ω∗ corresponding to the new local magnetic
field ~B = B0~ez + Gz~z. Consequently, when the RF-pulse is applied only the spins in a
slice of thickness ∆z which precess with the right frequency are excited (Fig. 2.6).

13



2 Basic physics

Figure 2.7: Principle of frequency
encoding. A gradient along the x-
axis changes the Larmor frequency of
the spins dependent on their position
along the readout direction.

Bx

∆z
x

y

2.2.2 Frequency encoding

After a slice has been chosen there is still no information available about the origin of
the signal within the xy-plane. For this purpose an additional gradient Gx along the
x-axis, generally denoted as the readout or frequency encoding direction, is applied (Fig.
2.7), leading to an altered magnetic field ~B = B0~ez + Gxx~ez. This changes the Larmor
frequency of the spins in dependence of their position along the readout direction.

ω(x) = ω0 + γ

tacq
∫

0

Gx(τ)xdτ (2.2.3)

Here tacq denotes the acquisition time. Therefore, the measured signal contains a spec-
trum of frequencies which can be used to decode the exact position in one dimension by
means of a Fourier transform.

2.2.3 Phase encoding

The position encoding along the y-axis, denoted as phase encoding direction, is accom-
plished by a third gradient Gy along this direction. The locally varying magnetic field
~B = B0~ez +Gyy ~ez induces a spin dephasing which leads to a spatially varying phase for
each spin. The resulting phase change depends on the duration of the gradient tph

Φ(y) =Φ0 +

tph
∫

0

Gy(τ)y dτ (2.2.4)

with Φ0 = ω0tacq .

14
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By

∆z
x

y
y

x

Figure 2.8: Principle of phase encoding. A gradient along the y axis causes a spin dephasing which
results in a phase depending on the position of the spin along the phase encoding direction.

2.3 Basic sequences

2.3.1 Spin echo

Based on the results of Sect. (2.1) we now want to apply these basic concepts to image
acquisition. The mentioned free induction decay (FID) gives a MR signal which however
is relatively weak. Therefore, already in the middle of the last century another method
for image acquisition based on a stimulated signal was implemented [17]. Figure 2.9
shows the basic scheme for the so called spin echo sequence (SE). The spins in a specific
slice are excited by a RF-pulse of 90◦ which turns the magnetisation into the xy-plane.
Now the usual relaxation effects take place reducing the transverse magnetisation. In
contrast to the FID after half of the so-called echo time TE an 180◦ inversion pulse is
applied which is equivalent of mirroring the magnetisation at the xy-plane. This pulse
now has an interesting effect on the dephasing of the spins. It induces a re-phasing of
the spins which finally leads to an echo at time TE . After the acquisition time TR the
sequence is finished and can be started again.
Due to the mentioned 180◦ refocusing pulse all influences arising from local field in-
homogeneities are also compensated which makes the spin echo sequence very robust
against artifacts. One disadvantage is that it is very slow due to the number of applied
RF-pulses.

2.3.2 Gradient echo

The search for a faster acquisition method led to the development of the gradient echo

sequence (GE) which in contrast to the SE sequence does not include an inversion pulse
(Fig. 2.10). Thus, a shorter acquisition time is achieved but on the other hand de-
phasing effects due to field inhomogeneities are not refocused at TE which leads to a
higher sensitivity for artifacts. Another interesting consequence arising from the lack of
refocusing is a non-vanishing signal phase which will be very important for this work.

15
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E/2T E/2T

G x

G

G

y

z

RF

π /2

S

π

TR

Figure 2.9: Diagram of the spin echo sequence. After a 90◦ excitation pulse (RF-pulse) a 180◦ inversion
pulse at half of the echo time TE re-phases the spins inducing a spin echo (S) after the echo time TE .
During the course of the sequence, slice encoding gradients Gz, phase encoding gradients Gy and readout
gradients Gx are applied to ensure the correct spatial encoding. At the end of the acquisition time TR
a new sequence starts.

G x

G

G

y

z

RF

S

TR

α

TE

Figure 2.10: Diagram of the gradient echo sequence. After an excitation pulse (RF) with flip angle α
the echo at the echo time TE is induced by switching the gradients Gx in the readout direction. Again
spatial encoding is accomplished by the gradients Gz and Gy in the slice encoding and the phase encoding
direction, respectively. After the acquisition time TR a new sequence can start.
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2.4 Image reconstruction

By Bx

φre
φph

∆z

Figure 2.11: Due to the frequency and phase encoding gradients the spins in the image plane have
position dependent phases.

2.4 Image reconstruction

For the case of a simple spin echo (2.3.1) and neglected relaxation effects at the moment
of data acquisition the spins precess with spatially dependent phases Φph along the phase
encoding and Φre along the frequency encoding direction (Fig. 2.11):

Φph = γ

tph
∫

0

Gy(τ)y dτ

Φre = γ

tacq
∫

0

Gx(τ)xdτ

The resulting signal depends on the spatial magnetisation distribution m(x, y) and reads

MT (tacq, Gy) =
1√
2π

∫ ∫

slice

m(x, y)eiΦreeiΦph dxdy . (2.4.1)

If we rewrite the phases as Φre = kxx, Φph = kyy it becomes obvious that they define
the position within a frequency space with coordinates

kx = γ

tacq
∫

0

Gx(τ) dτ , ky = γ

tph
∫

0

Gy(τ) dτ .
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As these quantities have the dimension of an inverse length the largest appearing k values
define the image resolution in the spatial domain

∆x =
2π

kmax
x

, ∆y =
2π

kmax
y

,

where ∆x and ∆y denote the resolution in the x and y direction. In combination with
the slice thickness ∆z, which is influenced by the bandwidth of the RF-pulse and the
slice selection gradient (2.2.1), the smallest resolvable volume element (“voxel”) ∆V is
given by

∆V = ∆x∆y ∆z . (2.4.2)

On the other hand the image size is given by the smallest k values k min
x and k min

y and
often denoted as the field of view (FOV)

FOV = Nx ∆xNy ∆y , (2.4.3)

where we have assumed a 2D image consisting of Nx pixels in the x- and Ny pixels in
the y-direction. Finally, the required complex image of a slice in the spatial domain can
be obtained as the result of a simple two dimensional Fourier transform.

m(x, y) =
1√
2π

∫ ∫

MT (kx, ky) e−ikxx e−ikyy dkxdky . (2.4.4)

18



2.5 Influence of field inhomogeneities

Figure 2.12: Simulation of the distortion of the MR image by a circle of susceptibility χi = −100 ·10−6

in a medium of susceptibility χe = 0 on a grid with 256×256 data points.

2.5 Influence of field inhomogeneities

The spatial encoding as outlined in Sect. (2.2) is only valid for the ideal case of an
entirely homogeneous main magnetic field B0 and linear gradients. This is never the
case because for the neglect of eddy currents (2.2.2) does not fulfil the Maxwell equation
~∇×~B = 0 which always introduces some problems due to gradient non-linearities [21].
Additionally every object that is brought into the area of the main magnetic field leads
to local field changes. Usually a calibration prior to the measurement (“shimming”)
removes deviations down to 10−6 T which is sufficient for the imaging process. However
in the case of magnetic materials or air, larger field deviations remain, leading to some-
times severe image distortions (Fig. 2.12).
During the spatial encoding magnetic field inhomogeneities ∆B have a similar effect as
the gradients and lead to locally changing precession frequencies of the spins. Because
∆B � B0 holds for these field deviations, ∆B can be regarded as only having a z-
component. As the scanner cannot distinguish between the effects of gradients and field
inhomogeneities this results in false spatial encoding [27, 35].

2.5.1 Slice selection

If a slice at position z = z0 is to be selected a gradient field (z − z0)Gz is applied. As a
result a RF-pulse with carrier frequency ω0 and bandwidth ∆ω excites all spins which
satisfy the equation

ω0 − ∆ω ≤ ω∗ ≤ ω0 + ∆ω with ω∗ = γ (B0 + (z − z0)Gz) . (2.5.1)

In the presence of field inhomogeneities ∆B this condition changes accordingly
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2 Basic physics

ω′
0 − ∆ω ≤ (ω∗)′ ≤ ω′

0 + ∆ω with (ω∗)′ = γ
(

B0 + ∆B + (z′ − z0)Gz

)

. (2.5.2)

Consequently all voxels z’ with

z0 −
∆ω

γGz
≤ z′ +

∆B

Gz
≤ z0 +

∆ω

γGz
(2.5.3)

are influenced by the excitation pulse leading to a voxel shift

∆z =
∆B

Gz
. (2.5.4)

2.5.2 Frequency encoding

To find the voxel position along the readout direction x a gradient is applied, which
leads to the modified magnetic field

Bz = B0 + xGx .

An additional inhomogeneity ∆B changes the Larmor frequency of a spin at position x0

according to

ω′
0 = γ (B0 + ∆B + x0Gx) . (2.5.5)

Consequently it will be assigned to a position x′ which fulfils the resonance condition

ω′
0 = γ

(

B0 + x′Gx

)

.

The result is a voxel shift

∆x =
∆B

Gx
. (2.5.6)

2.5.3 Phase encoding

In a spin echo sequence (2.3.1) the dephasing effects of magnetic field inhomogeneities
are refocused by the 180◦ pulse. Therefore, there is no effect on the phase encoding.
As in a gradient echo sequence there is no refocusing pulse, the effects of the field
deviations accumulate during the acquisition. As a result the phase after echo time
TE reads

Φ = Φ0 + γ ∆B TE . (2.5.7)

This has several consequences. If the phases of the spins within one voxel add to zero
(intra-voxel dephasing) no signal from this voxel can be detected. As a result, in addi-
tion to the already mentioned geometrical shift, gradient echo images show flower-like
distortions close to susceptibility boundaries (Fig. 2.13).
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Figure 2.13: Left: GE double echo image of an air-filled cylinder (χ = 0.38 · 10−6) with high band-
width (TR=600ms, TE =(3.77/10.8)ms, 10 slices à 5.5mm, FOV=(280×192)mm2, BW=930 Hz/pixel);
Right: GE double echo image of a cylinder filled with contrast agent Magnevist (χ ≈ 3.6 · 10−5) with
low bandwidth (TR=600ms, TE =(3.77/10.8)ms, 10 slices à 5.5mm, FOV=(280×192)mm2, BW=260
Hz/pixel). In the right image the susceptibility difference leads to both geometric distortions as well as
signal cancellation due to intra-voxel dephasing.

2.6 Temperature measurements

In addition to the possibility of getting information about the relaxation properties of
the tissue in the human body, the MR signal also contains information about several
other quantities. As an example, many parameters in MR imaging are temperature
dependent and can be used for measurements [8]:

• diffusion coefficient

• longitudinal relaxation time T1

• proton resonance frequency

2.6.1 Molecular diffusion coefficient

The molecular diffusion coefficient D is known to change with temperature, as

D ∼ e−Ea/kT , (2.6.1)

which leads to the following temperature dependence

1

D

dD

dT
=

Ea

kT 2
. (2.6.2)

21



2 Basic physics

The activation energy Ea is relatively high, about 0.2 eV, resulting in a high sensitiv-
ity of 2.4 %/◦C over a large temperature range [6]. Despite this good resolution, the
applicability of this method is limited [3]. Membranes and other structures influence
the diffusion of water in the body. Furthermore, the mobility of the water molecules
strongly depends on the temperature and is direction-dependent. Therefore, for a com-
plete description the full diffusion tensor has to be known. As the diffusion coefficient is
strongly influenced by microcirculation of blood it is very difficult to extract the effect of
temperature. Finally, this method is very sensitive to motion because it is based on the
measurement of diffusional displacements between successive scans. Absolute tempera-
ture measurements are theoretically possible by acquiring several images with varying
diffusion weighting constant in the sequence to calculate the exact value of D with a
multi-point fit. In the human body this is not applicable because important character-
istic parameters like the strength of the blood flow and the temperature dependence of
the tissue perfusion are not known and differ from person to person.

2.6.2 Longitudinal Relaxation time

Similar to the diffusion coefficient the longitudinal relaxation time T1 shows the temper-
ature dependence

T1 ∼ e−Ea/kT (2.6.3)

with an activation energy Ea in the range of 0.6 to 1.5 eV. Hence the temperature
dependence of D is approximately linear with a sensitivity of (0.8-2.0)%/◦C [29, 18] which
is slightly lower than for the diffusional case. Even though T1-weighted images are easily
acquired the direct measurement of longitudinal relaxation times is difficult and requires
multiple measurements and fast gradient software to acquire T1 as a result of a fit.
Recently also faster sequences with higher accuracy like the TOMROP sequence (T One
by Multiple Read Out Pulse) have been applied to this case [43]. Once carried out this
method allows for absolute temperature measurements in phantoms. Nevertheless the
T1 method has some disadvantages. Namely, the longitudinal relaxation time is tissue
dependent and also changes strongly if coagulation occurs. Additionally its accuracy
decreases with growing field strength and it is very sensitive to motion and susceptibility
artifacts. For this reasons absolute temperature measurements in the human body are
difficult because even small displacements lead to artifacts due to the tissue dependence
of T1.

2.6.3 Proton resonance frequency shift

The screening constant due to orbital electrons of the atoms increases with temperature,
leading to a decrease in the local magnetic field and hence to a shift in the proton reso-
nance frequency (PRF) of water. Up to 50◦C, the PRF varies linearly with a temperature

sensitivity of ∂δ(T )
∂T of 0.0107 ppm◦K−1 in pure water [19] and 0.007 to 0.009 ppm◦K−1

in muscle and other tissues. The PRF of fat is shown to be approximately independent
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of temperature. Furthermore, the temperature dependent screening σ has an effect on
the image phase

Φ = −γB0 σ(T )TE

= γB0(−σ0 −
∂δ(T )

∂T
· T )TE . (2.6.4)

As σ0 is usually not known two phase images are subtracted to yield the temperature
change compared to a reference image. Secondly, also phase changes due to field inho-
mogeneities are removed.

∆T = − ΦT − Φ ref

γB0
∂δ
∂T TE

. (2.6.5)

Apart from the fact that it is only possible to measure temperature differences the PRF
method shows high accuracy and is easy to implement. Usually a gradient echo image
with enabled phase image is acquired before and after heating. After subtracting the
phase values the temperature change is extracted applying (2.6.5). Nevertheless, this
approach still leaves unsolved problems. For example, the velocity of the high frequency
field depends on the temperature of the medium leading to phase and temperature
disturbances in areas of high temperature gradients. Hence, one improvement of the
method is the use of a double echo sequence which allows to remove disturbing effects
which are not dependent on the echo time [14]. This approach works in all tissues
and is not influenced by alterations like necrosis caused by coagulation. Of course, the
use of GE sequences makes this method very sensitive to susceptibility artifacts. Even
though the effects on the phase are eliminated by the subtraction, signal void and pixel
displacements are always a problem.
Nevertheless for the application in hyperthermia treatment covering a temperature range
up to 43◦C and the necessity for high accuracy the PRF method is the best choice
[43, 3, 34] and will therefore be applied in this work.

