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Never Change a Winning Team 

An Analysis of Hazard Rates in the NBA 

 

Abstract 

We estimate Cox models to determine proportional hazard rates in professional basketball, concer-

ning leaving the league or changing the team by using a database covering all players of the NBA in 

the 90’s. We predict and confirm that league-hazards depend on a player’s performance. A team-

switch, however, cannot depend on low performance itself because there has to be a team willing to 

accept the (new) player. Accordingly we find that a good scoring performance and an intense use of 

a player reduces the probability of a team-switch, whereas high salaries or non-scoring performance 

do not.  
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1. Introduction 

There is a rising interest in the economics of sports. See as examples the foundation of the Journal of 

Sports Economics last year, Rosen and Sanderson’s (2000) recent article about the professional 

sports labor Market or Kahn’s paper in the Journal of Economic Perspectives reviewing the sports 

business as a labor market laboratory (Kahn 2000). Professional team sports proposes a unique 

opportunity to test hypotheses about managers, workers and business companies in general, which 

are not directly accessible since a lack of empirically data. As a result the economist has to ask 

where and how to procure “functional equivalent” data that makes an inspection of testable 

hypotheses feasible. A second reason for the interest in the economics of sports is the economic 

importance of sports in itself. Today sport has become a big business, with players salaries, 

franchises values and merchandising gaining in magnitude from season to season. Sport is only one, 

but increasing part of the entertainment industry among others like the music or movie business with 

revenues of billions of dollars.   

There are quite a lot of studies concerning the salaries in professional team sports. Most of them use 

the standard Mincer-type wage equation that tries to identify player salary determinants where 

performance, seniority and race or ethnicy are the major independent variables in their estimates, see 

Scully (1974a), Jones and Walsh (1988), Harder (1992), Idson and Kahane (1999). The aim of all 

these studies was to explain the maximum of variance with theoretically meaningful regressors. 

However, for most players the exact salary in one single year is of minor importance. They are more 

interested in playing on in further seasons. Whether a player earns $9 millions or $10 millions per 

year is less important than the question whether one can earn such an amount next season again or 

not. To analyse the reasons for staying in or dropping out of the league it is convenient to estimate 

hazard rates implicating the probability for athletes’ leaving the league. There are only a few studies 

investigating hazard rates using data from a professional sport i.e. Chapman and Southwick (1991), 
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Ohtake and Ohkusa (1994), Ohkusa and Ohtake (1996), Borland and Lye (1996). Chapman and 

Southwick do this for Major League Baseball in the US, Ohkusa and Ohtake study Baseball data 

from Japan, whereas Borland and Lye analyse hazard rates for football in Australia. For literature on 

hazard rates using company data see i.e. Campell (1993) and Lazear (1999), while Booth, 

Francesconi and Garcia-Serrano (1999) use work-history data. Regarding hazard rates we are 

interested in a different Major-League Sport, the National Basketball Association (NBA), using a 

database covering all players in the 90’s. For the prior decade there are two analyses of NBA-

league-hazard by Staw and Hoang (1995) and Hoang and Rascher (1999). 

Besides analysing the risk (hazard) of leaving the NBA, it is our particular concern to estimate a 

model which considers the movement of players between teams in the league through trades and free 

agency as suggested by Ohkusa (2001). To the best of our knowledge, we are the first to examine 

team-hazard in addition to league-hazard. Intuitively one might expect player performance figures 

being the decisive argument for survival in the league, things are more complex at the team level. No 

team desires a poor performing player, hence he has to quit the league. Every team however wants 

(needs) a high quality player, consequently he should remain in the league. But should this particular 

player also stay with his original team? This question depends whether another team has a greater 

interest for the player’s services, maybe just for pecuniary reasons i.e. in the case that his talent is too 

expensive for his old team, or if he performs a better job in the new than in the old club. 

The rest of the article is organized as follows: Specific hypotheses about league- and team-hazard 

are generated in section 2 along with some theoretical considerations. Following this, in section 3 we 

describe our dataset and the methodology we have used, especially the proportional Cox model as 

estimation technique. In section 4 our estimation results are reported. The paper ends with some 

concluding remarks.  
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2. Theoretical Considerations  

We are interested in the hazard rates for players in the NBA. Hazard can be defined as leaving the 

NBA. This kind of hazard we denote as league-hazard, whereas hazards for quitting the team we call 

team-hazards. Firstly, we consider league-hazards and secondly we investigate team-hazards. 

From a theoretical point of view we would expect that there is one and only one decisive determinant 

of the league-hazard. This is the performance of a player. We would anticipate that players with high 

performance have a low hazard rate, those with bad performance should indicate a high hazard rate. 

High performing players are valuable in the NBA, therefore they should stay in the league. Low 

performing players are less valuable, especially if their performance is lower than the expected 

performance of newcomers or other league entrants from outside the NBA. 

