
Mathematisch-Naturwissenschaftliche Fakultät
Ernst-Moritz-Arndt-Universität Greifswald

Bachelor Thesis

Sand and snow dunes with cellular automata

Tim Teichmann
Greifswald, July 9, 2010

Gutachter:
Prof. Dr. Ralf Schneider
PD Dr. Berndt Bruhn



Contents

1 Motivation 3

2 Theoretical background 4
2.1 Dynamics in sand piles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Behavior of blown sand on small scales . . . . . . . . . . . . . . . . . . . 5
2.3 Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Dune shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Dynamics of dunes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Cellular automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Basic algorithm 9
3.1 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results 11
4.1 Building up a sand pile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Testing different erosion / transport rules . . . . . . . . . . . . . . . . . . 13
4.3 Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 From a flat surface . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 From a small transverse dune . . . . . . . . . . . . . . . . . . . . 14

4.4 Movement and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Parameter variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5.1 Transport length . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5.2 Erosion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.3 Total amount of sand . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.6 Correlation of dune size and dune velocity . . . . . . . . . . . . . . . . . 23

5 Conclusions and outlook 24

Bibliography 26

2



1 Motivation

One of the remaining challenges for physics in this century is a better understanding
of turbulent systems. The route from order to chaos and the creation of structures in
turbulence is one aspect of common interest in this field connecting so different fields
like meteorology, fusion plasmas and fluid dynamics. An example for structure creation
in turbulence is the situation when turbulent wind in clouds leads to the collision of
small water droplets merging into larger drops, which can be seen as rain [1]. Another
example is the turbulent deposition and transport of sand under the influence of wind
in deserts, forming sometimes dunes.

One approach to simulate large and complex systems is the concept of cellular au-
tomata, where the complicated dynamics of the system are reduced to a small set of
simple rules.

The aim of this thesis is to develop a model to simulate the creation and temporal
evolution of dunes using a cellular automaton and to qualify and validate it. Therefore
first some background information about dynamics in sand piles, the interaction between
wind and sand, dune shapes and formation and cellular automata is given in section 2.
Then in section 3 the rules for the cellular automaton are discussed. In section 4 the
results are discussed, beginning with a comparison of different rule sets, that would have
been possible to use, followed by observations of structural changes in a dune field and an
analysis of how changes of parameters (such as the velocity of sand transport) affect the
properties of a dune field. Finally it is tested, whether the functional relation between
size and velocity of a dune. The results are summarized in section 5.

Fig. 1.1: A field of barchan dunes photographed from an airplane.
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2 Theoretical background

2.1 Dynamics in sand piles

Understanding the dynamics in sand piles is of great interest, because they are a rela-
tively simple example of self-organized criticality (SOC) and can therefore be used as
a model system for other processes with SOC behavior, such as earthquakes [2], cloud
creation [3], evolution of population [4], forest fires [5] and edge effects in tokamaks [6].
The concept of SOC was introduced by Bak, Tang and Wiesenfeld [7,8] and states, that
an open, driven system strives towards a “critical” state, which is locally unstable and
has no intrinsic time or length scale.
Such systems show three characteristics, which are often observed in nature. The first
one is fractal structure: The systems look the same independently from the length scale
(this is the case in turbulent winds). The second one is 1/f -noise: The energy of oc-
curring noise rises with the decline of its frequency (which is the case for example in
resistors). The third one is the power law: An event is more likely to happen, when
its effects are smaller in some sense, in a way that a log-log-diagram of event size and
frequency would give a straight line (as it is the case for the occurrence of earth quakes).