2.6.4 Further methods

MR-spectroscopy Via MR-spectroscopy it is possible to measure the proton resonance
frequency shift directly enabling an absolute temperature measurement. Unfortunately
the measured shift depends on the ratio between water and fat within the pixel. As this
is difficult to determine, the applicability of this method is rather limited.

Temperature sensitive contrast agents Recently, contrast agents have been devel-
oped which are temperature sensitive either due to incorporated temperature sensitive
liposomes or because of their intrinsic magnetic properties that lead to a temperature
induced transition from the diamagnetic to the paramagnetic state [13, 2]. Even though
this ansatz seems to be very promising the strong nonlinear temperature dependence is
one disadvantage that has to be solved first.
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2.7 Analytical solutions of Laplace’s equation for simple

objects in an external field

According to Sect. (2.5) the correction of geometrical distortions requires the knowledge
of the local magnetic field. For this reason we first have to derive a basic formalism from
where we can start to calculate the magnetic field by means of analytical or numerical
methods.

2.7.1 Derivation of Laplace’s equation

The magnetic field at the location of the nucleus is determined by three components

~Bnuc(~r) = ~Bext(~r) + ~Bscr(~r) + ~Blor(~r) . (2.7.1)

• ~Bext(~r): external magnetic field in medium of susceptibility χ(~r)

~Bext(~r) = µ0 (1 + χ(~r))
(

~H0(~r) + ~hin(~r) + ~hobj(~r)
)

(2.7.2)

~H0(~r): homogeneous main field, ~H0(~r) = (H0, 0, 0)
~hin(~r) magnetic field inhomogeneities
~hobj(~r) demagnetising field of the object

• ~Bscr(~r): screening by the orbital electrons

~Bscr(~r) = −σ ~Bext(~r) (2.7.3)

σ is the screening coefficient.

• ~Blor(~r): effect of the sphere of Lorentz [26, 12, 9]. This term accounts for the
fact that it is not possible to assume a continuous medium, as done in Maxwell’s
equations, while thinking microscopically. Rather, the existence of discrete atoms
and molecules has to be considered. For this purpose the nucleus is placed inside
an imaginary sphere where coincidental magnetic fluctuations lead to an effective
zero susceptibility. The resulting magnetic field shift is given by

~Blor(~r) = −2

3
χ(~r) ~Bext(~r) . (2.7.4)

Combining the given quantities we get the resulting magnetic field at the location of the
nucleus.

~Bnuc(~r) =

(

1 − σ − 2

3
χ(~r)

)

~Bext(~r)

= µ0 (1 + χ(~r))

(

1 − σ − 2

3
χ(~r)

)

~Hext(~r) .
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As χ(~r) is a small quantity and ~hin(~r),~hobj(~r) � B0 we can neglect higher order terms.
The same argument holds for the transverse components of the magnetic field. Hence,
we can assume Bnuc ≈ Bnuc,z.

Bnuc ≈ Bnuc,z ≈ µ0H0

(

1 − σ +
1

3
χ(~r)

)

+ µ0hin,z + µ0hobj,z

≈ B0

(

1 − σ +
1

3
χ(~r)

)

+ bin,z + bobj,z . (2.7.5)

From classical electrodynamics [21] we know ~∇×~H(~r) = ~j(~r). As we do not use strong
gradients in our measurements, we can neglect eddy currents in our derivations. Conse-
quently, we can define a scalar magnetostatic potential for which ~H(r) = −∇ · Φ holds.
Maxwell’s equations also contain the following expressions

~∇ · ~B ext(~r) =µ0
~∇ ·
(

(1 + χ(~r)) ~H(~r)
)

= −µ0
~∇ ·
(

(1 + χ(~r))~∇ · Φ(~r)
)

= 0

=⇒ ~∇ · χ(~r)~∇ · Φ(~r) + (1 + χ(~r))~∇2 · Φ(~r) = 0 . (2.7.6)

Now the magnetostatic potential can be found by just adding the different contributions

Φ = Φ0 + Φin + Φobj with Φ0 = −H0z .

With (2.7.6) we get

−H0
∂χ(~r)

∂z
− ~∇ · χ(~r)

(

~hin(~r) + ~hobj(~r)
)

+ (1 + χ(~r))
(

~∇2 · Φin(~r) + ~∇2 · Φobj(~r)
)

= 0 .

As this equation has to be valid also without any disturbing object, i.e. for χ = 0, Φobj =

0, the condition ~∇2 · Φin = 0 must hold. If we neglect again higher order terms we find
the final equation that has to be solved

~∇2Φobj(~r) = −H0
∂χ(~r)

∂z
. (2.7.7)

2.7.2 Solutions of Laplace’s equation using Fourier transform

The discrete Fourier transform of Φobj and χ(~r) is defined in the standard way

F (Φ̃obj(~r)) = Φobj(~k) =
∑

k

Φobj(~r)e
−i~k~r ,

F (χ̃(~r)) = χ(~k) =
∑

k

χ(~r)e−i~k~r .
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Using

~∇2Φobj(~k) = −k2Φobj(~k) ,

∂χ(~k)

∂z
= −ikzχ(~k) ,

the Fourier transform of (2.7.7) reads

Φobj(~k) = −iH0
kz

k2
χ(~k) . (2.7.8)

As we are looking for a solution for hobj,z, we find

hobj,z = −∂Φobj

∂z
= −F

−1
[

ikzΦobj(~k)
]

= −H0F
−1

[

k2
z

k2
χ(~k)

]

, (2.7.9)

which leads to the final solution for the magnetic field at the location of the nucleus

Bnuc,z = µ0H0 + µ0hin,z + µ0H0

(

−σ + F
−1

[(

1

3
− k2

z

k2

)

χ(~k)

])

. (2.7.10)

2.7.3 Analytical solution for simple geometries

For a sphere with homogeneous susceptibility χi surrounded by a medium of suscepti-
bility χe we find for the magnetic field at the position of the nucleus inside the sphere
Bnuc,i(~r) and outside the sphere Bnuc,e(~r) (A.1.12)

(Bnuc,i)x = (bin)x

(Bnuc,i)y = (bin)y

(Bnuc,i)z = B0
3 + 3χi

3 + 2χe + χi
+ (bin)z − B0

(

σ +
2

3
χi

)

(Bnuc,e)x = −B0
χe − χi

3 + χi + 2χe
a3 xz

r5
+ (bin)x

(Bnuc,e)y = −B0
χe − χi

3 + χi + 2χe
a3 yz

r5
+ (bin)y

(Bnuc,e)z = B0

(

1 − χe − χi

3 + χi + 2χe
a3 2z2 − x2 − y2

r5

)

+ (bin)z − B0

(

σ +
2

3
χe

)

.

(2.7.11)

In the case of an infinitely long cylinder of susceptibility χi in a medium of susceptibility
χe we get for the magnetic field inside the cylinder Bnuc,i(~r) and outside Bnuc,e(~r) (A.2.14)
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(Bnuc,i)x = B0 +
3χe − χi + 2χiχe

6 + 3χi + 3χe
B0 − B0σ + (bin)x

(Bnuc,i)y = (bin)y

(Bnuc,i)z = (bin)z

(Bnuc,e)x = B0 + B0a
2 (χi − χe)

(2 + χi + χe)

(x2 − y2)

ρ4
+

1

3
χeB0 − B0σ + (bin)x

(Bnuc,e)y = B0a
2 (χi − χe)

(2 + χi + χe)

2xy

ρ4
+ (bin)y

(Bnuc,e)z = (bin)z . (2.7.12)

2.8 Magnetic field inhomogeneities and temperature

measurements

After we have discussed the effects of magnetic field inhomogeneities on the spatial
encoding in (2.5) and the available procedures for temperature measurements in (2.6)
we now want to examine the influence of field changes on temperature maps acquired
with the PRF method. As outlined in the previous sections (2.5.7) and (2.6.4) the phase
in the presence of field inhomogeneities reads

Φ(T (~r), ~r) = γ TE (−B0σ(T (~r)) + ∆B(~r)) . (2.8.1)

Here we have neglected the term containing ∆B(~r)σ(T (~r)) as it is a very small quantity.

On the other hand if we also take into account the temperature dependence of the
magnetic susceptibility, the field deviations are not constant with temperature any more.
Consequently in contrast to the simple case with a non-varying susceptibility where the
phase change is given by

∆Φ(~r) =γ TE

(

−B0 ·
∆δ

∆T (~r)
(T2(~r) − T1(~r)) + ∆B(~r)

)

=γ TE B0

(

− ∆δ

∆T (~r)
+

1

B0

∆B(~r)

∆T (~r)

)

∆T (~r), (2.8.2)

and ∆T (~r) = T2(~r) − T1(~r), we now get a more complicated expression

∆Φ(~r) = γ TE

[

∆B(T2(~r)) − ∆B(T1(~r))

∆T (~r)
− B0

∆δ

∆T (~r)

]

∆T (~r) . (2.8.3)

Here a closed solution of the problem for a correction procedure is not possible. Hence,
we have to apply some simplifications. After Fourier transform (2.8.2) reads
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∆Φ(~k) = γ TE B0

[

−∂δ(T (~k))

∂T (~k)
+

1

B0

∆B(T (~k))

∆T (~k)

]

∆T (~k) . (2.8.4)

Considering the solution for ∆B in (2.7.10)

∆B(~k) = B0

(

1

3
− k2

z

k2

)

χ(~k)

and assuming a linear temperature dependency of χ(T ) and δ(T ) we obtain the correct
temperature change.

∆T corr(~k) = −∆Φ(~k)

(

γ TE B0
∂δ

∂T

[

1 −
(

∂δ

∂T

)−1 ∂χ(T (~k))

∂T

(

1

3
− k2

z

k2

)

])−1

(2.8.5)

Without this correction procedure one would calculate the temperature change as

∆T meas(~k) = −∆Φmeas(~k)

γ TE B0
∂δ
∂T

. (2.8.6)

Combining (2.8.5) and (2.8.6) we find an expression which can be used to correct tem-
perature maps with respect to the influence of the magnetic susceptibility [37].

∆T meas(~k) =

[

1 −
(

∂δ

∂T

)−1

· ∂χ(T (~k))

∂T

(

1

3
− k2

z

k2

)

]

∆T corr(~k) . (2.8.7)

Even though this result seems to be very promising its applicability is very limited due to
the assumptions made. A linear temperature dependence of χ(T ) is usually not existing.
It has been shown that this condition is approximately fulfilled for pure water with a
temperature dependence of ∂χ

∂T ≈ 3 · 10−9K−1 [31]. Examining the exact temperature
dependence of water [32]

χwater(T ) = χ0[1+a(T − T0) + b(T − T0)
2 + c(T − T0)

3] (2.8.8)

with a =1.38810 · 10−4 K−1

b = − 1.2685 · 10−7 K−2

c =8.09 · 10−10 K−3

T0 =273.15K

χ0 =χ(T0) = −9.09 · 10−6

28



2.8 Magnetic field inhomogeneities and temperature measurements

0 20 40 60 80 100
T [°C]

-9.16×10-6

-9.14×10-6

-9.12×10-6

-9.10×10-6

-9.08×10-6

-9.06×10-6

-9.04×10-6

χ

0 20 40 60 80 100
T [°C]

2.5×10-7

3.0×10-7

3.5×10-7

4.0×10-7

4.5×10-7

χ

0 20 40 60 80 100
T [° C]

-3.0×10-9

-2.5×10-9

-2.0×10-9

-1.5×10-9

-1.0×10-9

dχ
/d

T 
[1

/°C
]

water
air

Figure 2.14: Temperature dependence of the susceptibilities of water and air. Top left χ(T ) for water;
Top right χ(T ) for air; Bottom: ∂χ/∂T for air (red dotted line) and water (black line)

we found a different value of ∂χ
∂T ≈ −1.23 · 10−9/◦C for a temperature of 37◦C. As

most tissues in the body show similar magnetic properties like water this relationship
also holds for them. In contrast, the susceptibility of air shows a stronger temperature
dependence [41].

χair(T ) = χ(293.15K)

(

293.15K

273.15K + T [K]

)2

, χ(293.15K) = 0.38 · 10−6 . (2.8.9)

Consequently, it is more difficult to treat air-filled cavities with this approach because
the linear assumption for χ(T ) does not hold any more. In Fig. 2.14 we can see clearly
that for water the temperature dependence is constant over a large temperature range,
whereas ∂χ

∂T for air still changes by approximately 2 · 10−10 K−1. Likewise, all kind of
magnetic materials show more complex temperature dependencies and have to be treated
differently.
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2.9 Subsumption

In this chapter the principles of MR imaging and temperature measurements were in-
troduced. The proton resonance frequency method seems to be the best choice for our
applications and delivers temperature information via the expression

∆T =
ΦT − Φ ref

γ B0 δ(T )TE
.

Furthermore, the effects of field deviations on the spatial encoding were explained yield-
ing one fundamental equation for the pixel displacement in the presence of a field inho-
mogeneity ∆B

∆x =
∆B

Gx
.

Finally, the influence of temperature dependent susceptibilities was discussed. This
allows the development of correction procedures for both geometrical distortions and
temperature deviations.
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In the previous chapter we discussed the causes of image distortions and possibilities to
correct them. All these correction procedures require the knowledge of the local magnetic
field. There exist many different approaches to solve this problem which can generally
be divided into two categories. One uses the general solution of Laplace’s equation in
integral form for a general susceptibility distribution and solves this equation for the
magnetic field. This can be done by the use of finite elements [1], the uniqueness of
the solution of boundary value problems [25] or by restriction to simple geometries like
cylinders or spheres [7]. The other group tries to solve Laplace’s equation directly for
a given susceptibility distribution with the help of iterative solvers [4, 35] or Fourier
transform [36, 22, 23]. In this work, we solve Laplace’s equation by means of finite
volumes and Fourier transform. The basic principles of these methods will be explained
and validated by comparison with analytical results.
The application of the PRF approach for temperature measurements requires unwrapped
phase images. Hence, in a second part of this chapter a new algorithm for this purpose
is presented and applied to experimental data. Finally, the previously derived basic
equation for geometrical distortions is utilized in two different correction procedures
which are evaluated and compared in connection with experimental data.