There are three reasons why this supposed correlation between (high) performance and (low) hazard 

may not hold in other professions. First, high performing workers often have better outside 

opportunities than low performing employees, but this is of no relevance for NBA-players. The 

compensation in the NBA is much higher than that of any reasonable alternative job including other 

basketball leagues (with the exception of coaching a team after the player’s career). Even the actual 

minimum wage of about $300,000 annually for 1999/2000 rookies is much higher than what any of 

the players could expect offside the basketball court. Therefore, it is irrelevant if better basketball 

players are also better in any other jobs. Every player wants to stay as long as possible in the NBA. 

This is true for monetary reasons alone. Moreover, most of the players can be assumed to have a 

preference for playing basketball over doing other things. 

Ohkusa (2001, p. 83) argues for Japanese professional baseball players that they “can continue as 

professional baseball players if they sharply reduce their wages and trade to another team. However, 

they can choose not to play and so quit. Quitting is unambiguously voluntary.” We think this is not 

true for professional basketball players in the NBA. The relative high minimum wage induces players 
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to receive it instead of quitting, but profit-maximizing teams are not willing to pay this price for bad 

performance. This is not the case for baseball players in Japan because a minimum wage does not 

exist and their salaries are generally much lower. 

The second reason for a high negative correlation between performance and hazard present in 

basketball and baseball as well is that the production functions in all team sports are of a limited 

form. It is ineffective having hundreds of idle players if only five players can form the squad that is 

allowed to be on the court in basketball and nine per team on the baseball field. The marginal yield 

even for well performing players is zero if they cannot be used. Moreover, the allowed maximum 

number of player’s in a NBA-team at the same time is 12. 

The third explanation for observing a stronger relationship between performance and hazard in the 

NBA as well as in all professional sports compared to other professions is that problems of 

asymmetric information in general and of moral hazard in particular are much lower in the former than 

in the latter. In contrast to most other workers is the professional basketball player’s performance 

highly observable and transparent. All games are open to the public, all moves can be watched on 

TV, recapped by video again and again and player statistics are almost costlessly available through 

the Internet. The coach can monitor what the players do, owners can investigate it as well as the 

competitors and external analysts can. There are a lot of numbers to measure performance and we 

use some of them for our own analysis (see section 3). Even if one can argue about the actually used 

performance numbers, everyone is free to construct better measures by the available evidence. 

We do not say that the public behaviour on the field is everything that matters. Some areas like the 

professional training behaviour, the use of drugs, doping or player’s leisure-time activities are simply 

not perfectly visible for the monitoring institution. In this sense agency theory assumes that the 

individual player is better informed about his level of effort motivation or real physical condition 

(shirking through simulations etc.) than his team and trainer are. Rising tenure however reduces some 
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of the team’s information deficit about the player, whereas other clubs do not profit from that learning 

process. In addition, players jeopardize their reputation capital through postcontractual opportunism: 

Shirking, bad performance, deficient co-operation and unfair behaviour on or off the court will 

definitely not improve future contract terms or impress other potential employers. Hence, incentives 

to shirk and malfeasance are mitigated. In general we assume that most information is symmetric, 

especially actual performance is essential and relatively easy to monitor. 

A further consideration is that due to the extreme high remuneration in the NBA (nearly) no player 

wants to go voluntarily. Thus we expect most of the quits to be coerced which results from minor 

performance statistics. Instead, too high salaries cannot be problematic for high quality players, 

because their salaries can be decreased until they equal their marginal productivities.   

 In order to examine the theoretical considerations just made, we translate them to the following 

hypothesis of empirical testing: 

Hypothesis 1: The league-hazard depends mostly if not inevitably on the player’s perfor-

mance, that is the better the player’s productivity the lower his risk of departing the league.  

Investigating team-hazards is of different nature. Will players swing to another team for just the same 

reason they quit the league, which is for poor performance? Two kinds of team exits have to be 

distinguished: A player can drop out of the league while leaving his team or he can change teams 

inside the NBA. If the team-hazard is also a league-hazard, we would expect both things happen due 

to poor performance. Things, however, are more complicated in the case of a team-change. Teams 

are willing to give away low quality players, but why should any club pick up bad players? It takes 

two to tango! This could be the case if performance is team specific. How well a player works 

depends on his interaction with his fellow teammates but also on his relationship with the coach. 

Regarding this aspect Jovanovic’s (1979) matching theory is highly relevant. 
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Undoubtedly, the team’s most important capital is it’s pool of potential player talent. This player 

performance potential varies however from team to team. On the one hand a player may warm the 

bench during the whole season in team X, whereas his better co-workers form the starting-five, while 

on the other hand he would be a regular player in team Y. Another reason for trading a player may 

be his salary. A player might just be too expensive for one team but not for another, even if 

performance stays constant.  