Fig. 2.1: The size distribution of clouds can be described by a power law. Furthermore
the processes in them can be described by self organized criticality.
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Large amounts of sand grains – as well as snow flakes in powder snow – can be
approximated as spherical particles. If too many of those particles are put onto the
same area the upper ones will slide down and a pile is formed. The angle at which such
a sand pile is still stationary (but unstable) is called “angle of repose”. According to
Mehta and Barker [9] there is a range of angles of repose, because a smaller angle of
repose is needed to keep a movement continuing than to initiate it.
Within this range any sand pile can be in a stationary as well as in a sliding condition.
The interval of angles of repose is limited by the maximum angle at which a stationary
sand pile will begin sliding as soon as any more sand is added – the “maximum angle of
stability” αm – and the angle at which it ceases to slide – the “minimal angle of repose”
αr. According to Bagnold [10] the angle of repose depends mainly on the shape and size
distributions of the particles. αm = 34 ◦ and αr = 30 ◦ are reasonable values for sand.
Mehta and Barker assume, that an avalanche starting in one direction will exist until
the minimal angle of repose is reached in this direction, while other models (for example
by Alonso and Herrmann [11]) include the momentum of the particles in the condition
for the avalanche to stop, which allows tails at the bottom of sand piles.

2.2 Behavior of blown sand on small scales

As soon as wind faster than a certain threshold velocity streams over a patch of sand,
some of the grains will begin to move. Bagnold classifies this movement of sand grains
into three groups: suspension, saltation and surface creep [10].
Suspended sand grains are usually very small and therefore light. They are transported
with the stream and can travel rather long distances, because collisions with particles
coming from below compensate the gravitational force.
Saltated grains are usually medium sized. They were ejected by the momentum a land-
ing grain transmitted to them. Their vertical velocity behaves just like that of a thrown
object (with friction), but as the particle is slowed down relative to the wind it is accel-
erated relative to the bottom until it reaches approximately wind velocity. This kind of
transport becomes rather dominant when the grain size varies strongly, because heavier
particles can launch smaller particles with higher velocities.
The third kind of movement is the surface creep. Since the landing particles have quite
a small angle of impact, the biggest part of its energy will be transmitted in a direction
parallel to the wind. This leads to creeping forward especially for larger grains because
they are pushed by a large number of other particles which were in saltation or creeped
before.

Following Bagnold, the total sand flow is given by

q = C ·
√
d

D
· ρ

g
· v3∗

It depends on the velocity gradient of the wind v3∗, the mean diameter of the sand grains
(divided by a normalization parameter of 0.25 mm) d

D
and a constant C depending on
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the size distribution amongst the grains as well as on the mass density ρ of air and the
gravitational acceleration g.

2.3 Structure formation

Once the sand is moving, sooner or later small local instabilities of sand height will
arise, because of the statistical characteristics of sand transport. Accumulations that
formed this way have a slope in wind direction which is positive on one (defined to be
the windward) and negative on the other (the leeward) side. Since the component of
the velocity of saltated grains parallel to the wind is quite high at landing time, their
angle of impact is very low. This means, that it is far more likely, that a saltated grain
lands on the windward than on the leeward side. Therefore, the accumulation increases
and first ripples are formed.

2.4 Dune shapes

For different geographic conditions – such as strength and direction of wind or amount
of sand supply – different types of dunes emerge [10,12,13]. Some of the most important
types are:

• Transverse dunes, which are very long ridges, oriented perpendicular to the wind
direction. They build up, when the wind blows unidirectional, especially when
there is so much sand available, that the bottom (consisting of larger pebbles) is
always covered with sand.

• Barchan dunes, which are crescent-shaped dunes, opened downwind. They de-
velop, if the wind blows from only one direction over a certain time and when
not too much sand is available. Barchans move parallel to wind direction and can
sustain their shape for very long times.

• Seif dunes, which are sinus shaped linear dunes, oriented parallel to the main
direction of the wind. They can only build up if the wind blows from multiple
directions. The standard picture for their creation is that one arm of an existing
barchan dune is blown away by a weaker crosswind, forming a small diagonal dune.
As those wind variations are linked to the seasons and therefore appear annually,
the sand blown over the barchan will feed the new diagonal dune and it will become
larger than the barchan itself over time.