3.1 Finite volumes

n

ΓΩ

Figure 3.1: Integration
volume Ω, edge Γ and the
surface normal ~n

The solution of partial differential equations by finite volume
methods is based on the application of the Gaussian integral
theorem (Fig. 3.1):

∫

Ω

~∇ · ~f d~r =

∫

Γ

~f · ~n ds . (3.1.1)

The Gauss’ theorem allows to reduce the required order of
the derivative to be calculated by one (from second to first),
because instead of calculating the divergence of the fluxes ~f
integrated over the volume of one element the sum of the fluxes
integrated over the boundary surfaces of these elements needs
to be known. Consequently, the solution of Laplace’s equation

for the magnetostatic potential Φ in one dimension is given by the following expression,
where the subscripts e and w denote the integrated value of the derivative over the
eastern and western boundary surface of the volume element, respectively.

d

dx

(

µ
dΦ

dx

)

= 0 ⇒
(

µ
dΦ

dx

)

e

−
(

µ
dΦ

dx

)

w

= 0 . (3.1.2)
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Figure 3.2: Metrics of the grid in 1D.

Transferring this to a discrete grid using first order Taylor expansion we obtain

µe (ΦE − ΦP)

(δx)e
− µw (ΦP − ΦW)

(δx)w
= 0 , (3.1.3)

where e(east) and w(west) denote the values of the potential on the interface between
two adjacent cells (Fig. 3.2). Finally, a simplified expression reads

aPΦP = aEΦE + aWΦW

aE =
µe

(δx)e
, aW =

µw

(δx)w
, aP = aE + aW . (3.1.4)

The permeabilities on the interfaces have to be calculated for the fluxes B = µ · µ0
~∇ ·Φ

through the interfaces based on the values of µ in the adjacent cells.

µe =

(

1 − fe

µp
+

fe

µe

)−1

with fe =
(δx)e+
(δx)e

.

For fe = 0.5 we obtain the harmonic mean of the neighboring permeabilities

aE =

(

(δx)e−

µp
+

(δx)e+

µe

)−1

.
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3.1.1 Generalization to three dimensions

The generalization to three dimensions can
be carried out easily by just adding the co-
efficients and potentials for the two new
neighbours in the y-direction B(back) and
F(front) as well as the two neighbours in
the z-direction N(north) and S(south) to
(3.1.4) (Fig. 3.3). Furthermore, accord-
ing to the theorem of Gauss, we also have
to consider the surfaces of the interfaces as
a result of the integration. Consequently,
the magnetostatic potential for the central
point P is given by

W

N

B

E

S

F

Figure 3.3: Metrics for 3D

aPΦP = aEΦE + aWΦW + aFΦF + aBΦB + aSΦS + aNΦN (3.1.5)

with aE =
(

(δx)e−

µP
+ (δx)e+

µE

)−1
· AE and similar expressions for the other coefficients.

3.1.2 Boundary conditions

As the unique solution of a partial differential equation requires the specification of
boundary conditions, these are especially important also for the case of Laplace’s equa-
tion. For the geometry described in appendix A the correct boundary conditions are
such that far away from the cylinder the value of Φ for the undisturbed case, given by
B∞ = B0

µ0µa
· x for the field aligned along the x-direction (A.1.4), is valid.

For the z-direction the fluxes BN through the upper boundary, BS through the lower
boundary respectively, are set to zero. This ensures independence of the solution of the
z-direction as demanded by the geometry of an infinitely long cylinder.

0 = BN =
ΦN − ΦP

(δz)n− + (δz)n+
AN =⇒ ΦN = ΦP ,

0 = BS =
ΦP − ΦS

(δz)s− + (δz)s+
AS =⇒ ΦS = ΦP .

Introducing this condition into (3.1.5) leads to an altered expression for the magneto-
static potential at the point P situated at the upper boundary

(aP − aN) ΦP = aEΦE + aWΦW + aFΦF + aBΦB + aSΦS , (3.1.6)

and at the lower boundary

(aP − aS)ΦP = aEΦE + aWΦW + aFΦF + aBΦB + aNΦN , (3.1.7)

respectively.
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Φij+1k
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N i

N i
N i N j.

N i N j.

Figure 3.4: Structure of the coefficient matrix for three dimensions.

3.1.3 Solution of the problem

To obtain the magnetostatic potential (3.1.5) has to be solved for every grid point.
Consequently we have to find the solution for a linear system of N = Nx Ny Nz equations
where Ni denotes the size of the system in this direction. This can be formulated as

A~Φ = ~b . (3.1.8)

A is the coefficient matrix of size N×N , ~Φ the demanded solution for the magnetostatic
potential of length N and ~b contains the inhomogeneous parts of the partial differential
equation. In our case ~b = ~0, because we do not include any electric charges or currents.
For the three dimensional case the matrix A is a sparse band-matrix (Fig. 3.4). In this
case the vector ~Φ has the following form

~Φ = (Φ0,Φ1 . . . Φm . . . ΦN−2,ΦN−1)
T

where m denotes a one dimensional running index given by m = k · Nx · Ny + j · Nx + i
(k = 0 . . . Nz − 1, j = 0 . . . Ny − 1, i = 0 . . . Nx).
There are two basic methods for solving this matrix equation. Explicit methods solve
(3.1.5) for each grid point separately whereas implicit techniques seek to solve the com-
plete system using matrix operations.
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while (∆n ≥ precision)

∆n+ =
√

(Φn
i,j,k − Φn−1

i,j,k)(Φ
n
i,j,k − Φn−1

i,j,k)

Φi,j,k = 1
ai,j,k

∑

neighbors

aneighΦneigh

For all pixels

Actualize values of Φ

∆n = ∆n/N

n++

Figure 3.5: Iterative relaxation algorithm for the explicit calculation of the magnetostatic potential.

During the nth iteration step the potential for each pixel position is calculated using the neighbouring
potential values. Additionally the root mean square change ∆n compared to the previous iteration step
is calculated.

Explicit calculation

Here, a relaxation algorithm is used which calculates ΦP for each grid point iteratively
until steady-state is achieved. The basic algorithm is displayed in Fig. 3.5. For each
iteration the potential at each pixel position is calculated using (3.1.5). Additionally,
the root mean square change ∆n compared to the previous iteration step is calculated
to monitor the relaxation behavior of the system.

∆n =
1

N

N−1
∑

i=0

√

(Φn
i − Φn−1

i )(Φn
i − Φn−1

i ) .

Here i counts the pixels and n marks the current iteration step. If the value of ∆n

drops below a previously defined tolerance the procedure stops yielding the value of the
magnetostatic potential.

Implicit calculation

For the implicit algorithm we use the direct solver ma28 for the solution of linear equa-
tion systems with sparse coefficient matrices [10, 20], which supplies different routines
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depending on the structure of the considered matrix. At first, the ILU factorization1 of
the matrix A is performed and stored in an intermediate array. In a second step, the
system is solved by iterative refinement using the results of the previous calculations.
The input consists of three arrays containing the row and column number of non-zero
entries as well as their values. As the ILU algorithm is very memory consuming, its
applicability is restricted to small systems up to 40000 grid points on the used system
(Intel Pentium 4, 3.80GHz).

3.1.4 Comparison between analytical and numerical results

To verify the implementation of the numerical methods we compare it with known an-
alytical results. As a test case we take an infinitely long homogeneous cylinder with its
axis perpendicular to the applied field ~B = (B0, 0, 0) and compare the analytical results
(2.7.12) with the results obtained using finite volumes.
Figures 3.6 and 3.7 show the effect of different resolutions on the accuracy of the results
obtained by the finite volume technique. The computational error is determined by the
deviation of the calculated magnetic field from the known analytical solution (2.7.12).
As expected, the results achieved with the explicit and implicit implementation are
similar. Both show an increased accuracy with growing resolution even though there
are still deviations from the analytical solution. For the implicit method the resolution
was limited to 40000 data points by the enormous memory consumption of the sparse
matrix solver.

1The ILU factorization yields an upper triangular matrix U, a lower triangular matrix L and a residual
R which fulfill A=LU+R. This is often applied as a preconditioning step to improve the convergence
for a given problem.
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Figure 3.6: Numerical calculations using the explicit and implicit finite volume technique versus the
analytical solution for a resolution of 32×32, 64×64 and 100×100 with a tolerance of ∆n = 10−10. The
profiles along the x-axis through the center of the cylinder show the resulting field shift along x for
χi = 0.928 · 10−6, χe = −9.0763 · 10−6, FOV=(0.4×0.2) m2. As the results were independent of z, a low
resolution of 10 grid points along the z-direction was used.

37



3 Numerical techniques

0 0.05 0.1
Distance from centre of cylinder [m]

0

0.5

1

1.5

2

2.5

Co
m

pu
ta

tio
na

l e
rr

or
 [µ

T] 32x32
64x64
128x128

r

0 0.05 0.1
Distance from centre of cylinder [m]

0

0.5

1

1.5

2

2.5

Co
m

pu
ta

tio
na

l e
rr

or
 [µ

T] 32x32
64x64
100x100

r

Figure 3.7: Computational error of the simulations using the finite volume techniques versus the
distance from the center of the cylinder along the x-axis for different resolutions; Top: Explicit calculation
with a resolution of 32×32, 64×64 and 100×100, ∆n = 10−10; Bottom: Implicit calculation with a resolution
of 32×32, 64×64 and 128×128.
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3.2 Fourier transformation

The Fourier transformation offers another powerful possibility to solve Laplace’s equa-
tion by transforming the spatial derivative of the magnetostatic potential into a simple
multiplication in the frequency domain.
Following the deduction of Salomir and Moonen [36], the equation to be solved for the
magnetostatic potential reads (2.7.2):

~∇2 · Φnuc = −H0
∂χ(~r)

∂z
(3.2.1)

Here H0 is the value of the homogeneous main magnetic field in z-direction and χ(~r) is
the position dependent magnetic susceptibility.
The transition to the frequency space enables us to simplify the problem yielding an
expression for the z-component of the magnetic field at the location of the nucleus
(2.7.2).

Bnuc,z = µ0H0 + µ0hin,z + µ0H0

(

−σ + F
−1

[(

1

3
− k2

z

k2

)

χ(k)

])

(3.2.2)

This expression contains contributions both from the homogeneous main magnetic field
µ0H0 and the magnetic field inhomogeneities µ0hin,z. The last term describes the dis-
turbing field induced by the object and depends on the absolute value of the k-space
coordinate k, its projection on the z-axis kz and the Fourier transform of the suscepti-
bility distribution χ(~k).

3.2.1 Comparison between analytical and numerical results

For the case of an infinitely long homogeneous cylinder with its axis perpendicular to
the applied field ~B = (B0, 0, 0) we now compare the analytical results (A.2.14) with the
results obtained using fast Fourier transform.
In Figs. 3.8 and 3.9 we can see the effect of different resolutions on the accuracy of
the results obtained by the fast Fourier transform. As expected, the error decreases
with increasing resolution. For a resolution of 256×256 data points in the xy-plane
the Fourier transform technique achieves deviations of only 0.58µT at the susceptibility
boundary and less than 0.1µT in the regions far away from the cylinder. A comparison
with results obtained by [22] and [23] shows good agreement as they achieved maximum
errors of approximately 0.15µT, 0.1µT respectively, which is on the same order for
similar susceptibility differences.
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Figure 3.8: Numerical calculations using the Fourier transform method versus analytical solution for
a resolution of 64×64×16, 128×128×16 and 256×256×16. The profiles along the x-axis through the
center of the cylinder show the resulting field shift along x for χi = 0.928 · 10−6, χe = −9.0763 · 10−6,
FOV=(0.4×0.2×0.128) m3
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Figure 3.9: Computational error of the simulations using the Fourier transform method versus the
distance from the center of the cylinder along the x-axis for different resolutions 64×64×16, 128×128×16,
256×256×16, 512×512×16.
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Figure 3.10: Required CPU time for the solution and an accuracy for the explicit finite volume scheme
of ∆n = 10−10 versus the number of data points for the different numerical techniques.

3.3 Comparison between fast Fourier transformation and finite

volumes

If we compare the results for a small resolution of 32×32 in the xy-plane (Fig. 3.7, 3.9) the
Fourier transform method obtains already very good results whereas both the explicit
and the implicit finite volume approach still show great deviations from the analytical
solution. This is mainly because a small number of larger pixels can only give a rough
step-wise estimate of the true curved surface of the cylinder. Even though the finite
volume technique improves for a higher number of data points the Fourier transform is
still superior. Comparing the required calculation times (Fig. 3.10) this statement is
further confirmed because the fast Fourier transform method only needs milliseconds in
contrast to both finite volume methods which take minutes. After being validated for
simple geometries both methods are able to handle all kind of susceptibility distributions
without further changes in the implementation. This is advantageous for the application
in the human body where a variety of substances with different susceptibilities are close
together.
Because of its speed and accuracy the fast Fourier transformation will be used for all
further calculations in this work.
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Search for phase jumps

Region definition

Determination of the phase jump direction

Correct phase jumps of proper regions

Correction of special pixels

Figure 3.11: Unwrapping method

3.4 Phase unwrapping algorithm

As already mentioned in Sect. (2.6.3) the acquired experimental images contain both
magnitude and phase information, where the second one is more important for our pur-
pose. Due to the intrinsic properties of the Fourier transform used to recover the image
from the frequency space data, the phase values are periodic within 2π. That means that
all phase values are mapped into the interval [-π, π[, which in the scale of image pixels
is rescaled to the interval [-4096,4096[. This process is called wrapping. As outlined in
Sect. (2) the temperature calculations are based just on phase differences which leads
to a problem that can be visualized by the following example. Consider the same pixel
in two successive images of a time series with the values 2π/3, 5π/3 respectively. The
mentioned mapping to the interval [-π, π[ leads to the new values 2π/3 and −1π/3.
If we now calculate the phase difference between these two time series we gain for the
unwrapped case π and for the wrapped case −π which gives a completely different tem-
perature development. Therefore, unwrapping is mandatory. At first glance this seems
to be easy, but it is complicated by several factors. One of them is noise overlaying
the true image information. Very fast phase changes close to susceptibility boundaries,
which occur frequently in the experimental data, can also lead to false unwrapping.