In this respect, some institutional NBA characteristics have to be mentioned. Usually, most of he 

players sign contracts of at least one year which guarantees them a certain wage. Even if their per-

formance becomes lower than expected, they have to be paid for the duration of their negotiated 

contract. Therefore, teams can be better off by trading low performing but overrewarded athletes, as 

long as their value is higher in a new than in the incumbent team. Next, player trades can only occur if 

they do not end up more than $100,000 of the acquired team’s salary cap. The salary cap is the 

maximum dollar amount teams can spend on player contracts. For NBA terms, however, $100,000 

are next to nothing. The reason why there are trades nevertheless is that the NBA employs in 

contrast to other Major-League Sports a soft cap, which is easily circumvented. Both, the salary cap 

and the trading rules are full of exceptions, which are sharply used by the teams. Player trades can 

have the form of a simple exchange of players among at least two teams, but trade packages are 

more regular. For example, a club acquires one top player from another team in exchange for two 

medium quality players and a future first round draft pick. Additionally, players can be traded for 

cash and cash can be included in trade packages as well. However, the amount of cash is limited to 

$3 millions. Regarding these facts teams might be forced to trade good but expensive players, even if 

they do not receive identical quality in return. This happens in case the team is money constrained 

and cannot pay the salaries for it’s pool of talent or if a team has more high quality players than it 
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needs due to the limited production function. Accordingly, we expect the following hypothesis to be 

true: 

Hypothesis 2: The team-hazard that is a team-change depends on the player’s team-specific 

performance and also on his salary. Therefore, poor team-specific productivity or a high 

salary rise a player’s risk to change the team.  

 

3. Data and Methodology 

We use longitudinal data to test empirically the above mentioned hypotheses. The database we 

accumulated is hand-collected and is primarily drawn from various issues of the “Sporting News 

Official NBA Register” (1993/94-1999/2000) and the “Sporting News Official NBA Guide” 

(1996/97-1999/2000). Furthermore, data for the first three seasons, 1990/90-1992/93, were 

gathered from “The Official NBA Basketball Encyclopedia” edited by Villard Books 1994. 

Moreover, player salaries and contract information is mostly obtained from Patricia Bender’s 

website at http://www.nationwide.net/~patricia/.  

The raw dataset consists of all players that appeared in at least one of the 82 regular season games in 

any of the NBA-seasons 1990/1991-1999/2000. The total number of observations is 4,522 with 

some players being active in all 10 seasons and others in only a few or in just one of them. 

Sometimes there are two or more observations of the same player in one season if he changed the 

team during the season (see below). The current 29 teams employed 996 different basketball players 

over the past 10 years. While single performance figures like games played, minutes, field goals, free 

throws, three points, rebounds, assists, blocks, turnovers, steals, fouls and individual characteristics 

such as league experience, tenure, a player’s age and all star games participation are available for all 

athletes, this is unfortunately not the case for player salaries and player’s race. The former 
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information is missing for approximately four percent and the latter is absent for one percent of the 

players. Complete player information is readily accessible for 4326 observations. 

One feature of our data set is that it contains censored observations, for a more in depth treatment 

see Kiefer (1988). Censored data arise when a player occurs at one edge of our 10 years sample. 

On the one hand, we have left-censored observations, that is some individuals have experienced the 

event of interest (first year in the NBA) prior to the start of our study (before the 1990/91 season). 

Fortunately, we do know when these players started their career in the NBA. On the other hand, 

there is also the possibility of right-censored observations indicating that all we know is that the 

players are still employed by the league in the 2000/2001 season, that is after the ten analysed years. 

Certainly there are also athletes who begin and quit their job during the time of analysis, see Figure 1. 

 

Figure 1: Spells and Censoring 
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Special attention must be paid to players that left the NBA and returned after a break. We observed 

some of such cases, but do not know whether and which players might have played once before in 

the 80’s, left the league, came back or whether players who departed the league in the 90’s will re-

join the league in the new millennium. To solve this problem we decided to count each uninterrupted 

spell of seasons as a distinct subject. Therefore, it is possible that the same person is counted as two 

different subjects if he left the NBA for a while. Subsequently, our league-hazard estimation includes 

1,097 subjects although there are only 996 different players in our data set. Tests of the team-change 

model report 2,039 subjects. Accordingly, these are uninterrupted season spells for one player 

within a particular club. 

Methodologically, we are using Cox’s (1972) semi-parametric proportional hazards model, where 

the problems of censoring can be solved. The Cox model does not limit the pattern of the hazard rate 

like parametric models with distributions such as the Weibull, exponential or log-logistic do. In the 

Cox model, the conditional hazard function, given the vector z of covariate values at time t or the 

corresponding time interval, is assumed to be of the form 

)exp()()|( 0 ztzt βλλ = , 

where β is the vector of regression coefficients, and λ0(t) denotes the baseline hazard function, which 

is the hazard function when all independent variable values are equal to zero. No particular shape is 

assumed for the baseline hazard, that is it has to be estimated non-parametrically. The parameter 

estimates β̂  are obtained by maximizing the partial log-likelihood function 
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where j indexes the ordered failure times tj, Dj is the set of dj observations that fail at tj, and Rj is the 

set of observations that are at risk at time tj. Only event times (dropping from the league or the team) 

contribute positively in the first expression to the partial likelihood. However, both censored and 
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uncensored observations appear in the subtracted expression, where the sum over the risk set 

includes all players who are still at risk immediately prior to tj. Tied failure times when two or more 

hazards occur at the same time are handled by the Breslow (1974) method, see also Peto (1972). 