• Star dunes (which are star shaped) and network dunes (which consist of over-
lapping transverse dunes). These are the most complex dune shapes possible.
They appear when many wind directions with about equally strong winds appear
periodically.

6



In some publications all dunes with a slip face parallel to the main direction of the wind
are called transverse dunes (which then includes barchans and therefore all dunes
covered in this thesis). Dunes with the net transport of the sand parallel to their crest
are called linear dunes.

2.5 Dynamics of dunes

Dunes that are exposed to the wind move – even while they are formed. From practical
considerations, definitions of dune velocities make sense only for dunes of constant sizes
and shapes. According to Livingstone [13] the velocity of a transversely moving dune,
which is not anchored by vegetation, can be calculated by

vd =
qb

kHρb

where qb is the sand flux that is trapped by the dune, H is the dune height, ρb is the mass
density of the sand (including the air between the grains) and k = AC

LH
is a parameter

consisting of the cross-sectional area AC , the path between neighboring dunes L (which
can also be seen as a wavelength) and the dune height.
Rubin and Hunter stated, that k = 0.5 could be assumed for simplified triangular
dunes [14] and Bagnold used the total sand flux q instead of qb and set k = 1 [10], which
is nearly the same if half of the sand blowing over the dune is trapped. In any case k
was assumed to be constant.
qb is thought to depend mainly on the amount of sand which is trapped, when the air
stream rips off over the slip face. This amount is nearly independent of the size of the
dune, but depends on its shape. This means that with a constant sand flux q, qb is
constant as well, which leaves the relation

vd ∝ H−1

2.6 Cellular automata

To simulate large and complex systems quite fast and efficient one possibility is to use
the concept of cellular automata. A cellular automaton is characterized by the following
rules [15]:

• The simulated area is divided into many cells.

• Those cells can have only a limited number of states.

• All cells are connected among themselves – for example by setting the cells onto
points of a lattice.

• The state of a cell can only be influenced by cells in a limited neighborhood of the
cell itself.
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• The change of cell states is defined by a very limited set of rules.

• Those rules are applied in every time step of the simulation.

One of the simplest and probably best known cellular automata is “Conway’s Game
of Life”. It can be seen as a model for ecological balance. The automaton consists grid
of squares, each representing a population, that is either living or dead. The survival of
a population depends solely on how many of its eight neighbors are living. Populations
with less than two living neighbors die of loneliness, populations with more than three
living neighbors die due to overcrowding. A dead population can only be revived, if it
has exactly three neighbors. Whether a population will live or not in the next time steps
is determined in parallel for all cells.

The rules, that where used for the simulation of sand dunes are described in the next
section.
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3 Basic algorithm

In the simulation program the simulated area is divided into equally sized, squared cells.
For each cell an average sand height is given. The following three steps are performed
on every cell during each time step:

• Erosion

• Transport

• Sliding

The rules for those steps are inspired by papers written by Francisco de Castro [16],
Hiraku Nishimori and Noriyuki Ouchi [17].

3.1 Erosion

Due to the wind a certain amount of sand is dragged into the air above every cell. In
the simulation, this amount is given by a base amount E0, which is randomly generated
within a (user defined) limit for every cell and time step and then multiplied by a
function of the slope. Nishimori and Ouchi suggested q = q0 + b′ · tanh (∇h) as a
reasonable equation for this purpose, which leads to the amount of the eroded sand on
a cell:

E = E0 · (1 + 0.9 · tanh (∇h))

In this formula∇h is the slope in wind direction on the considered cell. It was determined
by measuring the height difference between the two adjacent cells in wind direction and
dividing it by twice the cell size d. The lifted sand is subtracted from the sand height
on the cell and noted as sand in the air. Of course there cannot be more sand removed
from any cell, than it holds.