Several methods have been proposed to tackle this problem as it is not only important
in magnetic resonance imaging but also for example in interferometry. The present
solutions for phase unwrapping [5, 40, 46] can be divided into two major groups: path-
following methods and minimum normalization methods. For both the problem can be
formulated as

Ψ = Φ + 2πn = W [Φ] , (3.4.1)

where W is the wrapping operator, Φ is the unwrapped and Ψ is the wrapped phase,
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Figure 3.12: Process of region definition within the unwrapping algorithm. The red line denotes the
position of a phase jump between neighboring pixels whereas the green line defines the border between
noisy and image pixels. We start with a segmentation where all noisy pixels get an index 0 and the
image pixels an index 1. Second all pixels are searched for phase jumps to their neighbors and get a new
index 20 if the condition is fulfilled. Afterwards, the outer noisy region of the image is filled with index
11. The pixels with index 1 adjoining them get a new index 22 indicating that they belong to a border
of the region with index 2. In the next step, a starting point for the region filling algorithm is selected
which needs to have a neighbor with index 1 as well as one with index 11 to ensure that the filling will
be successful. From there the whole area excluding the borders is marked with index 2. Finally, the
pixels at the inner border get the new index 22. Now, a new level can start with the search for a starting
point at the border to the region with index 2. This area will get the index 3 and so on until no further
starting point fulfilling the requirements can be found.
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Figure 3.13: Phase unwrapping with a least-squares ansatz for an experimentally acquired phase image
(TR=600ms, FOV (400×200)mm2, matrix 128×256, TE =20ms). As the method is based on a complete
unwrapping solution for the whole grid it cannot cope with noisy pixels outside the box and inside the
cylinder. Left: uncorrected image; Right: corrected image.

which obeys Ψ ∈ [−π, π[. If the phase difference between neighbouring pixels obeys
∆Φ ∈ [−π, π[, a simple line integration of the gradients along any path will result in an
unwrapped phase. As soon as this is no longer fulfilled, e.g. if phase jumps larger than
2π occur or strong noise is present along the path, this ansatz will lead to errors. In the
given problem the central cylindrical object which does not give any phase information
heavily disturbs the result. In this case, methods based on a least-squares ansatz are
superior. One of these methods outlined in [33] leads for the two dimensional case to
the following expression which has to be minimized:
∑

j,k

(Φj+1,k − Φjk − (Ψj+1,k − Ψjk))
2 +

∑

j,k

(Φj,k+1 − Φjk − (Ψj,k+1 − Ψjk))
2 . (3.4.2)

In essence, this corresponds to a discretized version of Poisson’s equation which can be
solved easily by various means. A very general and fast way is the fast Fourier transform
which was also used here with a slight variation. To directly include the boundary con-
ditions for this special problem, a cosine transform was used. As the present numerical
cosine transforms are not as fast as the present Fourier transform methods, a Fourier
transform was modified via a mirror reflection of the transformed data to work like a
cosine transform without loosing its intrinsic velocity. Nevertheless, this method was
not able to cope with the disturbances produced by the central cylinder (Fig. 3.13) and
had to be discarded.

Finally, a new algorithm for these special requirements was implemented (Fig. 3.11). It
is based on a hierarchical division of the image into areas of the same phase, bounded
by pixels, which contain one or more phase jumps. It starts with a segmentation of the

44



3.4 Phase unwrapping algorithm

...
...

...
...

...
...

...
.
..

right up down

While list length > 1

While not end of list

left index=search_index
yesno

l r u d

index=set_index
create new list object

list element
destroy 

Figure 3.14: Region filling algorithm: After being given a starting point the algorithm searches all
neighbors for the search index and in case of a hit changes its index to the set index. For this purpose,
a list is built, where each list element contains the coordinates of a point whose neighbours are to be
searched at the moment. When no neighbour has the right index, the search is stopped at this special
point and the list element is deleted. This process continues until the list contains nothing but its starting
element.

For all pixels with index=1

&&
if sign(phase) != sign(phase_neigh) 

yesno

index of neighbor = border index

index = border indexgo on to next pixel

if |phase−phase_neigh| > threshold

Figure 3.15: Algorithm for the detection of phase jumps. All pixels with index 1 are checked for phase
jumps to one of the neighboring pixels. The requirements to be fulfilled are: a change in the phase sign
and a phase difference greater than a certain threshold. If this is the case both the pixel and its neighbor
get a new special border index.
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Figure 3.16: Distribution of the
different levels and regions over the
grid. The algorithm starts with
level 2. All areas adjoining it be-
long to level 3. Obviously this cri-
terion is not unique giving rise to
a new index denoting the number
of the region. For example level 3
in the image is divided into two re-
gions. Following this strategy all
pixels are assigned one index for the
level and one for the actual region
on that level.

2/1

5/1

4/1

3/2

3/1

image, based on the information of the magnitude image. Here, pixels, whose values are
below a certain threshold, get index 0 and index 1 if the value is higher. As a result both
the noisy area around the imaged object and the air filled object inside are excluded
and do not disturb the unwrapping result any more. As a next step the whole area
with index 1, from now on denoted as image area, is searched for phase jumps between
adjacent pixels. This is considered to be the case if the sign of the phase changes and
the phase difference exceeds a certain value, in our case π/2. The detected pixel and
its corresponding neighbour get a special index for border pixels (Fig. 3.15). After
these preparation steps the basic part of the algorithm is initiated as visualized in Fig.
3.12. Starting on a grid which only contains indices 0 and 1, the area both adjoining
the edge of the field of view and the image area are filled with index 11 by the region
filling algorithm (Fig. 3.14). Secondly, the pixels neighbouring such a pixel get a new
border index 22 and also deliver the starting point for a new filling algorithm, which
fills the whole area up to the next border with the index 2. Finally, the pixels close
to the next lower level also get the border index 22. This region owning level index
2 represents the reference for the phase correction and will therefore not undergo any
changes. Consequently, it is only possible to unwrap the phase with a remaining offset
to the true phase values depending on the starting region.
After the definition of the starting area the process is repeated with increasing filling
indices and additional region indices. Another index becomes necessary, because, as
can be seen in Fig. 3.16, it is always possible to get more than one area on the same
hierarchical level, which have to be distinguished. This process continues until a certain
index is reached. This is why this method only works for a moderate number of phase
jumps per area. If there are no enclosed areas any more but only borders, additional
corrections are necessary.
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For all pixels with special index

no yes

phase =phase−8192 or phase =phase+8192

phase jump to more than one
neighboring pixel

while still phase jump to neighboring pixelnext pixel

Figure 3.17: Correction algorithm for the remaining uncorrected pixels. They are systematically
checked for phase jumps to more than one neighbor. If this requirement is fulfilled they are added or
subtracted the value of 8096, which equals 2π in radians, until there are no phase jumps to neighboring
pixels any more.

next pixel
if(index>0)

else

phase=phase+(index+2) 4096

.

.

no yes

For all pixels

 pixel has actual level index

phase=phase+(index−2) 4096

Figure 3.18: Correction algorithm for regular pixels. According to the level index the phase value is
corrected where level index 2 is regarded as the true phase.
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Figure 3.19: Determination of the phase jump direction along a border between different levels. For
all pixels belonging to the periphery of a region the direction of the phase jumps to the next higher
level, which means a lower level index, is determined giving a negative value for a phase decrease and
a positive one for an increase. After integration and normalization over the whole border the absolute
value has to exceed the threshold of 0.5 to be considered significant. If this is the case the index of the
whole region is multiplied by this sign. Otherwise, the pixels get a special index to be treated again in
the correction algorithm.

Up to now nothing is known about the direction of the phase jumps. The algorithm
outlined in Fig. 3.19 searches the whole border of a level to the next higher one for the
direction of the phase jump, giving a positive value for a phase increase and a negative
one for a phase decrease. If the integrated and normalized values exceed the value of 0.5
the direction of the phase jump is regarded significant and the index of every member
of this area is multiplied by this sign. Pixels that do not fulfill this requirement get
a special index and have to be treated by a special correction subroutine (Fig. 3.17).
Before, all pixels which were determined to be regular are corrected according to their
index (Fig. 3.18). This means for an area of level index -3 a correction of -8192, or −2π
in radians, as the level with index 2/-2 is regarded as the reference phase. Unfortunately,
this procedure does not always lead to correct results. Figure 3.20 shows a case where
the outlined algorithm imprints a wrong hierarchy on the regions. This is possible,
because the starting region is considered to be unique. If this is not the case, other
regions actually belonging to the same level will be given a wrong index. To avoid such
problems a correction algorithm examines the connections between successive levels. It
works similar to the already mentioned algorithm to detect the direction of phase jumps
and determines integrated and normalized phase jumps along the whole border. Starting
at the highest level, the border to the lower levels is checked and corrected by adding or
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Figure 3.20: Problem of region definition. The left image shows a case, where the light blue areas
actual belong to the same level. Starting the unwrapping algorithm in the dark blue point in the upper
region, a false hierarchy is produced. As shown in the middle and right picture, the light blue region at
the bottom is given the level index 4 instead of index 2.

subtracting 8192 until a smooth transition without phase jumps is achieved.
Finally, a correction algorithm for some special pixels is applied (Fig. 3.17). Here all
pixels, which have not been treated by now are examined for phase jumps to more than
one neighbor. If this is the case, their phase and index are changed according to the
differences. This process is repeated until no irregularities can be found any more.
Figure 3.21 shows the resulting image in comparison to the uncorrected phase values for
two different echo times. For the short echo time the phase changes were relatively small
leading to a successful unwrapping. The image acquired with the longer echo time still
shows some artifact pixels in the vicinity of the cylinder and at the edge of the image
area. Here, as mentioned before, there are too many phase jumps close to the cylinder
resulting in a less successful unwrapping.

3.5 Field maps

We have already discussed three different procedures to determine the magnetic field
distortion by solving Laplace’s equation. These methods rely on the given experimental
parameters and are not able to include all disturbing factors like gradient nonlinearities,
deviations in the main magnetic field or material imperfections. These problems can
be circumvented by directly using the image information for determining the magnetic
field distortions. As already mentioned a gradient echo image, in contrast to a spin echo
image, also contains phase information due to field imperfections.

Φ = −γ(B0 + ∆B)σ(T )TE + γ∆B TE + Φ0(T ) . (3.5.1)

Here Φ0(T ) contains temperature dependent phase contributions like changes of local
conductivity which are independent of the echo time TE . Consequently, neglecting
temperature effects for the moment, we can extract ∆B out of the phase images of a

49



3 Numerical techniques

Figure 3.21: Result of
the unwrapping algorithm
for a gradient echo image
(TR=600ms, FOV 400,
matrix 128×256). Top:
TE =3.77ms, Bottom
TE =20ms; Top left: un-
corrected image; Top right:
corrected image; Bottom
left: uncorrected image;
Bottom right: corrected
image

gradient echo image.

∆B =
Φ

γ TE
. (3.5.2)

For a spin echo image this can be accomplished by adding a shifted echo after time δT in
the sequence. Then the magnetic field distortions are obtained using a similar expression
as for the gradient echo sequence.

∆B =
Φ

γδT
. (3.5.3)

In this work gradient images will be used because they are already available from the
temperature measuring sequence.
The phase images of a gradient echo image cannot be used directly because they have
to be unwrapped first (3.4). From the unwrapped phase images we get directly the field
distortions. As gradient echo images greatly suffer from image distortions the shortest
possible echo time should be used for these phase maps.

3.6 Correction algorithms

As outlined in Sect. (2.5) magnetic field inhomogeneities lead to false frequency encoding
and therefore to geometric and intensity distortions within the image. According to Sect.
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(2.5.6) a field change ∆B causes a shift from the true pixel position (x, y) to (x ′, y′).

x′ = x +
∆B(x, y)

Gx
,

y′ = y . (3.6.1)

Here we assume Gx to be the read-out gradient. There is also a change in intensity
which cannot be expressed that simple. Additionally one has to take into account that
as soon as several pixels are mapped onto the same new pixel position, it is impossible
to recover the true intensity by back-mapping.
In principle, the distortion correction is possible both in the frequency and in the spatial
domain [24].

3.6.1 Correction in the frequency domain

For a spin echo image the magnetization distribution m′(x) in the presence of a magnetic
field inhomogeneity ∆B is recovered for a profile in read-out direction by [28]

m′(x) =
1√
2π

exp

(

−TE

T2

)

kmax
∫

kmin

[

MT (kx) exp

( −kx

γGxT2

)

exp

(−ikx∆B

Gx

)]

exp (−ikxx) dkx ,

(3.6.2)
where MT (kx) denotes the Fourier transform of the transverse magnetization which in
the one dimensional case depends on the frequency space coordinate kx.
In gradient echo imaging the missing refocusing pulse results in two changes: transverse
relaxation takes place with T ∗

2 instead of T2 and there is an additional phase factor due
to the field inhomogeneity

m′(x) =
1√
2π

exp

(

−TE

T ∗
2

)

exp (−iγ∆BTE ) ×

×
kmax
∫

kmin

[

MT (kx) exp

( −kx

γGxT ∗
2

)

exp

(−ikx∆B

Gx

)]

exp (−ikxx) dkx (3.6.3)

Equivalently, we could transform our image into the distorted frame of reference x ′

resulting in an expression which is almost similar to the undistorted case. Of course, the
altered relaxation of the transverse magnetization from T2 to T ∗

2 cannot be compensated
for by a simple coordinate shift.

m′(x′) = exp

(

−TE

T ∗
2

)

exp (−iγ∆BTE ) ×

×
kmax
∫

kmin

[

MT (kx) exp

( −kx

γGxT ∗
2

)]

exp
(

−ikxx′
)

dkx (3.6.4)
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Figure 3.22: Correction algorithm in the frequency domain. First, the distorted image is transformed
back into the frequency space by applying a Fourier transform with an inverse geometrical shift using
the calculated magnetic field deviation. The corrected image is found after an inverse Fourier transform.
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3.6 Correction algorithms

According to these equations it should be possible to obtain the true image by a Fourier
transform of the distorted image m′

r(u, v) with the inverse shift ∆x = ∆B
Gx

. For a discrete
domain the transformation into the k-space with inverse shift reads

Mk(m,n) =
1

√

NxNy

Nx−1
∑

u=0

Ny−1
∑

v=0

m′
r(u, v) · e−i

“

2π
Nx

(u−∆x
hx

)m+ 2πv
Ny

n
”

. (3.6.5)

Finally the corrected image mr(u, v) can be obtained using the usual Fourier transform.

mr(u, v) =
1

√

NxNy

Nx−1
∑

m=0

Ny−1
∑

n=0

Mk(m,n) · ei
“

2πu
Nx

m+ 2πv
Ny

n
”

. (3.6.6)

Figure 3.22 shows the basic algorithm for this correction procedure.