This approximation uses the largest risk pool for each tied failure event that means all failure events 

are included in the risk pool because the order of failures is not known. For calculating the variance-

covariance matrix the robust method of Lin and Wei (1989) has been chosen. For further 

explanation of the Cox model see Kalbfleisch and Prentice (1980), Kiefer (1988), Kahn and 

Sempos (1989), Altman (1991), Selvin (1996) or Klein and Moeschberger (1997). 

One problem that arises is that some players played for more than one team in a single year. Indeed, 

there are several players who changed the team once, twice or even played for three clubs within 

one season. Because our data do not tell at which time these changes occurred or whether a player 

left the league within the season or at its end, it is necessary to drop multiple cases of one player in a 

single season. For estimating the league-hazard, always the last case of one season remained in the 

data set. Only this case is at risk for leaving the league, at least ex post. Other team separations of a 

particular player during one season were eliminated. 

For estimating the team-hazard, things are more complicated. The last case in one season could be 

one without team-change, if the player changed within the season but then remains in his new team. 

Therefore, we selected from multiple cases of one player in one season the last one with a team-

change at its end. This can be the last case of the season or the last but one. The last but one must 

end with a team-switch because otherwise it would not be followed by an additional case in the same 

season.  

Table 1 exhibits the descriptive statistics for the first of these data sets (those for the second one are 
 
nearly identical). We divided players’ performance statistics in two groups. First we created the 
 
variable scoring performance. Scoring performance is the accumulation of all points (single points   
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Table 1: Descriptive Statistics  

Variable Mean Std. Dev. Min. Max. No. of Cases 

Scoring performance 0.3801 0.1468 0 3 4,117 

Non-scoring performance 0.2537 0.0980 -1 2 4,117 

Personal fouls 0.1130 0.0778 0 2 4,117 

Team years 2.4367 2.2278 1 16 4,117 

Team years squared 10.6936 24.2466 1 256 4,117 

League years 5.0675 3.8838 1 22 4,117 

League years squared 40.7600 56.2703 1 484 4,117 

Games 54.4460 26.4115 1 82 4,117 

Win-percentage 0.4948 0.1673 0.13 0.88 4,117 

Draft number 29.4341 19.8682 1 59 4,117 

Salary (ln) 13.6880 1.3914 7.78 17.11 3,982 

Roster 15.0189 1.4501 11 19 4,117 

Colour 0.7780 0.4156 0 1 4,072 

Height in cm 200.8762 9.7893 160.02 231.14 4,117 

All star games 0.1567 0.3635 0 1 4,117 

 

through free-throws, double points from field goals and the three points shots which provide a bonus 

for scoring from a long distance beyond 23 feet 9 inches) a player scored in one season divided by 

the minutes he played in the whole season. In addition, we follow Harder (1992) and apply a 

component measure which controls for rather team-contributing player behaviour, the non-scoring 

performance. This measure is computed by adding an athlete’s total amount of rebounds, blocks, 
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steals and assists, subtracting the number of turnovers and dividing this result by his minutes played 

on the court. The addition of these “hazzle statistics” is justified by the consideration that they 

support and prevent scoring. In particular, rebounding and blocking are thought of as ungrateful jobs, 

thus the term “hazzle statistic”. We also examined different measures of the non-scoring performance 

but without great differences in the results. One may wonder the negative minimum on this variable, 

but Gheorghe Muresan, center with the New Jersey Nets had indeed more turnovers (negative 

performance) than rebounds, blocks, steals and assists (positive performance). We did also 

standardize, on the minute basis, players’ violations against the rules of the game, that is players who 

compete unfair against their opponents are sanctioned with a personal foul. 

The database indicates that on average a player stayed somewhat more than 2.4 years with his 

current team at the time of observation. This is not identical with the average length of a career in the 

NBA because players can play there again next year, whereas players already gone are not 

observed any longer (at least in the same team). This and the following variables’ squared terms are 

entered to capture possible non-linearity. The variable “league years” counts a player’s number of 

uninterrupted years employed in the NBA at the observation time.  

From the Table 1 can be seen that on average players perform 54 games in a 82 regular season 

period. We limited our investigation to the regular seasons since only 16 of the actual 29 NBA teams 

will qualify for postseason playoff games. Due to the league’s lockout in the 1998/1999 season only 

50 regular games were played in that year. We weighted the games of that season accordingly with 

the factor 1.64. 