3.2 Transport

For every cell with airborne sand a wind velocity dependent “effective transport length”
L is randomly generated within borders representing the wind velocity. The lifted sand
from such a cell is then transported to the neighboring, leeward cell. After this its
transport length is decreased by a certain distance L− and the transport step is repeated
on the next cell. When the remaining transport length reaches zero, all sand is dropped
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onto this cell.
The function

L− = d · (1− tanh (∇h))

with the cell size d and the slope of the traveled distance ∇h (determined by dividing
the height difference between the current cell and the cell the sand came from by the
cell size) seems suitable. It makes the sand travel longer distances when it is on the
windward slope (where the wind is further pushing it) and only short distances on the
leeward side (were the wind stream might be ripped of).
Since the simulations where only performed with unidirectional wind, the wind was
defined to blow in x-direction.

3.3 Sliding

After the sand has been transported, it might be stacked high enough to form an un-
stable sand pile. It is assumed that the sand will begin to slide from a cell, when the
maximum angle of stability is reached on one of the eight slopes leading away from the
cell. Furthermore, it is assumed that an avalanche will start only in the direction of
the steepest slope. Since the sand then strives to reach the minimum angle of repose,
it seems logically, that the difference in height between the two affected cells is only
dependent on the distance between the cells and the minimal angle of repose. Therefore
the transferred amount of sand from cell two to cell one is calculated by

d · tanαr = hnew2 − hnew1

=
(
hold2 − htrans

)
−
(
hold1 + htrans

)
=⇒ htrans =

hold2 − hold1 − d · tanαr

2

where d is the distance between the cells.

For all cells on the grid first the steepest downward slope is chosen and then – if nec-
essary – the amount of sand specified in the above equation is transferred between the
two adjacent cells.

At the beginning of the next section it will be made plausible why these algorithms
were chosen for the simulation.
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4 Results

4.1 Building up a sand pile

In the model used for the dune simulation, all triggered avalanches have the same size.
This is due to the following issues: The range of height differences between two cells is
limited to hrange = ∆hm −∆hr = d · tanαm − d · tanαr, when no sliding occurs. Since
slides will only start if the slope between two cells is larger than αm the transferred
height is bounded below with

htrans =
h2 − h1 − d · tanαr

2
≥ (h1 + d · tanαm)− h1 − d · tanαr

2
=
hrange

2

Now consider three consecutive cells (A, B and C) of a larger slope, while one avalanche
affects all of them. At the moment when the avalanche already moved sand from A
to B (but not yet from B to C) the height difference between A and B is ∆hr, so the
height of A could still increase by hrange until the next slide between those cells happens.

Next the avalanche moves on from B to C, decreasing the height of B by at least hrange

2
.

This means, that the amount of additional sand allowed on A without causing a slide is
decreased by this amount. Since at least htrans ≥ hrange

2
will be transferred to A, as soon

as the next (local) slide occurs, there must be a slide from A to B following.
Therefore with this model it is unavoidable, that every avalanche grows to the maximum
possible size after each cell was involved in an avalanche at least once. To achieve a more
realistic avalanche distribution it is necessary to perform slides over larger distances in-
stead of cell by cell.

One approach to do this was presented by Prado and Olami [18]. They designed a
cellular automaton, where in addition to a height representing the number of grains
laying on it, each cell is given an additional state “energy”, which represents the sum of
the kinetic energies of all its grains. Each time when a slide occurs, two grains are sub-
tracted from the higher cell and one is added to on the nearest and next nearest neighbor
cell (in avalanche direction). Each of those cells get their energy value increased by one
(representing the transformed potential energy of the grain) plus half of the energy of
the cell they came from (which gets its energy set to zero afterwards, representing energy
conservation). Unlike most other models their model does not use a constant angle of
repose. Instead higher amounts of energy on a cell will trigger slides at smaller height
differences. The idea behind this concept is, that sand grains are more likely to change
their position, when they are pushed or dragged by other grains with a high momentum.
In my implementation slides occur ed, when the height difference between two cells ex-
ceeded hcrit = d4.5− 0.3 · εe, where ε is the total energy of the higher cell and d. . . e
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Fig. 4.1: Relative frequency of differently sized avalanches in a sand pile modeled as
proposed by Prado and Olami