3.6.2 Correction in the spatial domain

With the help of the calculated shift in the spatial domain ∆x it is also possible to
directly correct the geometrical distortions. Figure 3.23 shows the principal procedure
for ∆B > 0 and with distortions in both x and y. As in the previous section, we try to
find the original magnetization distribution m(x, y) using the distorted image m ′(x, y).
First, the magnetic field variation ∆B(i, j) at the position of the pixel, which is to
be corrected, is calculated delivering the geometrical shifts ∆x(i, j) and ∆y(i, j). The
position after a hypothetical displacement is calculated using

I ′ = i + ∆x(i, j) ,

J ′ = j + ∆y(i, j) . (3.6.7)

As ∆x and ∆y are not necessarily integer, I ′ and J ′ do not coincide with grid points.
To achieve a smooth intensity distribution the pixel intensity has to be distributed
somehow onto the neighbouring grid points (I, J). A commonly used weighting scheme
[38] depends on the relative position of (I ′, J ′) within the cell (I, J). This leads to an
expression for the corrected pixel intensity mc(i, j).

mc(i, j) =(1 − |I ′ − I|)(1 − |J ′ − J |) · m′(I, J) + |I ′ − I|(1 − |J ′ − J |) · m′(I − 1, J)

+(1 − |I ′ − I|)|J ′ − J | · m′(I, J − 1) + |I ′ − I||J ′ − J | · m′(I − 1, J − 1)
(3.6.8)

Due to the fact that ∆B is position dependent, the pixels are not only shifted but also
slightly distorted in their shape and area. Consequently, we also have to correct for
that effect. The transformation from one reference frame (x, y) to another (x ′, y′) is

mathematically accomplished by the Jacobian-matrix ∂(x′,y′)
∂(x,y) .

(

x′

y′

)

=
∂(x′, y′)

∂(x, y)

(

x
y

)

(3.6.9)
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Figure 3.23: Distortion correction
in the spatial domain for ∆B > 0
and distortions in x and y. Us-
ing the calculated shifts ∆B(i, j)/Gx

and ∆B(i, j)/Gy the new pixel in-
dex (I ′, J ′) is determined as a real
number. As a next step, the index
is rounded to the discrete values of
the grid yielding the new pixel po-
sition after the shift (I, J). Due to
the rounding, this would lead to a
very rough estimate of the real dis-
tortion, of course. Therefore, the new
pixel intensity is weighted with a fac-
tor which is influenced by the intensi-
ties of the neighboring pixels accord-
ing to the deviation of the calculated
real index to the rounded value. Fi-
nally, the obtained pixel value is as-
signed to the pixel (i, j).
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(3.6.10)

The change of the pixel area is given by the determinant of the Jacobian matrix.

dxdy =

∣

∣

∣

∣

∂(x′, y′)

∂(x, y)

∣

∣

∣

∣

dx′dy′ (3.6.11)

with
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∣

∣
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∣

∣
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∂y′
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∂y′
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∣

∣

∣

∣

∣

∣

= 1+
∂(∆B(x, y))

Gy · ∂y
+

∂(∆B(x, y))

Gx · ∂x

+
∂(∆B(x, y))

Gx · ∂x

∂(∆B(x, y))

Gy · ∂y
− ∂(∆B(x, y))

Gy · ∂x

∂(∆B(x, y))

Gx · ∂y
.

Restricting ourselves to first order in ∆B we get

∣

∣

∣

∣

∂(x′, y′)

∂(x, y)

∣

∣

∣

∣

≈ 1+
∂(∆B(x, y))

Gy · ∂y
+

∂(∆B(x, y))

Gx · ∂x
. (3.6.12)

Thus, the final corrected image is given by
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matrix spatial domain [s] frequency domain [s]

256×128 0.7 444.6

Table 3.1: Computing times for correction in the spatial domain(SD) and in the frequency domain(FD)

m(i, j) = mc(i, j) ·
∣

∣

∣

∣

∂(x′, y′)

∂(x, y)

∣

∣

∣

∣

D

(3.6.13)

with the discretized form of the determinant and hx and hy the original pixel size

∣

∣

∣

∣

∂(x′, y′)

∂(x, y)

∣

∣

∣

∣

D

= 1+
∆B(i + 1, j) − ∆B(i − 1, j)

Gx · 2hx

+
∆B(i, j + 1) − ∆B(i, j − 1)

Gy · 2hy
. (3.6.14)

3.7 Comparison between different correction algorithms

For the correction of geometric image distortions two methods have been proposed:
correction in the spatial domain and correction in the frequency domain. Applying both
methods to distorted images of the phantom film can filled with different materials we
compare them with respect to accuracy and performance.
In the case of weak distortions, e.g. for an air-filled cylinder (χ = 0.38 · 10−6), both
algorithms yield similar good results (Fig. 3.24). For stronger distortions present in
the case of a titanium cylinder (χ ≈ −180.7 · 10−6) however, the two algorithms behave
differently (Fig. 3.25). While the correction in the frequency domain is not able to correct
for the strong distortions as it just mirrors the arrow-like structure, the spatial correction
shows good results and is able to reproduce the correct geometry. Nevertheless, there
are still insufficiencies in the intensity of the image. Even though the area of the cylinder
should appear black as it does not give any signal, the corrected image shows similar
intensities both inside and outside the cylinder.
From the point of view of computing time the correction in the spatial domain is superior
to the correction in the frequency domain as the second one is about a factor of 500 slower
than the first one which can be seen in Tab. 3.1 for a grid of 256×128 grid points. This
is due to the inefficiency of the Fourier transform with Fourier shift which cannot be
handled by standard fast Fourier transform routines. Thus, spatial correction is the
most favorable method both in terms of correction results and computation times.
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Figure 3.24: Comparison of different correction algorithms. The magnetic field was calculated with
the Fourier transform method; From left to right: uncorrected image, correction in the spatial domain,
correction in the frequency domain. In the top images the real cylinder is indicated by a white circle.

Figure 3.25: Left: Forward simulation using the Fourier transform method; Middle: corrected image
with spatial correction; Right: corrected image with frequency correction. In the top images the real
cylinder is indicted by a white circle.
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3.8 Subsumption

3.8 Subsumption

Now the basic numerical techniques required for this work are known. It has been
shown that the Fourier transformation is the preferred method for the calculation of
the magnetic field both in terms of accuracy and CPU time. All further numerical
evaluations will therefore concentrate on this method.
A new phase unwrapping algorithm has been presented and shown to deliver good results
applied to experimental data. Finally two correction procedures for the removal of
geometrical distortions were proposed and tested. Both were able to reproduce the
main geometry of the object. Nevertheless, the spatial domain procedure is regarded as
superior because of its high speed.
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4 Experimental results

After some insight into the theoretical background and an introduction of the used
numerical methods, experimental data is needed to validate the numerical results. In
this chapter the basic experimental procedures as well as related technical aspects will be
explained. Furthermore, the acquired data is evaluated concerning the major questions
of this work.

4.1 Experimental setup

The experiments were performed on a Siemens Magnetom Symphony 1.5 T whole-body
system (Siemens Medical Solutions, Erlangen, Germany) equipped with a hyperthermia
radio-frequency treatment system [15].
For temperature measurements MR compatible temperature probes (Bowman thermis-
tors; BSD Medical Corp.) were used. Processing the MR data to map temperatures
was accomplished with the software platform AMIRA (Indeed Visual Concepts, Berlin,
Germany). As imaging objects two different phantoms were built to meet the special
requirements for this project (Fig. 4.1). The first, afterwards referenced as phantom
film can, consisted of a water filled round plastic box (inner diameter 18.9 cm) with an
air filled film can (inner diameter 3 cm) glued to the bottom in the centre of the box.
The second, afterwards referenced as phantom condom, was built up out of a rectangular
plastic box (bottom: (22×16)cm, top: (25.4×19.5)cm) with an air filled condom glued to
the bottom in the approximate centre of the box. In contrast to the film can in phantom
1 the condom could move freely because only one end was connected to the box.

Figure 4.1: Left: water filled phantom consisting of a round plastic box (diameter 18.9cm), inside an
air filled film can (inner diameter 3cm) is glued to the bottom of the box; Right: water filled phantom
consisting of a rectangular plastic box (bottom: (22×16)cm, top: (25.4×19.5)cm) where an air filled
condom is glued to the bottom, but can move freely inside the water.
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Figure 4.2: Connection between the standard deviation of the noise and the phase precision.

The aim of this experimental work can be divided into two parts.

• Delivering images as a basis for the numerical simulations

• Examination of susceptibility induced artifacts and temperature changes

For these purposes the following strategies were used:

• Imaging with constant temperature and high signal-to-noise-ratio for comparison
with the numerical results

• Different fillings of the cylinder

• Filling the phantoms with hot water and observe the cooling process.

• Using different combinations of two echo times

• Using different image resolutions

• Imaging with constant temperature over several time steps

4.2 Technical aspects

4.2.1 Signal-to-noise-ratio

For the acquisition of the temperature images the same sequences as for the usual hyper-
thermia treatment were used. A T1 weighted turbo spin echo (TE =12ms, TR=701ms,
slice thickness 5mm, matrix 256×256, 5 averages) with varying field of view was used for
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the localisation of the temperature probes and the geometric proportions. The temper-
ature information was extracted out of the phase images of a double echo gradient echo
sequence (TR=600ms) with the help of an AMIRA module.
For the validation of the numerical results the signal-to-noise-ratio (SNR) had to be
taken into account. If we want to detect very small phase changes we need a very good
SNR. Figure 4.2 shows the correlation between the variance of the signal due to noise σ
and the phase resolution ∆ϕ. For small σ and the signal strength S the relation

∆ϕ = σ · S (4.2.1)

holds. The SNR of an image is given by

SNR =
Ssignal

σ
=

∑

ROI

(

Ssignal

NROI

)

√

P

ROI
(Snoise−Snoise)

2

NROI

, (4.2.2)

where Ssignal denotes the average value of the signal intensity within the region of interest
(ROI) with good signal properties, i.e. few noisy pixels, and σ contains the standard
deviation of the intensity within a noisy ROI. Comparison with (4.2.1) gives us the
relationship between the achievable phase precision and the SNR of the acquired image.

∆ϕ ∝ 1

SNR
. (4.2.3)

If we now consider a magnetic field deviation of approximately 10−7 T this leads to a
minimum phase precision of approximately 0.1 rad. Hence, a correct evaluation of these
effects requires a resolution of (0.01 − 0.05) rad and consequently a minimum SNR of
50-100. There are several ways to improve the SNR, among which are special choices of
receiving coils, changes in pixel size as well as image averaging.
Up to now a simple body coil was used for the experiments. Even though it covers a
big area and gives a very homogeneous signal the intensity is relatively poor. Hence, for
further experiments a birdcage head coil was used which is especially designed for the
geometry of the head being comparable to the shape of the phantom film can. The SNR
increases with growing voxel size. Unfortunately this also lowers the resolution which
is essential in the vicinity of the cylinder wall. Therefore the achievable gain using this
option is rather limited. For the last possibility, several images of the same object are
acquired and averaged to give the final image. If we repeat a measurement Nacq times
we get for the signal and the noise

Sav =
1

Nacq

∑

acq

S , σav =
σ

√

Nacq

.
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Figure 4.3: ROIs for the calculation of the SNR. Top: TR=600ms, FOV: (400×200)mm2, 16 slices à
8mm, no averages, body coil; SNR from left to right: 60,56,61; Bottom: TR=600ms, FOV: (280×192)mm2,
10 slices à 5.5mm, 2 averages, head coil; SNR from left to right: 117,105,118.

In total this leads to an increase in SNR by a factor of
√

Nacq but also to a longer scan
time. The changed gradient echo sequence (TR=600ms, FOV: (280x×192)mm2, 10 slices
à 5.5mm, 2 averages, head coil) showed a sufficient SNR for detailed phase measurements
(Fig. 4.3).

4.2.2 Readout bandwidth

The image distortions are mainly dependent on the change in the magnetic field due
to susceptibility differences and on the readout gradient (2.5). As we cannot influence
the susceptibility distribution, we have to focus on the gradients. Changing the readout
bandwidth is one possibility to alter the gradient. Figure 4.4 shows the effect of different
readout gradients and bandwidths. Obviously, the same pixel size is achievable with
different gradient strengths as well as with different bandwidths. Therefore, an increased
readout bandwidth should have the same effect as an increased gradient and lead to less
distortions (Fig. 4.5). Unfortunately this effect is also accompanied by a decrease in
SNR. Nevertheless this approach can be useful to determine the true geometry of the
imaged object which is crucial for the correct calculation of the magnetic field.
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G x

xG’

∆ x
x

ω

∆ω

∆ω’

Figure 4.4: Connection between readout gradient Gx, readout bandwidth ∆ω and resolution in the
readout direction ∆x. Obviously, an increased readout bandwidth has the same effect as an increased
readout gradient.

Figure 4.5: Gradient echo images of the phantom film can acquired with different readout band-
widths (TR=600ms, TE =3.77ms, FOV:(280×192)mm2, 10 slices à 5.5mm); Left: 260Hz/pixel; Right:
930Hz/pixel; Top: air-filled cylinder(χ = 0.38 · 10−6; Bottom: cylinder filled with a Magnevist-solution
(Schering GmbH, χ ≈ 50 · 10−6).
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4.2.3 Different susceptibilities

For the observation of image distortions the phantom film can with different cylinder
materials was used. As the objective of the experiments was to examine the influence of
air-filled areas in the human body mostly an air-filling was used. The susceptibility and
its temperature dependence are known from literature [41]. The area around the cylinder
was always filled by normal water whose susceptibility value is also known in detail
(2.8.8). As a second cylinder filling a Magnevist-solution (Schering GmbH) was used.
The determination of its susceptibility was difficult because its dependency on the actual
concentration of the Magnevist-solution and the added water volume. The commonly
available Magnevist-solution has a molar susceptibility of χm

Magn = 2.7 · 10−2mol−1 and
contains nMagn = 0.5mol pure Magnevist per litre. This solution was diluted such that
we took (9.5±0.5)ml Magnevist-solution and filled the rest of the cylinder with ordinary
water. Thus, the susceptibility of the solution can be calculated knowing the diameter
and height of the cylinder

d = (2.9 ± 0.05)cm

h = (4.4 ± 0.1)cm

Vcyl =
πd2

4
h = (29.1 ± 1.7)cm3

VMagn = (9.5 ± 0.5)cm3

Vwater = (19.6 ± 2.2)cm3

as the weighted sum of the susceptibilities of the commercial Magnevist solution and of
the added water.