We did also gather data on the team basis. At the end of a season, each team is ranked by it’s win-

percentage that it traced during the season. Under the time of our investigation the Chicago Bulls 

were in 1995/1996 the team with the best win-percentage (they won 88 % of the 82 games) 
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whereas the Dallas Mavericks in 1992/1993 were the worst performing team in our analysis (they 

lost 87 % of the games). 

One particular aspect in all major-league sports is the draft mechanism, which is held yearly at the 

end of the season. The draft is the major tool for the franchises to secure new talent or improve a 

team’s future performance after a losing season. The rules of the draft dictate the order in which 

teams select amateur college team-sport players, see Staw and Hoang (1995). The team with the 

worst win-percentage of the past season has the first chance of picking the most talented college 

player in the “draft-lottery”. The remaining teams then elect players in the inverse order of their prior 

regular season records, with the best team picking last in each round. Therefore, a low draft number 

indicates good, a high number not so good talent. In 1985 the NBA executed 10 draft rounds but 

reduced it to two rounds since the 1989/1990 season. Since our database contains players who 

were drafted before the 1989/1990 season it is straightforward that some players were picked with 

quite high numbers. Since most of our data comes from the 90’s – the time the NBA switched to the 

trimmed (two) rounds – we coded draft picks that exceeded the highest possible draft number after 

the recent team expansion to Canada (the Toronto Raptors and the Vancouver Grizzlies) in 1995 as 

59. In other words since there are two rounds today with 29 teams participating in the draft 

mechanism, 58 players are recruited in this fashion every year. Hence, higher draft picks from earlier 

rounds do all receive the draft number 59. The same holds for all players that were not drafted at all, 

especially foreigners. We did yet another change of the original draft number in case that more than 

ten years have past since the drafting. Then we added in the eleventh and every following year eight 

numbers to the draft number, until the maximum of 59 was reached. This may sound arbitrary, but 

this depreciation is necessary to fulfil the conditions of the proportional hazard model and it has also 

a meaningful interpretation, see below in section 4.  
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One of the big advantages of this study is the salary information used for the majority of NBA 

players. We do only miss salary data for 135 observations in the league database. In the following 

regression analysis we use the natural logarithm to flatten the function out. The average absolute 

salary for a player who was active in the NBA over our study period is about $1,550,000. Was this 

figure somewhat more than $900,000 in 1990/1991, it is almost $2,8 million today. At present there 

are 80 NBA players earning more than $5 million per season. In fact, Michael Jordan made about 

$33 million in his last NBA season 1997/1998. But with so much money to put toward 

“Superstars”, marginal players are often compensated less than the minimum wage, which was 

$120,000 for rookies in 1990/1991 and $301,875 in 1999/2000. Players making far less than the 

respective year minimum salary are signed to a so called 10-day-contract. This is a contract that lasts 

for 10 days. If a player’s contract is for less than the full season, the salary he gets is in proportion to 

the amount of seasons he has already played in the league. So if a 10-day-contract covers three 

games for the team, then the player’s contract (assuming he is a rookie) will be 3/82 of the minimum 

wage of $301,875 in 1999/2000, or $11,044. 

As mentioned above, the league’s lockout in 1998/1999 took almost half of the regular season’s 

time, reducing players’ income by 39 %. We weighted the salaries of this season accordingly with 

the factor 1.64 as we did for the number of games played, because we are not interested in the 

absolute amount of money but the influence of salaries on the hazard rate. For the same reason, we 

weighted all salaries with the average salary of all years divided by the average salary of the 

particular year. This is in response to correct for the salary explosion in the last ten years by the 

factor three. Because salaries in the NBA rose much faster than normal income or inflation, we did 

not use consumer price or wage indexes as applied in other studies to correct for nominal differences 

between years. 
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We did also count the number of players forming a team during the season. NBA rules say that each 

team is allowed to have 12 players on it’s roster but must suit up eight players for each game, while 

only five – two guards, two forwards and one center – are actively playing on the court. Our data set 

however has on average 15 athletes in one team, because the clubs are allowed to change their 

active roster between games through trades. This is not only true for tactical reasons but these additi-

onal players do also act as an insurance against too many player injuries within the season. 

Moreover, these “passive” players do function as a motivation instrument for the whole squad. They 

produce competition among the starting-five and especially among benchwarmers through the fear of 

replacement. Furthermore, they can simply be regarded as a reserve for trading players. 

A dummy variable signals the colour of NBA professionals. We identified the race of each player by 

visual examination of his picture in the NBA Official Register. There are considerable more black 

players (77.8 %) in the league than white ones (22.2 %). 

Instead of using position dummies we use a players size in the following regression since there might 

be a correlation between a players height and exiting the league/team. Staw and Hoang (1995, p. 

479) argued that big players who typically occupy the forward and center positions  are more likely 

to have a high number of rebounds and blocked shots. Therefore one might expect that rebounds 

and blocked shots would emerge as a performance factor for forwards and centers, rather than the 

smaller guards. We did also regressions with position dummies instead of the players’ height. Their 

effects have been insignificant, however. 