means that the value is rounded up. Furthermore hcrit ≥ 3 was defined, so for ε ≥ 5
hcrit = 3 is used.
Using this model an experiment conducted by Held et al. [19] was simulated. They
mounted a circular disk onto a scale and added sand onto the middle of it grain by
grain. Once a sand pile reaching to the edge was built up (and sand begins to fall from
the disc), the size of an avalanche reaching the edge can be determined by measuring the
mass difference each time after putting a grain on top. This experiment was repeated
by Naoto Yoshioka [2], who focussed on comparing how the avalanche size distributions
change with varying disc and grain diameters.
In Fig. 4.1 the distributions for different numbers of cells can be seen. Small avalanches
dominate the total number of avalanches by far. The differing curves for different num-
bers of cells (which correspond to different disc diameters) concur with the experimental
result published in Yoshioka’s paper for disc which are not too large.

However this model is quite time consuming even in a one-dimensional simulation. Fur-
thermore it is nicer to have the possibility to use real numbers from the beginning. This
is why the de Castro’s sliding model is used instead Prado’s. It is much faster converging
towards a stable state (especially very fast for small height changes).
The fact that de Castro’s model is not realistic considering avalanche dynamics in a sand
pile, is not a big problem, because the important thing when simulating dunes using a
cellular automaton is to keep the slopes within the angles of repose. The details of how
they slide there are not that important.
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4.2 Testing different erosion / transport rules

To find out which rule set is the best to simulate a field of dunes, combinations of the
following rules were tested on an one-dimensional stripe with constant initial height.

Erosion rules:

• The amount of sand eroded on a cell is not at all dependent on the topography.

• Same, but no sand is eroded, when the cell considered is inside a lee-zone behind
a dune. This zone begins behind every crest and ends as soon as a line between
surface and crest has a slope of less than determined by a certain angle of shelter.

• The amount of eroded sand depends on the slope at the considered cell (E =
E0 (1 + C · tanh∇h)).

Transport rules:

• The transport length is decreased by the same length on every cell.

• The transport length is decreased by the length traveled parallel to the surface.

• The transport length is decreased by L− = L−0 (1 + C · tanh∇h)

Using the topography independent erosion rule, structures could only be found using
the last transport rule. When using either the approach including the lee-zone or the
tanh-approach for erosion, all transport rules developed structures.
The concept of having wind shelter on the leeward side of the dune has the disadvantage,
that no sand at all is eroded on long slopes with an angle slightly under the shelter
angle (while in reality the wind regime would probably be restored after some distance).
The concept of making the amount of eroded sand dependent on the slope seems more
promising. It is a better approximation to the observation made by Bagnold, that more
sand is eroded on the windward up slope than on the leeward down slope and that this
effect gets even larger with steeper slopes.
Therefore, the “tanh” rules seem to be the best choice, for both the erosion and the
transport step.

4.3 Structure formation

4.3.1 From a flat surface

Most of the simulations have been initialized with a flat sand sheet of constant height.
Since the amount of eroded sand and the transport length vary between cells and in
time, small sand piles will form by chance on random spots of the map. Because the
windward slope makes the transported sand lose energy and because sand may just get
stuck on the slope, more and more sand accumulates near those spots.
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If the result of this process is assumed to be a sand pile, the slope on every side is the
same, but the slope in wind direction is larger in the middle of the dune and smaller
where the cross section in wind direction is smaller. This and the fact, that the up
slope is shorter near the edge, lead to a faster progression of sand situated there, which
leads to the formation of barchans. Of course, this is also true for any other formation
mechanism with the exception of transverse dunes, because they are so widespread, that
they have no edge in wind direction.