χsol =
VMagn

Vcyl
· χMagn +

Vwater

Vcyl
· χwater = 35.8 · 10−6

χMagn = nMagn · VMagn · χm
Magn

The uncertainty for the susceptibility can be estimated by standard error analysis

∆χsol =

∣

∣

∣

∣

2VMagn

Vcyl
nMagnχ

m
Magn∆VMagn

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

−
(

V 2
Magn

V 2
cyl

nMagnχ
m
Magn +

Vwater

V 2
cyl

χwater

)

∆Vcyl

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∆Vwater

Vcyl
χwater

∣

∣

∣

∣

= 1.7 · 10−6

leading to the final result

χsol = (35.8 ± 1.7) · 10−6 . (4.2.4)
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step time Tfilmcan [◦C] time Tcondom [◦C]

00:00:00 45.0 00:00:00 44.5
1 00:05:08 42.4 00:06:17 43.2
2 00:10:16 40.5 00:12:34 42.0
3 00:15:24 38.9 00:18:52 41.0
4 00:20:32 37.5 00:25:09 40.0
5 00:25:40 36.1 00:31:27 39.1
6 00:47:45 38.2
7 00:44:02 37.4
8 00:50:20 36.6
9 00:56:37 35.9

Table 4.1: Temperature as a function of time measured by temperature probes inside the phantoms

4.3 Evaluation of the imaging series

4.3.1 Temperature dependency of the image artifacts

As already mentioned in Sect. (2) the PRF method is only suitable for the calculation
of temperature differences. Therefore the evaluation of a time series requires a reference
point for the temperature.
Theoretically the resulting temperature differences should be independent of this choice.
Practically we also have to take into account changes in the geometry, produced for
example by any kind of motion between successive image acquisitions. Figure 4.6 shows
images of the phantom film can acquired over a range of 26 minutes. The calculated
temperature information is shown with respect to the first time step as reference (top),
the last time step as reference (bottom), respectively. Note that for this cooling process
the first time step shows the highest temperature. For comparison the temperature was
also measured by a temperature probe inside the water (Tab. 4.1). For both image series
the reference image is not shown as it does not include any temperature changes.

A comparison of both image sequences shows no remarkable change in the size of the
artifacts produced by the air in the central area. As the film can was a rigid body this
is not surprising because displacements of the air-water boundary were impossible. To
examine motion of the object and changes of the shape of the air-water interface, next
we consider the phantom condom (Fig. 4.1) for which the temperature change with
time can be found in Tab. 4.1. For the sake of clarity only the time steps 1,3,5 and
9 are shown as image (Fig. 4.7). Here we can find slight differences between the two
rows. Obviously, the artifacts induced by the object are growing with increasing time
distance with respect to the reference image (Fig. 4.8). This leads to an arrow-like
artifact around the condom which become the more pronounced, the longer the time
differences with respect to the reference image are. This effect is not really surprising
because the method requires the geometry of the object to be constant in time. Of
course a moving object cannot fulfil this. Even though this effect is relatively small
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Figure 4.6: Double echo gradient echo images (TE =(5.48/20)ms, TR=600ms, 16 slices à 8mm, matrix
(128×256), FOV: (200×400)mm2, coronar) of the phantom film can; top: first time step as reference,
bottom: last time step as reference.

Figure 4.7: Double echo gradient echo images (TE =(5.48/20)ms, TR=600ms, 16 slices à 8mm, matrix
(176×256)mm2, FOV: (275×400)mm2, coronar) of the phantom condom; top: first time step as reference,
bottom: last time step as reference.
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Figure 4.8: Zoom into the central region of the first and the last image of each row in Fig. 4.7.
Apparently the size of the artifact increases with growing time difference with respect to the reference
image and develops an arrow like shape; top: first image as reference, bottom: last image as reference.

it allows for a principle distinction. This way, we can examine, if artifacts are related
to temperature or just arise from other sources like inter-acquisitional motion and the
resulting mismatching between successive acquisitions and the reference image.
While these results indicate a connection between the matching with the reference image
and the size of the artifacts, influences of the changing temperature cannot be completely
precluded. Therefore a second experiment without active temperature change was per-
formed (Fig. 4.9). The first two rows show temperature images of phantom film can
(first row) and phantom condom (second row) calculated with the last image as refer-
ence. The same images are displayed in the last two rows but with the first image as
reference. Immediately one can see the effect of motion in the images of the phantom
condom. The induced artifacts obviously grow with increasing time difference between
the actual and the reference image and form cones of rays around the moving cylinder.
In contrast, the images of the phantom film can show almost no distortions. As there is
no influence of temperature any more we can conclude that mismatching effects due to
inter-acquisitional motion of the object have dominated the formation of image artifacts
in our experimental setup. Another interesting aspect in these images is that despite the
constant temperature a change in colour is visible. The cause for this is the existence
of a main magnetic field drift BD which is increasing with imaging time and was not
corrected in these experiments. This topic will be further discussed in Sect. (5.2.2).
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Figure 4.9: Double echo gradient echo images (TE =(5.48/20)ms, TR=600ms, 16 slices à 8mm, coronar)
for constant temperature; First and second row: phantom film can, matrix 176×256, FOV of (192×280)mm2,
temperature (21.2±0.3) ◦C, first(first row) and last (second row) images as temperature reference; Third
and fourth row: phantom condom, matrix 192×256, FOV (210×280)mm2, temperature (21.1±0.2) ◦C,
first (third row) and last (fourth row) images as reference.
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4.3 Evaluation of the imaging series

condom time T128[
◦C] time T192[

◦C] time T256[
◦C]

00:00:00 41.5 00:00:00 41.7 00:00:00 42.1
00:03:23 40.8 00:03:23 41.2 00:03:23 41.5
00:06:46 40.2 00:06:47 40.4 00:06:46 40.8
00:10:09 39.7 00:10:10 39.9 00:10:09 40.0
00:13:32 39.0 00:13:33 39.2 00:13:32 39.5
00:16:55 38.4 00:16:56 38.6 00:16:55 39.0

film can time T128[
◦C] time T192[

◦C] time T256[
◦C]

00:00:00 40.1 00:00:00 41.3 00:00:00 41.6
00:04:02 38.7 00:04:02 39.7 00:04:02 40.2
00:08:04 38.2 00:08:04 38.5 00:08:04 39.0
00:12:05 37.2 00:12:05 36.7 00:12:06 37.5
00:16:07 35.9 00:16:07 35.6 00:16:07 36.5
00:20:09 35.3 00:20:09 35.6 00:20:09 36.0

Table 4.2: Top: Temperature inside the phantom condom measured by a temperature probe;
Bottom: Temperature inside the phantom film can measured by a temperature probe.

4.3.2 Influence of the image resolution on image artifacts and temperature

information

In the performed examination, for clinical daily work time is an important factor. There-
fore, it is desirable to shorten the acquisition time of an image for example by reducing
the matrix size. Of course, this will also impair the image quality. But does it also
influence image artifacts and temperature resolution? Figure 4.10 shows the same tem-
perature development for quadratic matrix sizes of 128, 192 and 256 for a cooling process
over approximately 20 minutes (Tab. 4.2). The first three rows show images of the phan-
tom film can, whereas the last three rows display acquisitions of the phantom condom.
An obvious difference is of course the lower image quality with decreasing resolution.
The images with matrix size 128 cannot even resolve the cylinder boundary properly.
Besides that there seems to be no correlation between the artifact size due to mismatch-
ing effects and the resolution. Consider a longer time series, this behaviour changes. In
Fig. 4.11 a cooling process over 1h with the condom phantom is displayed (Tab. 4.3).
Here, we can see clearly that the artifacts due to motion of the condom are growing with
increasing time. The fact that this effect only occurs on very long time scales indicates
that the effect is small compared to the influence of motion as seen before.
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Figure 4.10: Double echo gradient echo images (TE =(5.48/20)ms, TR=600ms, 16 slices à 5.5mm,
FOV=(168×300)mm2, coronar) for a cooling process over 20 minutes (Tab. 4.2). Two different phantoms
and three different image resolutions were used; first three rows: phantom film can (matrix: 88×128,
128×192, 176×256); last three rows: phantom condom (matrix: 72×128, 112×192, 144×256).

70



4.3 Evaluation of the imaging series

Figure 4.11: Double echo gradient echo images (TE =(5.48/20)ms, TR=600ms, 16 slices à 5.5mm,
FOV=(168×300)mm2, coronar) for a cooling process over approximately 1 h (Tab. 4.3). For the phantom
condom three different image resolutions were used: 72×128, 112×192, 144×256.

time T128[
◦C] time T192[

◦C] time T256[
◦C]

00:00:00 55.1 00:00:00 55.7 00:00:00 56.1
00:03:24 53.3 00:03:23 54.2 00:03:23 54.6
00:16:56 48.6 00:16:56 49.0 00:16:55 49.6
00:30:29 44.7 00:30:29 45.2 00:30:28 45.5
00:44:02 41.5 00:44:01 41.7 00:44:01 42.1
01:00:57 38.4 01:00:57 38.6 01:00:56 39.0

Table 4.3: Time dependence of water temperature for measurements with different image sizes using
temperature probes.
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T1
TE2TE1 TE1 TE2

T2

temperature map

Figure 4.12: Calculation of the temperature difference with the PRF double echo method.

4.3.3 Comparison between experimental acquired temperature maps and

temperature probes

The usual way to acquire temperature maps with MRI was outlined in Sect. (2.6.3).
The phantom film can was filled with hot water to image the cooling process over 20
time steps. Using the knowledge from Sect. (4.2.1), double echo gradient echo images
with high SNR were acquired every 3min 30s. The real temperature development was
monitored by three MR compatible temperature probes inside the water-filled box (Fig.
4.13, Tab. 4.4). For comparison the temperature difference between the first and the last
image was calculated. For this purpose the two phase images with different echo times
but equal temperature where subtracted. The actual temperature difference between
the two acquisitions is given by the subtracted phase images for the two different tem-
peratures (Fig. 4.12). The right hand side of Fig. 4.14 shows the resulting temperature
differences for a cut through the centre of the cylinder along the x-axis. Compared to the
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Figure 4.14: Comparison between the experimental acquired temperature difference and the measured
temperature difference along a line through the centre of the cylinder for y=const and after 70min of
cooling. The measured temperatures for the three different probes are given in the table below.

averaged temperature probe measurements of (24.3±0.1)◦C, here the calculated results
generally underestimate the temperature by approximately 6◦C in the inner parts of the

1

3
2

Figure 4.13: Position of the
temperature probes inside the
water-filled box of the phantom
film can.

box and 3◦C in the outer parts. Figure 4.16 shows a
histogram of the temperature distribution throughout the
whole centre slice after 70min of cooling. As some of the
pixels show peak values of up to 6700◦C and down to -
1000◦C an upper and lower threshold of 0◦C and 40◦C were
set. As a result 4080 pixels were discarded. The remain-
ing 14914 pixels showed an averaged temperature value of
19.00◦C with a standard deviation σ = 1.37◦C. These val-
ues are also in agreement with the observed profile from
Fig. 4.14. According to the observations in Sect. (4.3.1)
artifacts in temperature images arise from a bad matching
between the actual and the reference image due to inter-
acquisitional motion. Figure 4.15 also shows an increasing
deviation with growing time difference to the reference im-
age. As an effect the experimental and measured temperatures for the first data point
almost coincide within the margins of error whereas the last data point shows a deviation
of 5◦C compared to the measurements of the temperature probes.
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Figure 4.15: Temperature development with time for the temperatures measured by temperature
probes and for the experimentally acquired data. Top: first image as reference; Bottom: last image as
reference.

The comparison between the results for different reference images also proves that this
effect is not related to the temperature itself but as already mentioned is caused by
mismatching. In this particular case the mismatch gets worse with increasing time.
The calculated temperatures are also influenced by a change in the thermal load of the
shim-coils leading to a temperature dependent drift of the main magnetic field. It has
been reported that this is usually the main source for temperature errors in the absence
of motion [14]. As outlined in Sect. (2.8) magnetic field inhomogeneities caused by
susceptibility changes also lead to false temperature measurements. A further discussion
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Figure 4.16: Histogram of the temperature distribution in the middle slice for a cooling process
after 70min. 4080 pixels were discarded because they showed temperatures below 0◦C or above 40◦C.
The remaining 14914 pixels had an averaged temperature value of 19.01◦C with a standard deviation
σ = 1.37◦C.

of both effects will be given in Sect. (5.2.2). Finally, an inhomogeneous temperature
distribution and cooling process within the box will also lead to deviations from the
expected results. These variations only have a minor influence but can be monitored by
the standard deviation of the temperatures measured by the temperature probes.
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time T probe 1[◦C] T probe 2[◦C] T probe 3[◦C] T [◦C]

00:00:00 55.7 54.2 55.8 55.23
00:03:33 53.0 51.6 52.9 52.50
00:07:05 50.2 49.0 50.2 49.70
00:10:38 48.3 47.2 48.5 48.00
00:14:10 46.3 45.0 46.3 45.87
00:17:43 44.8 43.6 45.1 44.50
00:21:16 43.0 41.9 43.1 42.67
00:24:48 41.9 40.7 41.9 41.50
00:28:21 40.4 39.3 40.5 40.07
00:31:53 39.4 38.3 39.5 39.07
00:35:26 38.2 37.1 38.3 37.87
00:38:58 37.1 36.1 37.1 36.77
00:42:31 36.4 35.5 36.4 36.10
00:46:03 35.5 34.5 35.4 35.13
00:49:36 34.8 33.8 34.8 34.47
00:53:08 33.9 33.0 34.0 33.63
00:56:41 33.4 32.5 33.4 33.10
01:00:13 32.7 31.7 32.7 32.37
01:06:06 31.7 30.8 31.7 31.40
01:09:38 31.2 30.3 31.3 30.93

Table 4.4: Time dependence of the water temperatures measured by the temperature probes.