With the help of the all star game variable we are able to distinguish “superstars” from others. 

Although normal players are definitely important for every team, stars are an essential factor for the 

team’s market value as they attract more fans besides their contribution to winning. The status as a 

(super)star is reflected in the all star games variable, used here as a dichotomous one. It was coded 

0 if a player did not participate in the yearly held exhibition game where the best players from the 
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West compete against the best players from the East and coded 1 if he was at least once a member 

of the all star happening. Certainly there are players with several all star games. However, we only 

use the dummy variable of at least one participation because the actual number would violate the 

proportional hazards assumption of the Cox model (see below in section 4). 

The length of a player’s contract with his team is not included in the regressions because we have 

these information only for almost half of the total cases. We did also not include complete data about 

players not playing for injuries, because they would produce counterintuitive results. Injuries seem to 

lower hazard rates. This can be explained by the fact that only good players remain in the league or a 

team in case of injury whereas others drop without notice. Finally, we tried and then decided not use 

available data about the age and duration of player’s professional career (inside and outside of the 

NBA) because of problems of multicollinearity between these variables and the years played in the 

NBA. 

 

4. Empirical Results 

The results of testing the Cox model for the league-hazard are presented in Table 2. Scoring 

performance has a negative sign and is statistically significant at the 1-percent-level. For example 

scoring one point more per minute reduces a player’s probability of being cut from the league by 

29 %. The variable non-scoring performance has also a significantly and even greater negative 

impact on the hazard rate. Producing one more unit of this index diminishes the propensity of being 

fired from the NBA by 45 %. Personal fouls are significantly positive sloped. One more of them 

every minute increases the likelihood of being released from the league by 48 %. If a player remains 

longer in one team, the hazard-rate decreases, but this effect of team-specificity is concave, because 

the quadratic term has a positive sign. 
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Table 2: League-Hazard 

Variable Coefficient Std. Dev. 

Scoring performance -0.3387817** 0.1299339 

Non-scoring performance -0.5987001** 0.2064618 

Personal fouls 0.3917943** 0.1411024 

Team years -0.1158622* 0.0584928 

Team years squared 0.0108804* 0.0049878 

Games -0.0275126*** 0.0015874 

Win-percentage -0.8783347*** 0.1826118 

Draft number 0.0083579*** 0.0017707 

Salary (ln) -0.0980379*** 0.0189498 

Roster -0.0058813 0.0205072 

Colour 0.0061149 0.0629343 

Height -0.0017745 0.0028152 

All star games -0.2555442+ 0.1419389 

Number of subjects = 1,097 

Number of hazards = 732 

Number of observations = time at risk = 3,941 

χ 2 = 1,055.37*** 

McFadden R2 = 0.0774349 

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001, two-tailed tests 
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The variable representing the highest statistic significance (z-value = -17.332) is the number of games 

that a player was on the field during a season. The more games a player is in action the higher his 

chance of playing inside the NBA in the succeeding year. A team’s win-percentage is also an 

important determinant in reducing the hazard-rate: Winning teams keep their members in the league. 

Further, a higher draft number results in a higher hazard-rate, whereas higher salaries improve the 

probability of remaining in the NBA. Team size has an insignificantly negative effect on the hazard-

rate, whereas black colour insignificantly raises this rate. Also insignificant is the negative effect of a 

player’s height. 

Finally, the participation at one or more all star games significantly (but only on the 10-percent-level) 

reduces the hazard rate elucidating that teams try to keep high quality and “entertaining” players. Not 

shown in the table is that different tests of the proportional hazards assumption have been passed for 

the overall model and for each variable. We estimated also with different year- and team-dummies 

without much effect (the adjusted McFadden R2 is falling). 

How do these results match with hypothesis 1? Direct performance measures like scoring 

performance, non-scoring performance and personal fouls have the expected signs. We understand 

the positive coefficient on the personal foul variable as the anticipated sign because fouls in general 

harm a team’s output in form that the rival team gains ball possession and/or free throw attempts. 

Hence, fouls are clearly a sign of negative player performance, which raises the probability of being 

ejected from the league. This confirms the hypothesis. However, the statistically significance of the 

games played variable is much higher than that of the direct performance measures. Nevertheless, 

this does not mean that the amount of games played is more important than performance figures 

displayed while playing. The games played are not independent of the player’s performance. Indeed, 

the number of games could be a better indicator of a player’s performance than the scores per 

minute, the non-scoring measure and the fouls per minute. The reason is that the coach always tries 



 21

to set up his best available players – usually the “starting-five” – whereas performance measures per 

minute only illustrate the average productivity in the minutes a player was on the field. It is an 

economically reasonable assumption that performance is concave over time in respect that marginal 

performance is decreasing. Ceteris paribus we might observe “marathon-players” performing poorer 

than someone only playing a few minutes. If high quality players are on court for the majority of 

games and do also receive most of the playing time by the coach, then they do not seem to be so 

much better in their scoring or non-scoring performance per minute as they really are compared to 

their inferior teammates who are hardly ever, but well-rested on the field. We interpret the number of 

games played as performance measure and summarize its significant negative effect on the league-

hazard as confirmation of hypothesis 1. 