4.3.2 From a small transverse dune
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Fig. 4.2: Height maps for several time steps of the same simulation. A single (stable)
transverse dune was separated from a dune field and its bottom was cut off
to accelerate the transformation. One can see, that the dune is torn apart at
about y = 35, because it is smaller and therefore faster.

Once formed, transverse dunes are usually stable. Due to the statistical characteris-
tics of the system at any time more than the average amount of sand could be lost in
a small segment of the crest. This leads to the same edge effects described earlier in
section 4.3.1, however due to the slope of the slip face the wings of a potential barchan
would be carried away even faster, which means the only thing left is a notch in the
crest.
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Smaller dunes need less sand to be rearranged when moving. The same thing is true
for sections of lower height in transverse dunes. Because of this, the section with the
notch will proceed faster than the rest of the dune, giving it a curved crest. There is the
chance, that neighboring parts of the dune will lose height, too, or that enough sand is
accumulated on the runaway section to slow it down. If neither of these options happens,
the transverse dune will be torn apart sooner or later. This can be seen in Fig. 4.2.
On high transverse dunes this process happens very slowly, because a lot more sand
needs to be removed to change the height of the crest by the same amount and the same
height difference has a smaller impact on the dune velocity for higher dunes.

To make it easier to compare results within this thesis, all values used in figures are
gained with the same set of initial parameters (except the ones specified near the fig-
ures):

• The cell size is d = 1.

• The angles of repose lie between αr = 30◦ and αm = 34◦.

• The erosion rate is generated between Xmin = 0.16 and Xmax = 0.20.

• The initial transport length is generated between Lmin = 3 and Lmax = 6.

4.4 Movement and stability

If the height profiles of all time steps are retained, they can be sliced into two-dimensional
height profiles with constant x- or y-coordinates. Those slices can later be reassembled
to visualize the temporal development of a stripe within the simulated area.

In Fig. 4.3(a) the height map of a selected area at time step t = 2130 is presented.
Fig. 4.3(b) shows the heights at x = 1360 for different time steps. Notice, that the
abscissa shows the temporal development instead of the x-position there. Comparing
these two figures, it can be seen that the right parts of the images seem to be mirrored.
This is the case, because the dunes keep their shape and while passing the cutting stripe
the same forms are “scanned”. The dunes are mirrored, because the parts passing the
line first are right on the height map (because they can then pass the line earlier), but left
on the t-y-plot (because the moment of passing is a longer time ago for them). On the
left part of the figure the formation of first small ripples and then barchans of growing
size can be seen.
In Fig. 4.4 slices with constant y = 119 at different times are shown. Since the dunes

do not move in y-direction, the history of single dunes can be followed as lines. The
slope of such a line indicates the inverse velocity of the dune and its color represents the
height of a certain point on the dune at a certain time.
The small dunes seen on the left edge of Fig. 4.3(b) can be seen as very short lines at
the bottom of Fig. 4.4. Only few of these dunes grow and survive. In the rest of the
plot it can be seen, that some dunes are not sufficiently supplied with sand and become
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Fig. 4.3: Fig. (a) shows the height map of a simulated area at time step t = 2130.
Fig. (b) shows the temporal development of a slice at x = 1360 for the same
run.

16



 0  250  500  750  1000  1250  1500

x

 0
 500

 1000
 1500
 2000
 2500
 3000

tim
es

te
p

 0
 2
 4
 6
 8
 10
 12
 14

Fig. 4.4: Horizontal stripes correspond to a slice of the simulated dune field at y = 119
at a given time. The lower stripes correspond to earlier time steps. The color
shows the height level of a given cell at a given time. The diagonal lines can
therefore characterize the movement of a dune.

smaller and faster until they vanish (their color becomes darker and the slope reduces).
Furthermore there are collisions, where a smaller, faster dune runs into a larger one.
They merge and split again, forming two dunes of the same size as before, but in reverse
order. This process was also described and modeled by Werner and Gillespie [20].