4.4 Subsumption

In this chapter the experimental setup and applied sequences were explained. The in-
fluence of quantities like the SNR, the readout bandwidth and the susceptibility of the
imaged objects on the image quality was discussed to find optimal imaging parameters.
Finally a detailed examination of the acquired temperature series has proven that the
observed artifacts mainly arise from inter-acquisitional motion and the resulting bad
matching between successive temperature images. A direct correlation between the size
of the artifacts and the temperature could not be detected. Similarly a decrease in
resolution did not have any severe impact on the artifact strength. The comparison of
temperature maps acquired by the proton resonance frequency method with tempera-
tures measured by temperature probes showed large deviations. This can be explained
by temperature dependent magnetic field shifts BD as well as by susceptibility induced
magnetic field inhomogeneities ∆B.
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5 Results

After the basic theoretical, numerical and experimental aspects of this work have been
described, this chapter will compare the different methods for several applications and
rate their suitability.

5.1 Comparison between numerical and experimental results

5.1.1 Magnetic field

The results for magnetic field distortions from numerical simulations using the Fourier
transform technique and from experimentally acquired phase maps are compared in Fig.
5.1. The magnetic field which has been calculated from just one phase map shows a
field shift which is generally increased by approximately 3µT and evolves differently
with growing distance from the cylinder. This is not surprising because this phase map
also contains effects of the magnetic field shimming prior to the measurement. That is
why, according to the proposal in [36], another experiment was implemented in which
the water filled box was imaged both with an air-filled cylinder in the centre and with a
water-filled cylinder. The resulting images were subtracted to obtain the field only due
to the cylinder alone (Fig. 5.2). In contrast to the first case these results are in good
agreement with the simulation.
The same experiment was carried out with the Magnevist-solution described in Sect.
(4.2.3) (χ = (35.8 ± 1.7) · 10−6) inside the cylinder (Fig. 5.3). The large uncertainty
in the determination of the susceptibility of the Magnevist-solution leads to deviations
of up to 8 · 10−7 T between the simulated and the experimental magnetic field. This
is because the calculated magnetic field is proportional to the susceptibility change at
the border of the cylinder. Hence it is very sensitive to susceptibility deviations. There
is also a small shift between the two records. The exact position of the cylinder could
not be determined exactly because of the large distortions in this area. Nevertheless the
deviation is at maximum only 5µT directly at the edge of the cylinder.
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Figure 5.1: Left: Magnetic field of an air-filled cylinder from an experimental acquired phase image
(TE =3.77ms, TR=600ms, 10 slices à 5.5mm, FOV:(280 × 192)mm2, matrix: 256 × 176, 2 averages)
(top) and simulated using Fourier transform techniques (bottom); Right: Cut through the centre of the
cylinder along the readout direction x.
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Figure 5.2: Left: Magnetic field of an air-filled cylinder from phase which was calculated by sub-
tracting two phase images, with and without disturbing object (TE =3.77ms, TR=600ms, 10 slices à
5.5mm, FOV:(280×192)mm2, matrix:256×176, 2 averages) (top) and simulated using Fourier transform
techniques (bottom); Right: Cut through the centre of the cylinder along the readout direction x.
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Figure 5.3: Left: Magnetic field of an cylinder filled with Magnevist-solution that was derived from
phase values which were calculated by subtracting two phase images, with and without disturbing object
(TE =3.77/10.8ms, TR=600ms, 10 slices à 5.5mm, FOV:(280× 192)2mm, matrix:256 × 176, 2 averages)
(top) and simulated using Fourier transform techniques (bottom); Right: Cut through the centre of the
cylinder along the readout direction x.

5.2 Correction of temperature maps

5.2.1 Validation of the correction algorithm

In Sect. (2.8) the influence of magnetic field inhomogeneities on temperature maps and
one possible correction method have been introduced. By applying the developed and
validated methods for the determination of the magnetic field deviation we can now
estimate the resulting effects. We will both determine the difference between two phase
maps simulated without taking into account the field deviations due to different suscep-
tibilities and in consideration of these effects including the temperature dependence of
χ. As a first test we apply a radial temperature gradient of

T2(~r) = 10◦C − R

20
·
√

(~r − ~r0)2
◦C

to a constant temperature of 37 ◦C. Here R denotes the size of the heated area
(R = 1.925 cm) and ~r0 marks the centre of the simulated area. Figures 5.4 and 5.5
compare the temperature correction both for the assumption of a linear temperature
dependence of χ and for the true relationship. The absolute value of the maximum devi-
ation for the linear assumption is in the range of 2% which corresponds to the statement
in [37] where an effect of less than 5% was observed. Both methods are comparable for
this setup with pure water. Figures 5.6 and 5.7 show the same temperature distribution
with changed setup. In this case an air-filled cylinder of radius 1.5cm in the centre is
surrounded by water. The correction procedure is carried out as before with the same
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Figure 5.4: Comparison between the acquired temperature maps for a forward pass with correct tem-
perature dependence of the susceptibilities, for the correction procedure with assumed linear temperature
dependence of χ and for the uncorrected case. The medium is water.
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Figure 5.5: Difference between corrected and uncorrected temperature differences δ(∆T ) for the for-
ward pass with correct temperature dependence of the susceptibilities and the correction procedure with
assumed linear temperature dependence of χ. The medium is water.
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Figure 5.6: Comparison between the acquired temperature maps for a forward pass with correct tem-
perature dependence of the susceptibilities, for the correction procedure with assumed linear temperature
dependence of χ and for the uncorrected case. The medium is water with an air-filled cylinder of radius
1.5 cm in the centre.

assumed value for ∂χ
∂T = −1.23 · 10−9(◦C)−1. For comparison the corrected temper-

ature map is calculated under consideration of the exact temperature dependence of
χ. Compared to the latter case, the temperature correction for the linear temperature
dependence of χ remains unchanged at approximately 2%. In contrast to that the ex-
act calculation shows much higher deviations. Especially in the vicinity of the air-filled
cylinder the corrections are of the order of 10%, which is not surprising due to the drastic
susceptibility change. Obviously the assumption of ∂χ

∂T = const is not applicable to air
(2.8.9) and leads to a noticeable underestimation of the resulting temperature which is
not negligible.
The applied tests also prove that both field deviations and the temperature dependence
of the susceptibility have to be considered if we want to determine temperature maps
with high accuracy.
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Figure 5.7: Difference between corrected and uncorrected temperature differences δ(∆T ) for the for-
ward pass with correct temperature dependence of the susceptibilities and the correction procedure with
assumed linear temperature dependence of χ. The medium is water with an air-filled cylinder of radius
1.5 cm in the centre.

5.2.2 Application to experimental data

The effects of magnetic field inhomogeneities on temperature maps have been derived
in Sect. (2.8) and the proposed correction procedure was validated for simple test cases
in the previous section. Furthermore, the comparison between experimentally acquired
temperature maps and measured temperatures showed deviations in the range of 12−20%
(4.3.3). Consequently, it is still to be shown whether the correction for magnetic field
inhomogeneities can remove the remaining deviations. For this purpose we use the
acquired data already presented in Sect. (4.3.3) and concentrate on the temperature map
acquired after 70min of cooling. As a first step, the correction procedure will be applied
in a forward pass to observe the development of the correct measured temperatures in
comparison to the calculated temperature maps (Fig. 5.8).

Obviously, this correction alone is not able to remove the present deviations between
measurements and calculations. Rather, the correction leads to an increased temperature
whereas the calculated temperatures underestimate the true temperature. On the other
hand, it was discovered that the main source of temperature deviations arises from a
temperature dependent drift of the main magnetic field. Of course this effect is difficult to
characterise and should be corrected properly as proposed in [14]. There fatty reference
areas are used for drift correction as the proton resonance frequency of fat is insensitive
to temperature changes. Consequently the visible shifts are only an effect of the main
magnetic field drift. Also without this somehow complicated procedure an estimate of the
resulting shift can help to clarify whether this is the source of the observed temperature
errors. For this purpose we assume a magnetic field drift of BD = 8 · 10−9 Tm−1K−1

which leads to a reasonable field change of ∆BD = 2 ·10−7 T in the centre of the magnet
bore. This is also comparable with the magnitude of the magnetic field inhomogeneities
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Figure 5.8: Comparison between measured temperatures, calculated temperatures and the simulated
disturbed temperatures based on a forward pass.
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Figure 5.9: Comparison between measured temperatures, calculated temperatures and the simulated
disturbed temperatures based on a forward pass including a magnetic field drift of 8 · 10−9 Tm−1K−1.

being in the order of (10−7 − 10−6)T. The achieved results in Fig. 5.9 demonstrate
that the magnitude of the calculated temperature is reproducible if we consider both
magnetic field deviations due to susceptibility changes and the temperature dependent
magnetic field drift.
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6 Conclusions

In this work, the main effects leading to image artifacts in magnetic resonance imaging as
well as possible correction procedures, especially concerning magnetic resonance temper-
ature imaging, have been investigated. The experimental methods have been described
concerning both basic technical details as well as evaluations of the acquired data. For
the application of MR temperature monitoring in the clinical practice, it has been shown
that the quality of the acquired temperature information is not deteriorated by a smaller
image resolution within reasonable limits. This can be used to shorten the acquisition
times and hence to improve the temporal resolution of the time series. Furthermore, no
evidence for the temperature dependence of the artifact size could be found. However,
the matching between the present and the reference image is a crucial factor being very
sensitive to inter-acquisitional motion. The comparison of temperature maps acquired
with the proton resonance frequency method with temperatures measured with temper-
ature probes showed large deviations which can be explained by a temperature-induced
drift of the main magnetic field and the influence of susceptibility induced magnetic field
inhomogeneities.
This knowledge about the causes and effects of image artifacts was applied to develop
different correction procedures. As the magnitude of the magnetic field inhomogeneities
is a crucial point within all these procedures, the main emphasis was on the search
for both effective and precise determination methods of these magnetic field inhomo-
geneities. Two major directions were followed of which the first one relies on experimen-
tally acquired phase images to extract the field deviations. As this procedure requires
phase unwrapping, an algorithm was developed which was especially tailored for the
given problem of phantoms with air-fillings. The second approach applies numerical
techniques to solve Laplace’s equation. Here, two different methods, namely the Fourier
transform method and the finite volume method, were applied and benchmarked for
accuracy and performance. The Fourier transform technique was shown to be superior
in both aspects thus being the ideal approach for the numerical determination of the
magnetic field inhomogeneities. It allows for online calculation and correction of image
artifacts within a reasonable time. Its drawback is that it requires the knowledge of the
exact susceptibility distribution within the body, which is difficult to determine. How-
ever, for moderate accuracy a discrimination between tissue and air is sufficient [35].
Based on the knowledge of the magnetic field inhomogeneities two different procedures
for the correction of geometric distortions were developed. The application to distorted
images revealed the advantages of the correction in the spatial domain compared to
the algorithm working in the frequency domain. While the second procedure could not
improve the image quality despite the long computing times the spatial correction was
able to recover the basic geometry of the disturbed object very fast. Nevertheless, the
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reconstruction of the image intensity remains difficult, being an inverse problem. For
the application to surgical treatment planning, this is already sufficient as the main em-
phasis is on the definition of the geometries within the body.
As the geometrical distortions are less pronounced for air-filled cavities, the direct influ-
ence of magnetic field inhomogeneities on temperature maps was studied more closely
yielding a possible correction procedure. The applied procedure works only in a homoge-
neous medium with magnetic properties similar to that of water. Applications to cases
with large susceptibility differences such as air-water could not reproduce the correct
temperature development. The forward application of the exact algorithm to measured
temperature data in combination with an estimated magnetic field drift term was able
to recover the results acquired in temperature measurements with the proton resonance
frequency method. Even though the exact temperature profile could not be simulated,
the absolute temperature range was in good agreement with the experimental data.
In conclusion, we can state that the developed techniques are able to improve the im-
age quality and the accuracy of temperature measurements. Further improvements are
possible by various means. As already mentioned, the precise definition of the object ge-
ometry for the numerical calculation of the magnetic field inhomogeneities is crucial but
also difficult. This problem can be solved by the acquisition of an additional image with
high readout bandwidth and hence less distortions. This decreases the signal-to-noise-
ratio but helps to identify the basic structure of the imaged object. One method which
is completely free of susceptibility induced distortions is computer tomography which
delivers very precise information about the shape of the objects. We have proposed an
experimental and numerical approach to determine the magnetic field deviation, both
of which have their advantages and disadvantages. A combination of both, using the
experimental acquired phase maps as input for the numerical solution seems promising.
For severe distortions an iteration scheme is possible, but computational costly.
Apart from this, the problem concerning the mismatching between the actual and the
reference image during a time temperature series remains, depending mainly on inter-
acquisitional motion of the imaged object. An online motion correction is possible for
instance by using an image catalogue in which the whole spectrum of motion present in
the imaged object is covered. During the temperature measurements the actual image
is compared with this catalogue, searching for the best reference image. As this is done
online no additional post-processing is required.
The final results of this work demonstrate that the combined application of analytical,
experimental and numerical techniques is very powerful and allows for the development
of correction procedures for MR image artifacts.
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A Determination of the magnetic field at

the position of the nucleus for simple

geometries

For the magnetic field at the location of the nucleus (2.7.1) and (2.7.2) are valid

~Bnuc(~r) = ~Bext(~r) + ~Bscr(~r) + ~Blor(~r) (A.0.1)

= µ0 (1 + χ(~r))
(

~H0(~r) + ~hin(~r) + ~hobj(~r)
)

+ ~Bscr(~r) + ~Blor(~r)

= ~B0(~r) +~bin(~r) +~bobj(~r) + ~Bscr(~r) + ~Blor(~r)

with ~bin(~r) = µ0 (1 + χ(~r))~hin(~r) and ~bobj(~r) = µ0 (1 + χ(~r))~hobj(~r).

A.1 Homogeneous sphere

Laplace’s equation will now be solved for
a sphere (radius a,permeability µi and sus-
ceptibility χi) in a surrounding medium of
permeability µe and susceptibility χe (Fig.
A.1) according to [30] and [11]. The exter-
nal field is given by ~B0 = (0, 0, B0).
As known from magnetostatics [21]

~Bext(~r) = µ0 ( ~Hext(~r) + ~M(~r))

As ~M(~r) is constant within the cylinder,
we can define a magnetostatic potential
~Hext(~r) = −~∇Φm(~r) so that

~∆Φm(~r) = −~∇ · ~M(~r) (A.1.1)

z

χ
θ

r

xa

y

i

χe

Figure A.1: Geometry of the posed problem.
A sphere of susceptibility χi and radius a is sur-
rounded by air (χe ≈ 0).