We see the time a player spends in a particular team as a good method to determine a player’s team 

specific human capital and consider it as an indirect performance indicator. The win-loss-record 

measures team performance and a low draft number predicts prospective star potential. If most 

playing talent is innate or acquired in early years, we expect that playing quality at the beginning of 

one’s career in the NBA as expressed by the draft number, remains an important factor over an 

athlete’s whole career. Regarding this aspect we do not agree with Staw and Hoang (1995) who 

interpret the long lasting effect of the draft number as a sign of (irrational) regard for sunk costs. This 

could only be true if their other performance measures included in the regression are perfect, but they 

are of no better quality than ours. What we have found is that the effect of the draft number is not 

stable over time. The assumption of the proportional hazard rates over time is violated for the draft 

number when the number of years is higher than ten. Therefore we included a depreciation of eight 

numbers per year after the tenth year in our draft number variable (see section 3 above) which then 

realizes the proportional hazard conjecture of the Cox model. This finding emphasizes the 

significance of a player’s initial productivity (talent) in the first years of his career, but this is lost and 
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replaced by his current performance if the player survives for more than ten years in the NBA. Staw 

and Hoang (1995) do not test the proportional hazard assumption of the Cox model, but their study 

did however, only observe players being in the league for the maximum of eleven years. We found 

that for players with shorter league duration this central assumption was not violated. 

Higher salaries significantly reduce the hazard rate. This would be very surprising if the direct 

performance measures are perfect. Why should a team pay more for a player of equal quality and 

performance? High priced players are on the verge of being sacked by a rational thinking manager. 

The negative relationship between the likelihood of quitting the league and high player salaries can be 

explained by the fact that well compensated athletes’ perform better, even when controlling for the 

productivity measures applied in our model. For instance, a 10 % higher paycheck improves the 

chance of staying in the NBA by nearly 1 %. Intuitively, it is perfectly rational that high productive 

workers are paid better and maintain longer in the league. A team’s top but overrewarded player is 

traded due to economic reasons, which requires that the new team has enough room below the 

salary cap. In case the player cannot find a new club that accomplishes the latter mentioned aspect - 

or does simply not accept the wage he calls for - the player has two choices: First, both parties agree 

on a lower salary and second, the player separates from the NBA. Certainly, regarding his 

opportunity costs he is better off choosing the lower salary. Who has already a low salary cannot do 

this to prevent quitting the league due to the minimum wage. 

There is no theoretical association between performance on the one hand, roster size or a player’s 

race on the other, accordingly we do not find any significant effects. The hazard for coloured players 

is higher, but in contrast to the Hoang and Rascher (1999) findings, there is no significant discrimi-

nation. Perhaps this can be explained by the fact that our data covers the 90’s, theirs the 80’s. 

Finally, the participation of an all star game considerably reduces the hazard rate, namely by 23 %. 

Definitely, the all star game variable accounts for stardom player productivity. Moreover, fans decide 
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by electing athletes into an all star game, which stresses a player’s popularity apart from the mere 

athletic performance in professional basketball. Similar to the draft number analyses, the proportional 

hazard assumption is violated when the “real” numbers of all star games participations are counted 

for. The problem with the all star game variable is that players with more than a handful of all star 

games tend to be quite old, which indicates that these players near the end of their working lives. 

Besides testing the Cox model to identify the coefficients of our independent variables, it is possible 

to compute the baseline hazard function and the baseline survival function. The Cox model estimation 

is semi-parametric such that the functional form of the baseline hazards is not given. The baseline 

hazard rate is calculated for all variables having zero value. As a result we normalized the variables 

using a linear transformation to obtain zero means. Figure 2 shows the baseline hazard rate for an 

average player. 

Although one player remains 22 years in the NBA, we do not display the hazard rate after the 

fourteenth year because there are less than ten hazard events per year and results are neither 

representative nor stable. From Figure 2 it is obvious that the hazard rate does not follow any 

specific functional form and must be estimated non-parametrically. This justifies the application of the 

Cox model. One common alternative would have been to estimate a Weibull model, but the Weibull 

function has to be monotone and that is not the case for the hazard rate in the NBA.  

Figure 3 shows the corresponding survival function to Figure 2. It can be seen that 50 % of the 

players are gone after five years even when achieving average characteristics. Most rookie players 

perform below average statistics, which reduces their probability of staying in the league. 

The results of estimating the corresponding Cox model for team-hazard are summarized in Table 3. 
 
Tests of the proportional hazard assumption illustrate the goodness of the overall model and for the 
 
specific variables included in the estimation. Scoring performance significantly hinders a job change. 
 