4.5 Parameter variations

4.5.1 Transport length

Increasing the transport length L while keeping the erosion rate unchanged means that
the wind speed above the sand is increased, but the shear velocity is kept unchanged.
To investigate how a change of wind velocity affects the outcome of the simulation a
small area with a constant sand height of 0.75 was initialized.
As seen in Fig. 4.5 after a certain number of time steps barchans of the same magnitude
are formed in the simulations with Lmin ≥ 2. In the case where the effective transport
length cannot grow larger than the cell size (Fig. 4.5(a)), it seems logical, that only noise
is seen.
In Fig. 4.6 it can be seen, that a longer transport length per time step leads to a higher

dune velocity. The relation between both variables is linear, which is expected.
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Fig. 4.5: Height map after simulating a long period of time. All parameters but the
transport length were kept constant. The used cell size was d = 1.
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Fig. 4.6: Dune velocities for different sized dunes. All parameters but the transport
length were kept constant. Fig. (a) shows the functional relation between dune
size and velocity, whereas in Fig. (b) the dune velocity is scaled down with the
mean transport length per time step.

19



4.5.2 Erosion rate

 0  50  100  150

x

 0

 50

 100

 150

y

 0
 1
 2
 3
 4
 5
 6
 7

(a) Xmin = 0.05

 0  50  100  150

x

 0

 50

 100

 150

y

 0
 1
 2
 3
 4
 5
 6
 7
 8

(b) Xmin = 0.16

 0  50  100  150

x

 0

 50

 100

 150

y

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

(c) Xmin = 0.3

 0  50  100  150

x

 0

 50

 100

 150

y

 0
 1
 2
 3
 4
 5
 6
 7

(d) Xmin = 0.4

 0  50  100  150

x

 0

 50

 100

 150

y

 0
 1
 2
 3
 4
 5
 6
 7

(e) Xmin = 0.5

 0  50  100  150

x

 0

 50

 100

 150

y

-0.5
 0
 0.5
 1
 1.5
 2
 2.5

(f) Xmin = 0.6

Fig. 4.7: Height maps after simulating a constant period of time with erosion rates
varying within the range of 10 % from Xmin. All simulations were started with
a flat sand sheet of height h̄. The other parameters have been kept constant.

Increasing only the erosion rate means that more material is lifted into the air every
time step without changing the transport distance. This corresponds to increasing the
velocity gradient of the wind, while leaving the velocity in the height, where most of the
sand is transported constant, which is (especially in the most common case of mixed
grain sizes) impossible even in a wind tunnel.
In Fig. 4.7 it can be seen that stronger erosion leads to smaller dunes. A larger amount of
eroded sand leads to more transported sand and therefore more sand is situated between
the dunes instead of on the dunes at the same time. This effect can also be seen as bright
spots between the dunes in the figure. Fig. 4.7(f) shows, that with a sufficiently strong
erosion only noise is left. This is because no small scale structures can persist long
enough to accumulate larger amounts of sand around them.
In Fig. 4.8 it becomes visible, that dunes move faster with a higher degree of erosion.
This is also plausible since the amount of sand belonging to one dune can be carried
away faster when more sand can be removed and transported in each time step. However
a doubled erosion rate does lead to less than a doubled velocity, so there is no linear
behavior like it was the case considering the transport length. An explanation could
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Fig. 4.8: Dune velocities for dunes with different sizes. The only parameter changed is
the erosion rate, which varied within the range of 10 % from Xmin.

be, that with more sand sedimented on one cell and more sand transported, a greater
portion of sand might get stuck along its way.
A result which can be seen from videos, but only be guessed from Fig. 4.7(a) is, that
the time it takes until the dunes are shaped grows with less erosion applied, because it
takes longer to carry the sand to another spot.