This can be solved by multipole expansion where the indices i and e denote the inner
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and outer solutions

Φm,i(~r) =

∞
∑

l=0

(

Alr
l + Blr

−(l+1)
)

Pl(cos θ) (A.1.2)

Φm,e(~r) =

∞
∑

l=0

(

Clr
l + Dlr

−(l+1)
)

Pl(cos θ) (A.1.3)

Now we have to consider certain boundary conditions for our solution

1. The solution at infinity can be approximated by the undisturbed case given by

lim
r→∞

~Bext,i(~r) = ~B0

lim
r→∞

Φm,e(~r) = − B0

µ0µe
z =

B0

µ0µe
r cos θ (A.1.4)

Thus Cl =

{

− B0
µ0µe

, (l = 1)

0 , (l 6= 1)

2. The solution has to be regular for r → 0. Consequently, Bl = 0 holds for all l.

3. The normal component of ~B(~r) has to be continuous at the surface, that means

−µi
∂Φm,i(~r)

∂r

∣

∣

∣

r=a
= −µe

∂Φm,e(~r)

∂r

∣

∣

∣

r=a

−µi

∞
∑

l=0

Alla
l−1Pl(cos θ) = µe

∞
∑

l=0

Dl(l + 1)a−(l+2)Pl(cos θ) − B0

µ0

µiA1 = µe

(

− B0

µ0µe
− 2D1

R3

)

(Al = Dl = 0 ∀ l 6= 1) (A.1.5)

4. The tangential component of ~H(~r) has to be continuous leading to

−1

a

∂Φm,i(~r)

∂θ

∣

∣

∣

r=a
= −1

a

∂Φm,e(~r)

∂θ

∣

∣

∣

r=a

−1

a

∞
∑

l=0

Ala
l = −1

a

∞
∑

l=0

Cla
l + Dla

−(l+1) =
B0

µ0µe
−

∞
∑

l=0

Dla
−(l+2)

A1 = − B0

µ0µe
+

D1

R3
(Al = Dl = 0 ∀l 6= 1) (A.1.6)

From (A.1.5) and (A.1.6) follows

D1 =
B0(µi − µe)a

3

µ0µe(2µe + µi)
(A.1.7)

A1 = − B0

µ0µe

(

1 +
µe − µi

2µe + µi

)

= − B0

µ0µe

3µe

2µe + µi
(A.1.8)
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A.1 Homogeneous sphere

Together with (A.1.7) and (A.1.8) we can now derive the expression for the magneto-
static potential.

Φm,i(~r) = −
(

3µe

2µe + µi

)

B0

µ0µe
r cos θ = −

(

3µe

2µe + µi

)

B0

µ0µe
z (A.1.9)

Φm,e(~r) = − B0

µ0µe
r cos θ +

(

µi − µe

µi + 2µe

)

B0a
3

µ0µer2
cos θ

= − B0

µ0µe
z +

(

µi − µe

µi + 2µe

)

B0

µ0µe
a3 z

r3
(A.1.10)

The magnetic induction inside and outside the sphere is given by the definition of the
magnetostatic potential ~Bext,i(~r) = −µ0µ~∇ · Φm,i, ~Bext,e(~r) = −µ0µ~∇ · Φm,e.

(Bext,i)x = 0

(Bext,i)y = 0

(Bext,i)z = B0
3µi

2µe + µi

(Bext,e)x = −B0
µe − µi

µi + 2µe
a3 xz

r5

(Bext,e)y = −B0
µe − µi

µi + 2µe
a3 yz

r5

(Bext,e)z = B0

(

1 − µe − µi

µi + 2µe
a3 2z2 − x2 − y2

r5

)

(A.1.11)

According to (A.0.1) the final solution for the field at the location of the nucleus including
the results of (A.1.11) is given by

(Bnuc,i)x = (bin)x

(Bnuc,i)y = (bin)y

(Bnuc,i)z = B0
3µi

2µe + µi
+ (bin)z − B0

(

σ +
2

3
(µi − 1)

)

(Bnuc,e)x = −B0
µe − µi

µi + 2µe
a3 xz

r5
+ (bin)x

(Bnuc,e)y = −B0
µe − µi

µi + 2µe
a3 yz

r5
+ (bin)y

(Bnuc,e)z = B0

(

1 − µe − µi

µi + 2µe
a3 2z2 − x2 − y2

r5

)

+ (bin)z − B0

(

σ +
2

3
(µe − 1)

)

(A.1.12)
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A.2 Homogeneous cylinder

In the case of a homogeneously cylinder
with a � L and susceptibility χi in a
medium of susceptibility χe (Fig. A.2)
we can distinguish between two major
geometrical settings. For the external
magnetic field parallel to the axis of
the cylinder ( ~B0(~r) = (0, 0, B0)), cor-
responding to θ = 0, we can deduce
the following very simple solutions for
the resulting field [11]:

~Bext,e(~r) = (1 + χe)B0~ez +~bin(~r) ,

~Bext,i(~r) = (1 + χi)B0~ez +~bin(~r) .

y

χ z

θ

B0

x

ρ

ϕ

a

L

χ

e

i

Figure A.2

According to (A.0.1) we can derive the total magnetic field felt by the nucleus.

(Bnuc,i)x = (bin)x

(Bnuc,i)y = (bin)y

(Bnuc,i)z = (1 + χi)B0 + (bin)z − B0

(

σ +
2

3
χi

)

(Bnuc,e)x = (bin)x

(Bnuc,e)y = (bin)y

(Bnuc,e)z = (1 + χe)B0 + (bin)z − B0

(

σ +
2

3
χe

)

(A.2.1)

If we consider the case with the external magnetic field perpendicular to the axis of the
cylinder ( ~B0(~r) = (B0, 0, 0)), corresponding to θ = π/2, the solution requires a more
general ansatz. That is why we will now go back to the solution of Laplace’s equation
in cylindrical coordinates [39].
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A.2 Homogeneous cylinder

Solution of Laplace’s equation in cylindrical coordinates

In cylindrical coordinates the Laplace equation reads:

~∆Φ(~r) =
1

ρ

∂

∂ρ

(

ρ
∂Φ(~r)

∂ρ

)

+
1

ρ2

∂2Φ(~r)

∂ϕ2
+

∂2Φ(~r)

∂z2
= 0 . (A.2.2)

Separation of variables leads to the expression Φ(ρ, ϕ, z) = R(ρ)Q(ϕ)Z(z). Assuming
the functional dependencies

Q(ϕ) ∼ e±inϕ (n = 0, 1, 2, . . .) (A.2.3)

Z(z) ∼ ekz (A.2.4)

allows for the derivation of an differential equation for R(ρ)

ρ
d

dρ

(

ρ
dR

dρ

)

+
(

k2ρ2 − n2
)

R = 0 . (A.2.5)

In the general case the solution of these equations is given by Bessel- and Neumann-
functions Rn(kρ) = AnJn(kρ) + BnNn(kρ), where Jn is the Bessel-function of nth order
and Nn the Neumann-function of nth order. Thus we get

Φ(r, ϕ, z) ∼
∑

m,n

[AmnJn(kmr) + BmnNn(kmr)] e
±inϕe±kmz . (A.2.6)

In the case of cylindrical symmetry the solution has to be independent of z and we get
k = 0. Thus, (A.2.5) simplifies to

ρ
d

dρ

(

ρ
dR

dρ

)

− n2R = 0 .

A separate treatment of the term with n = 0 yields expressions for Rn(ρ) and Qn(ϕ)

Rn(ρ) =

{

A0 + B0 ln ρ , (n=0)

Anρ
n + Bn

1
ρn , (n=1,2,3. . .)

Qn(ϕ) =

{

C0 [+D0ϕ] , (n=0)

Cn cos nϕ + Dn sinnϕ , (n=1,2,3. . .)

The final solution for the magnetostatic potential is defined by the cylindrical harmonics

Φ(r, ϕ) = A0 + B0 ln ρ +
∞
∑

n=1

[

Anρn + Bn
1

ρn

]

[Cn cos nϕ + Dn sinnϕ] . (A.2.7)

Now we are able to find the solution for the perpendicular case [30]. Again we have to
consider the boundary conditions from Sect. A.1.
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• 1:

Φi(~r) =
∞
∑

n=0

[Cnρ
n cos(nϕ) + Enρ

n sin(nϕ)]

Φe(~r) =

∞
∑

n=0

[

Dnρ−n cos(nϕ) + Fnρ−n sin(nϕ)
]

− B0

µ0µe
ρ cos ϕ (A.2.8)

• 3:

−µ0µi
∂Φi(~r)

∂ρ

∣

∣

∣

ρ=a
= −µ0µe

∂Φe(~r)

∂ρ

∣

∣

∣

ρ=a

−µ0µi(C1 cos ϕ + E1 sinϕ) = µ0µe(D1a
−2 cos ϕ − F1a

−2 sinϕ) + B0 cosϕ
(A.2.9)

• 4:

∂Φi(~r)

∂ϕ

∣

∣

∣

ρ=a
=

∂Φe(~r)

∂ϕ

∣

∣

∣

ρ=a

−C1a sinϕ + E1a cos ϕ = −D1a
−1 sinϕ + F1a

−1 cos ϕ +
B0

µ0µe
a sinϕ (A.2.10)

It follows that E1 = F1 = 0 and with (A.2.9) and (A.2.10) we finally get

C1 = − 2B0

µ0(µi + µe)
, D1 =

B0a
2(µi − µe)

µ0µe(µe + µi)
. (A.2.11)

That leads to an expression for the magnetostatic potential with x = ρ cos ϕ and y =
ρ sinϕ

Φi(~r) = C1ρ cos ϕ = − 2B0

µ0(µi + µe)
ρ cos ϕ = − 2B0

µ0(µi + µe)
x

Φe(~r) = D1
cos ϕ

ρ
− B0ρ cos ϕ =

B0

µ0µe

(

µi − µe

µi + µe
a2 cos ϕ

ρ
− ρ cos ϕ

)

=
B0

µ0µe

(

µi − µe

µi + µe
a2 x

x2 + y2
− x

)

. (A.2.12)

The final solution for inside ~Bext,i and outside the cylinder ~Bext,e can be found by ap-
plying the definition of the magnetostatic potential
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A.2 Homogeneous cylinder

(Bext,i)x =
2µi

µi + µe
B0 + (bin)x

(Bext,i)y = (bin)y

(Bext,i)z = (bin)z

(Bext,e)x = B0 − B0a
2 (µi − µe)

(µi + µe)

(y2 − x2)

ρ4
+ (bin)x

(Bext,e)y = B0a
2 (µi − µe)

(µi + µe)

2xy

ρ4
+ (bin)y

(Bext,e)z = (bin)z . (A.2.13)

The result can be seen as a superposition of the fields with and without the cylin-
der placed in the medium with susceptibility χe. The latter was calculated by solving
Laplace’s equation.

~Bext(~r) = (1 + χe) ~B0(~r) + ~Bcyl(~r)

Following this ansatz combined with (A.0.1) we obtain the total field present at the
location of the considered nucleus including the effect of the sphere of Lorentz.

(Bnuc,i)x = B0 +
3χe − χi + 2χiχe

6 + 3χi + 3χe
B0 − B0σ + (bin)x

(Bnuc,i)y = (bin)y

(Bnuc,i)z = (bin)z

(Bnuc,e)x = B0 + B0a
2 (χi − χe)

(2 + χi + χe)

(x2 − y2)

ρ4
+

1

3
χeB0 − B0σ + (bin)x

(Bnuc,e)y = B0a
2 (χi − χe)

(2 + χi + χe)

2xy

ρ4
+ (bin)y

(Bnuc,e)z = (bin)z . (A.2.14)
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B Gradients

For the correction methods mentioned in Sect. (3.6) the exact strength of the spatial
encoding gradients have to be known. They were acquired with the help of the program
IDEA provided by the manufacturer Siemens medical solutions which offers the possi-
bility to simulate MR sequences including the gradient properties. Tables B.1 and B.2
show the resulting values for the gradients for different acquisition parameters including
changing readout bandwidth to reduce susceptibility artifacts by increasing the readout
gradient.

FOV FOV resolution number slice R-grad P-grad S-grad
readout phase of slices thickness
[mm] [%] [mm] [mT/m] [mT/m] [mT/m]

400 50 256 16 8 ±3.91 5.33 -5.28
400 50 128 16 8 ±1.96 2.76 -7.54
400 68.8 256 16 8 ±3.91 5.33 -5.28
400 68.8 128 16 8 ±1.96 2.76 -7.54
280 75 256 16 8 ±5.59 8.45 -5.28
280 75 128 16 8 ±2.80 4.16 -7.54
280 50 256 21 10 ±5.59 8.45 -4.23
280 50 128 21 10 ±2.80 4.16 -6.03
300 100 256 16 5.5 ±5.22 7.11 -7.69
300 100 128 16 5.5 ±2.61 3.68 -10.96
300 68.8 256 16 5.5 ±5.22 7.11 -7.69
300 68.8 192 16 5.5 ±3.91 5.49 -10.96
300 68.8 128 16 5.5 ±2.61 3.68 -10.96

Table B.1: Gradient strengths for all three encoding directions for different sequence parameters and
a constant readout bandwidth of 260Hz/pixel.

readout FOV FOV matrix number slice R-grad P-grad S-grad
BW readout phase of slices thickness

[Hz/pixel] [mm] [%] [mm] [mT/m] [mT/m] [mT/m]

300 280 68.8 256 16 8 -5.59/6.45 -10.13/8.45 -5.28/3.96
340 280 68.8 256 16 8 -5.59/7.36 -9.02/8.45 -4.60/3.96
380 280 68.8 256 16 8 -5.59/8.22 -8.52/8.45 -4.30/3.96
420 280 68.8 256 16 8 -5.59/8.92 -8.20/8.45 -4.11/3.96
480 280 68.8 256 16 8 -5.59/10.23 -7.56/8.45 -3.74/3.96
530 280 68.8 256 16 8 -5.59/11.34 -7.11/8.45 -3.48/3.96
340 400 50.0 256 16 8 -3.91/5.15 -6.32/5.33 -4.60/3.96
420 400 50.0 256 16 8 -3.91/6.25 -5.74/5.33 -4.11/3.96
530 400 50.0 256 16 8 -3.91/7.94 -4.98/5.33 -3.48/3.96

Table B.2: Gradient strengths for all three encoding directions for different sequence parameters and
a changing readout bandwidth.
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selbständig verfasst und keine anderen Hilfsmittel als die angegebenen verwendet habe.
Die Stellen, die anderen Werken dem Wortlaut oder dem Sinne nach entnommen sind,
habe ich in jedem Falle durch Angaben der Quelle, auch der Sekundärliteratur, als
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