The risk of being traded is 37 % lower for one point per minute more. Amazingly, the non-scoring  
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Figure 2: Baseline League-Hazard Rate 

 

 

 

 

 

 

 

 

Figure 3: Baseline League-Survival Rate 

 

    

 

 

 

 

 

 

 

performance is insignificantly positively sloped. This might be interpreted as follows: There is no need 
 
to exchange players of identical skills i.e. replacing one top-scorer for another one. Points are points.  
 
However, things are differently regarding the non-scoring performance measures. One team lacks a  
 
playmaker who provides the “big boys” with assists in the paint, another club might need to reinforce  
 
it’s defence and employs a strong rebounder. Teams do not like players producing one foul after the  
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Table 3: Team-Change as Hazard 

Variable Coefficient Std. Dev. 

Scoring performance -0.4692518** 0.1686467 

Non-scoring performance 0.0065880 0.2140010 

Personal fouls 0.2858753* 0.1139573 

League years 0.1185835*** 0.0233878 

League years squared -0.0047571** 0.0015905 

Games -0.1129830*** 0.0010448 

Win-percentage -0.6563446*** 0.1527685 

Draft number 0.0025397+ 0.0014704 

Salary (ln) 0.0009563 0.0230358 

Roster -0.0051531 0.0173600 

Colour 0.0151138 0.0573018 

Height -0.0036314 0.0026583 

All star games -0.1960048* 0.0786295 

Number of subjects = 2,039 

Number of hazards = 1,175 

Number of observations = time at risk = 3,945 

χ 2 = 309.67*** 

McFadden R2 = 0.0119855 

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001, two-tailed tests 
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other; thus they hand them over (with an increased probability of 33 % for an additional foul per 

minute) as long as they do not have to leave the entire league. 

The most statistically significant variable is again the number of games played during the season. This 

confirms hypothesis 2. A team is not interested in loosing players that it needs most, so it neither lays 

them off the league, nor trades them to another NBA franchise. The most intensively used players 

achieve their highest value with the club they are currently working. In every other case the team is 

well advised to trade the particular player and look out to reach more adequate matches. 

Winning significantly reduces the propensity of a player to separate with his original team: Never 

change a winning team. It remains open for future research whether a high win-percentage really 

diminishes the probability of a team-change or whether this causal relationship is rather inverse, such 

that stable teams win more regular games than teams producing a high degree of labor turnover.  

The draft number is positively sloped. A low draft pick hints high quality, although this information is 

widely available for all teams. The salary coefficient has also a statistically insignificant positive 

direction. Although one might expect a significantly positive effect this observation does not 

contradict hypothesis 2, because salaries are not only costs but can be seen as a sign of high 

performance. Both effects may cancel out each other.  

Team roster, colour and size show again no significant effect. Finally, taking part on at least one all 

star game significantly lowers the probability of a team-change by 18 %. All star games are not only 

a pure quality signal, they also reveal additional, partly team-specific value to the spectators beyond 

athletic performance.  

Figure 4 depicts the baseline hazard rate for the team change event. Although there are less than ten 
 
hazards in the eighth and some later years, we plotted the hazard rate until year fourteen for one team  
 
to make a comparison with Figure 2 feasible. As can be seen in Table 1 the maximum achieved  
 
years within a particular club is 16, reached by exactly two players in our data set. During the first  
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Figure 4: Baseline Team-Hazard Rate 

 

years the probability to switch the team is even higher than the hazard to leave the league. The hazard 

to change the team finds its maximum in the seventh year at nearly 38 % for a player with average 

characteristics. Thereafter, it plunges and peaks again in the tenth year. In the thirteenth and 

fourteenth year the propensity to change the team has fallen to zero. In other words, this means that 

new team members change with a high probability, whereas old ones have found their perfect match 

or have lost their will to change teams before retirement. Figure 5 shows the corresponding baseline 

survival rate. 
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This paper has tested Cox proportional hazard models for leaving the NBA and for changing a team 

inside the NBA. The results obtained by the regressions are strongly consistent with our main 

hypotheses. The most important reason for dropping the league is low player performance. Thereby 

it is not only the direct performance measures that matter. Also the number of games played or the 

salary do count as indirect measures of productivity. 
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Figure 5: Baseline Team-Survival Rate 

 

Low performance cannot be the single determinant for a team change, because no club would like to 

receive such players. This is exactly why these kind of players have to exit the league. A team switch 

occurs if both teams improve their situation, that is the changed player has a comparative higher value 

in the new team than in his old franchise. Therefore, the extensive use of a player by his team – 

measured by the number of games played – inhibits the probability of being traded similar as the high 

scoring performance does. However, this does not hold for a high non-scoring performance or large 

salaries. The former has many dimensions so that players with different strengths and weaknesses 

can be traded, whereas the latter are an indirect performance measure and expenditure at the same 

time. It remains a question for future research whether the matching hypothesis is true and better 

matches between teams and players are really reached, or whether the quality of players is general to 

the league and does not vary between teams before and after trading. 
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