4.5.3 Total amount of sand

As discussed by Livingstone and Warren [13] approximately unidirectional wind leads
to the formation of barchans as long as there is not much sand available. If there is a
large amount of sand available, transverse dunes are formed.
Fig. 4.9 confirms this observation: As soon as the average sand height exceeds the
amount of eroded sand per cell and time step, barchan dunes are formed (Fig. 4.9(b)).
These cover a larger area and merge if the initial height is further increased (Fig.s 4.9(c)-
(d)). When reaching h̄ ≈ 6 all dunes are connected in several stripes transverse to the
wind direction (Fig. 4.9(e)). In Fig. 4.9(f) it can be seen, that with a sufficient amount
of sand the bottom becomes permanently covered with a sand sheet. This results in a
dune height (over the average height or over the height of the valleys between dunes)
being independent of the sand amount.
Fig. 4.10 shows, that the maximum height of a dune (spotted in a small simulated area)
grows with the available amount of sand. The growth is biggest at very small amounts
of sand. This is plausible, since the additional volume of material needed to enlarge any
object by a certain scale grows with its length cubed. However this is only the case up to
a certain size of transverse dunes. At some point (h̄ ≈ 12 in the simulation shown here)
the slopes of two neighboring dunes will meet and therefore no uncovered area between
them is left. Further increasing the volume of sand available then only increases the
total height at any place in the simulated area by an offset equal to the difference in
average altitude. The height of the dunes relative to the height at the valleys between
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Fig. 4.9: Height maps after simulating a long period of time with a given constant initial
height. All simulations were started with a flat sand sheet of height h̄. The
other parameters have been kept constant.
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them remains unchanged.

4.6 Correlation of dune size and dune velocity
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Fig. 4.11: Dune velocities for dunes of different sizes with 3 ≤ L ≤ 6

To verify whether the dune velocity depends on the dune height in a hyperbolic manner
as predicted in section 2.5, several runs were done with the same parameters (3 ≤ L ≤ 6),
but with a differing sand supply (to achieve a larger range of dune heights) were per-
formed. In Fig. 4.11 it can be seen, that such a correlation can be found in the model.
Some of the data points lie significantly under the curve drawn in the figure, correspond-
ing to dunes much slower than they should be. These are artifacts from the analysis.
To determine the velocities single dunes were extracted from the t-x-diagrams as seen in
Fig. 4.4. Then, the velocities were calculated from the slope. When a dune loses sand, it
becomes faster, but since the slope is calculated from a longer range of time the velocity
found might correspond to a dune height differing from the one that was determined at
the end of the simulation (seen on the upper border of the diagram).
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5 Conclusions and outlook

The goal of this thesis was to find a model that can simulate turbulences and structure
creation in them. The complex process of dune creation could be simulated with a
relatively simple set of abstract rules using a cellular automaton.

When simulating the creation of a sand pile, the end state looks promising, but no
SOC-behavior could be found in the distribution of avalanche sizes. Another automaton
for the sliding process was written. Its avalanche size distributions comply well with
experimental data which also means, that SOC behavior was found (especially for very
small sand piles). This model was however very slow and since for the simulation of
dune fields the end state of a sliding process is much more important, than how it was
achieved, this model was discarded.
Even with this deficit in one aspect of the problem good results could be found when
simulating the formation and movement of dunes. It could be seen, that dunes keep their
shape when moving, as long as they are sufficiently supplied with sand. Furthermore
the observation, that much available sand leads to the formation of transverse dunes,
while with less sand barchans will be created could be reproduced. Even the functional
relation between dune velocity and dune height could be found in the results of the
simulation.
This shows, that this fairly simple model can provide qualitative information about
structure building and movement in wind blown sand. To receive quantitative informa-
tion, it would be necessary to derive the absolute values of all used parameters from
known parameters in the real world and even when this is accomplished, the used for-
mulas might not approximate the processes well enough for quantitative data.
The next step to extend the model would be to introduce seasons with different wind
speeds and directions. Furthermore it would be more realistic to have a real wind model
from which the parameters for transport length and erosion are derived.
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